留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The performances and structure evolution of Pt-based catalysts for selective hydrogen combustion under propene-rich conditions

SUN Huai-lu LI Kai-xin YU Wen-long DING Jun-wei SHAN Yu-ling

孙怀禄, 李开欣, 于文龙, 丁军委, 单玉领. Pt基催化剂在富丙烯气氛中选择性氢气氧化性能和结构演变规律[J]. 燃料化学学报. doi: 10.1016/S1872-5813(23)60336-6
引用本文: 孙怀禄, 李开欣, 于文龙, 丁军委, 单玉领. Pt基催化剂在富丙烯气氛中选择性氢气氧化性能和结构演变规律[J]. 燃料化学学报. doi: 10.1016/S1872-5813(23)60336-6
SUN Huai-lu, LI Kai-xin, YU Wen-long, DING Jun-wei, SHAN Yu-ling. The performances and structure evolution of Pt-based catalysts for selective hydrogen combustion under propene-rich conditions[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(23)60336-6
Citation: SUN Huai-lu, LI Kai-xin, YU Wen-long, DING Jun-wei, SHAN Yu-ling. The performances and structure evolution of Pt-based catalysts for selective hydrogen combustion under propene-rich conditions[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(23)60336-6

Pt基催化剂在富丙烯气氛中选择性氢气氧化性能和结构演变规律

doi: 10.1016/S1872-5813(23)60336-6
详细信息
  • 中图分类号: TQ031.4

The performances and structure evolution of Pt-based catalysts for selective hydrogen combustion under propene-rich conditions

More Information
  • 摘要: 在烷烃脱氢工艺中耦合选择性氢燃烧(SHC)是能够实现原位给热和打破脱氢热力学平衡提高单程转化率的有效技术,具有高选择性和稳定性SHC催化剂的开发对该耦合工艺的实现至关重要。本文重点研究了富丙烯气氛中Pt基催化剂的SHC性能和长期使用过程中活性相的演变规律。研究发现,Sn修饰的Pt/SiO2催化剂在丙烷和丙烯同时存在的条件下具有高的氢气氧化选择性(大于98%)。通过动力学研究,稳定性测试和结构表征发现氧气的引入能够显著提高催化剂的结焦速率,形成的高度石墨化的焦炭,Pt的烧结,PtSn合金中Sn的氧化和偏析是导致长期稳定性测试中选择性下降的主要因素。
  • Figure  1  HRTEM images and Pt size distributions of fresh Pt/SiO2 (a), Pt-Sn/SiO2 (b) and spent Pt/SiO2 (c) and PtSn/SiO2 (d) after 25 hours on stream. Surface-weighted metal cluster diameters were calculated from dTEM = $\displaystyle \sum \mathrm{n}_{\mathrm{i}} \mathrm{d}_{\mathrm{i}}^3 / \sum \mathrm{n}_{\mathrm{i}} \mathrm{d}_{\mathrm{i}}^2$

    Figure  2  (a) H2-TPR spectra of catalysts; (b) XPS spectra of Sn 3d5/2 of freshly reduced and spent (PH2=12 kPa, PO2=3 kPa, 550 ℃, 12 h) Pt-Sn/SiO2 catalyst

    Figure  3  Activities and selectivites of Pt/SiO2, Pt-Sn/SiO2 and Sn/SiO2 catalysts. SHC under condition: (a,b) PC3H8 =12 kPa, PH2 = 6 kPa, total flow = 100 mL/min; (c,d) PC3H8 =12 kPa, PC3H6 = 6 kPa, PH2 = 6 kPa, PO2 = 1.5 kPa, total flow =50 mL/min O2 in shown in the picture, balance is nitrogen, 550 ℃

    Figure  4  Activities and selectivites of Pt/SiO2 and PtSn/SiO2 catalysts. (a) conversion of oxygen, (b) oxygen selectivity to water. Pt/SiO2_H denotes reacting in high C3H6 condition: PC3H8 =18 kPa,PC3H6 = 30 kPa, PH2 = 6 kPa, PO2 = 1.5 kPa; Pt/SiO2_L denotes reacting in low C3H6 condition: PC3H8 =18 kPa,PC3H6 = 6 kPa, PH2 = 6 kPa, PO2 = 1.5 kPa, total flow is 50 mL/min, balance is nitrogen, 550°5

    Figure  5  (a) Coke content of spent Pt/SiO2 catalyst at three reaction conditions after 10 hours on stream at different conditions; (b, c) TPO and Raman spectra of spent Pt/SiO2 catalyst; (d) The relationship between propene partial pressure and coking rates in presence (this work) and absent of oxygen (data from ref. [24]); (e, f) HRTEM images of spent Pt/SiO2 catalyst. Condition A: PC3H8=18 kPa, PC3H6=30 kPa, PH2 = 6 kPa; Condition B: PC3H8 = 18 kPa, PC3H6 = 30 kPa, PH2 = 3 kPa ; Condition C: PC3H8 = 18 kPa, PC3H6 = 30 kPa, PH2 = 6 kPa, PO2=1.5 kPa. Balance is N2, total flow is 50 mL/min, 550 ℃

