留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水滑石基臭氧分解催化剂性能研究

马嘉川 郭明星 王胜 王树东

马嘉川, 郭明星, 王胜, 王树东. 水滑石基臭氧分解催化剂性能研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(23)60337-8
引用本文: 马嘉川, 郭明星, 王胜, 王树东. 水滑石基臭氧分解催化剂性能研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(23)60337-8
MA Jia-chuan, GUO Ming-xing, WANG Sheng, WANG Shu-dong. Study on the performance of hydrotalcite-based ozone decomposition catalyst[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(23)60337-8
Citation: MA Jia-chuan, GUO Ming-xing, WANG Sheng, WANG Shu-dong. Study on the performance of hydrotalcite-based ozone decomposition catalyst[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(23)60337-8

水滑石基臭氧分解催化剂性能研究

doi: 10.1016/S1872-5813(23)60337-8
基金项目: 大连化物所创新基金项目(I202146),航空工业项目(62502500802)资助,,辽宁省自然科学基金(20170540086)资助
详细信息
    通讯作者:

    郭明星, guomxdl@dlmu.edu.cn,18941133971

    王胜,wangsheng@dicp.ac.cn,13591360316

  • 中图分类号: X511

Study on the performance of hydrotalcite-based ozone decomposition catalyst

Funds: This work was financially supported by Dalian Institute of Chemical Physics (DICP I202146),Aviation Industry Corporation of China(62502500802),Natural Science Foundation of Liaoning Province (20170540086)
  • 摘要: 居室环境内臭氧严重危害人体健康,催化分解法是最有效的臭氧净化技术之一。高活性和稳定性臭氧分解催化剂的开发是关键,特别是在高湿度大空速下,臭氧的低温催化分解具有较高的技术壁垒。层状双金属氢氧化物(LDH)具有独特的二维层状结构,具有灵活的结构可调控性。本文通过共沉淀法用过渡金属制得Ni3Fe、Ni3Co、Ni3Mn与Co3Fe水滑石结构催化剂,在30 ℃、600,000 mL/(g·h)、低湿度RH < 5%和高湿度RH > 90%条件下,测试了其臭氧催化分解性能。结果表明Ni3Co-LDH在低湿度和高湿度下,都表现出优良的臭氧分解性能,臭氧转化率分别为88%和77%。结合XRD、BET、SEM、XPS、Raman、FT-IR、TG等表征手段,揭示了LDH催化剂优良臭氧分解性能的内在原因机理。本文的研究为过渡金属臭氧分解催化剂开发提供了新的思路。
  • 图  1  制得的LDH催化剂臭氧催化分解性能(反应条件:臭氧原料气浓度28.96 mg·m−3,催化剂质量0.15 g,质量空速600,000 mL·g−1·h−1,温度:30 ℃,RH < 5%)

    Figure  1  Ozone catalytic decomposition performance of as-prepared LDH catalysts (reaction conditions: ozone feed gas concentration 28.96 mg·m−3, catalyst mass 0.15 g, mass space velocity 600,000 mL·g−1·h−1, temperature: 30 ℃, RH < 5%)

    图  2  制得的LDH催化剂臭氧催化分解性能(反应条件:臭氧原料气浓度28.96 mg·m−3,催化剂质量0.15 g,质量空速600,000 mL·g−1·h−1,温度:30 ℃,RH > 90%)

    Figure  2  Ozone catalytic decomposition performance of as-prepared LDH catalysts (reaction conditions: ozone feed gas concentration 28.96 mg·m−3, catalyst mass 0.15 g, mass space velocity 600,000 mL·g−1·h−1, temperature: 30 ℃, RH > 90%)

    图  3  合成的LDH催化剂的XRD谱图

    Figure  3  XRD patterns of as-synthesized LDH catalysts

    图  4  制得的LDH催化剂的红外光谱图

    Figure  4  FT-IR spectra of as-prepared LDH catalysts

    图  5  不同LDH催化剂的Raman光谱图

    Figure  5  Raman spectra of different LDH catalysts

    图  6  不同LDH 催化剂的扫描电镜图

    Figure  6  SEM images of different LDH catalysts

    图  8  (a):新鲜及反应后Ni3Co-LDH的Ni 2p XPS谱图;(b):新鲜及反应后的Ni3Fe-LDH Ni 2p XPS谱图;(c):不同LDH新鲜催化剂的Ni 2p XPS谱图;(d):Ni3Mn-LDH的Mn 2s XPS谱图

    Figure  8  (a): Ni 2p XPS spectrum of fresh and used Ni3Co-LDH;(b): Ni 2p XPS spectrum of fresh