    Figure  6  Schematic illustration the SHC performances and evolution processes of active sites of Pt-based catalysts under propene-rich condition

    Table  1  Physicochemical properties of Pt/SiO2, PtSn/SiO2 and SnO2/SiO2 catalysts

    SampleMetal loading
    (wt%)
    Surface area m2·g−1Pt dispersion
    %
    Dchema
    (nm)
    dTEMb
    (nm)
    Pt/SiO20.3523259.51.92.3
    Pt-Sn/SiO2(0.35) Pt-(0.22) Sn22143.42.62.8
    SnO2/SiO20.35235
    Note: a: determined by H2 chemisorption; b: determined by TEM analysis
    下载: 导出CSV

    Table  2  Selective hydrogen combustion over Pt nanoparticles loaded on different supports.

    SampleO2 conversion (%)O2 selectivity to H2O (%)Coke contentc (wt%)
    InitialaFinalbInitialaFinalb
    Pt-K/SiO298.398.5 96.387.910.5
    Pt/MgO98.694.495.366.418.6
    Pt/SiO295.196.694.583.639.1
    Pt/-Al2O398.694.885.887.643.8
    Notes: a, recorded at 5 min; b, recorded at 25 h; c, detected by TGA
    下载: 导出CSV
  • [1] SATTLER J J, RUIZ-MARTINEZ J, SANTILLAN-JIMENEZ E, WECKHUYSEN B M. Catalytic dehydrogenation of light alkanes on metals and metal oxides[J]. Chem Rev,2014,114:10613−10653. doi: 10.1021/cr5002436
    [2] OTROSHCHENKO T, JIANG G, KONDRATENKO V A, RODEMERCK U, KONDRATENKO E V. Current status and perspectives in oxidative, non-oxidative and CO2-mediated dehydrogenation of propane and isobutane over metal oxide catalysts[J]. Chem Soc Rev,2021,50:473−527. doi: 10.1039/D0CS01140A
    [3] SUN P, SIDDIQI G, VINING W C, CHI M, BELL A T. Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation[J]. J Catal,2011,282:165−174. doi: 10.1016/j.jcat.2011.06.008
    [4] TSIKOYIANNIS J G, STERN D L, GRASSELLI R K. Metal Oxides As Selective Hydrogen Combustion (SHC) Catalysts and Their Potential in Light Paraffin Dehydrogenation[J]. J Catal,1999,184:77−86. doi: 10.1006/jcat.1998.2363
    [5] GRASSELLI R K, STERN D L, TSIKOYIANNIS J G. Catalytic dehydrogenation (DH) of light paraffins combined with selective hydrogen combustion (SHC): II. DH + SHC catalysts physically mixed (redox process mode)[J]. Appl Catal A-Gen,1999,189:9−14. doi: 10.1016/S0926-860X(99)00195-7
    [6] GRANT J T, CARRERO C A, GOELTL F, VENEGAS J, MUELLER P, BURT S P, Specht S E, McDermott W P, Chieregato A, Hermans I. Selective oxidative dehydrogenation of propane to propene using boron nitride catalysts[J]. Science,2016,354:1570−1573. doi: 10.1126/science.aaf7885
    [7] KANEKO S, ARAKAWA T, OHSHIMA M A, KUROKAWA H, Miura H. Dehydrogenation of propane combined with selective hydrogen combustion over Pt-Sn bimetallic catalysts[J]. Appl Catal A-Gen,2009,356:80−87. doi: 10.1016/j.apcata.2008.12.022
    [8] NAWAZ Z. Light alkane dehydrogenation to light olefin technologies: a comprehensive review[J]. Rev Chem Eng,2015,31:413−436.
    [9] LÅTE L, THELIN W, BLEKKAN E A. Selective combustion of hydrogen in the presence of hydrocarbons: Part 2. Metal oxide based catalysts[J]. Appl Catal A-Gen,2002,262:63−68.
    [10] BECKERS J, CLERC F, BLANK J H, Rothenberg G. Selective Hydrogen Oxidation Catalysts via Genetic Algorithms[J]. Adv Synth & Catal,2010,40:2237−2249.
    [11] DUDEK R B, YUNFEI G, JUNSHE Z, FANXING L. Manganese-containing redox catalysts for selective hydrogen combustion under a cyclic redox scheme[J]. AIChE J,2018,64(8):3141−3150. doi: 10.1002/aic.16173
    [12] WAKU T, BISCARDI J A, IGLESIA E. Catalytic dehydrogenation of alkanes on Pt/Na-[Fe]ZSM-5 and staged O2 introduction for selective H2 removal[J]. J Catal,2004,222:481−492. doi: 10.1016/j.jcat.2003.12.011
    [13] YU C, GE Q, XU H, LI W. Effects of Ce addition on the Pt-Sn/γ-Al2O3 catalyst for propane dehydrogenation to propylene[J]. Appl Catal A-Gen,2006,315:58−67. doi: 10.1016/j.apcata.2006.08.038
    [14] RODRÍGUEZ D, SÁNCHEZ J, ARTEAGA G. Effect of tin and potassium addition on the nature of platinum supported on silica[J]. J Mol Catal A-Chem,2005,228:309−317. doi: 10.1016/j.molcata.2004.09.067
    [15] SEXTON B A, HUGHES A E, FOGER K. An X-ray photoelectron spectroscopy and reaction study of Pt-Sn catalysts[J]. J Catal,1984,88:466−477. doi: 10.1016/0021-9517(84)90024-1
    [16] GARDNER S D, HOFLUND G B, DAVIDSON M R, SCHRYER D R. Evidence of alloy formation during reduction of platinized tin oxide surfaces[J]. J Catal,1989,115:132−137. doi: 10.1016/0021-9517(89)90013-4
    [17] ARANA J, RAMIREZ DE LA PISCINA P, LLORCA J, SALES J, HOMS N, FIERRO J. Bimetallic Silica-Supported Catalysts Based on Ni-Sn, Pd-Sn, and Pt-Sn as Materials in the CO Oxidation Reaction[J]. Chem Mater,1998,10:1333−1342. doi: 10.1021/cm970728n
    [18] NYKÄNEN L, HONKALA K. Selectivity in Propene Dehydrogenation on Pt and Pt3Sn Surfaces from First Principles[J]. ACS Catal,2013,3:3026−3030. doi: 10.1021/cs400566y
    [19] FU H, LIU Z P, LI Z H, WANG W N, FAN K N. Periodic Density Functional Theory Study of Propane Oxidative Dehydrogenation over V2O5(001) Surface[J]. J Am Chem Soc,2006,128:11114−11123. doi: 10.1021/ja0611745
    [20] XIAO L, SHAN Y L, SUI Z J, CHEN D, ZHOU X G, YUAN W K, ZHU Y A. Beyond the reverse horiuti-polanyi mechanism in propane dehydrogenation over pt catalysts[J]. ACS Catal,2020,10:14887−14902. doi: 10.1021/acscatal.0c03381
    [21] SHAN Y L, SUN H L, ZHAO S L, TANG P L, ZHAO W T, DING J W, YU W L, LI L N, FENG X, CHEN D. Effects of Support and CO2 on the Performances of Vanadium Oxide-Based Catalysts in Propane Dehydrogenation[J]. 2022, 12, 5736-5749.
    [22] VAN S A M, KUIPERS J A M, VAN SWAAIJ W P M. A kinetic rate expression for the time-dependent coke formation rate during propane dehydrogenation over a platinum alumina monolithic catalyst[J]. Catal Today,2001,66:427−436. doi: 10.1016/S0920-5861(00)00640-4
    [23] GUICHARD B, ROY-AUBERGER M, DEVERS E, REBOURS B, QUOINEAUD A, DIGNE M. Characterization of aged hydrotreating catalysts. Part I: Coke depositions, study on the chemical nature and environment[J]. Appl Catal A-Gen,2009,367:1−8. doi: 10.1016/j.apcata.2009.07.024
    [24] LI Q, SUI Z, ZHOU X, ZHU Y, ZHOU J, CHEN D. Coke formation on Pt-Sn/Al2O3 catalyst in propane dehydrogenation: coke characterization and kinetic study[J]. Top Catal,2011,54:888−896. doi: 10.1007/s11244-011-9708-8
    [25] LARSSON M, HULTÉN M, BLEKKAN E A, ANDERSSON B. The Effect of Reaction Conditions and Time on Stream on the Coke Formed during Propane Dehydrogenation[J]. J Catal,1996,164:44−53. doi: 10.1006/jcat.1996.0361
    [26] MALDONADO-HÓDAR F J, MADEIRA L M P, PORTELA M F. The Effects of Coke Deposition on NiMoO4 Used in the Oxidative Dehydrogenation of Butane[J]. J Catal,1996,164:399−410. doi: 10.1006/jcat.1996.0396
    [27] BARBIER JR J, DUPREZ D. Steam effects in three-way catalysis[J]. Appl Catal B-Environ,1994,4:105−140. doi: 10.1016/0926-3373(94)80046-4
    [28] SHAN Y, SUI Z, ZHU Y, CHEN D, ZHOU X. Effect of steam addition on the structure and activity of Pt-Sn catalysts in propane dehydrogenation[J]. Chem Eng J,2015,278:240−248. doi: 10.1016/j.cej.2014.09.107
    [29] YU C, GE Q, XU H, LI W. Influence of Oxygen Addition on the Reaction of Propane Catalytic Dehydrogenation to Propylene over Modified Pt-Based Catalysts[J]. Ind & Eng Chem Res,2007,46:8722−8728.
    [30] PRZYSTAJKO W, FIEDOROW R, DALLA LANA I G. Ammoxidation of Toluene on Coke-Covered Alumina[J]. Appl Catal,1990,59:129−140. doi: 10.1016/S0166-9834(00)82192-2
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  7
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-30
  • 录用日期:  2022-11-25
  • 修回日期:  2022-11-15
  • 网络出版日期:  2023-01-10

目录

    /

    返回文章
    返回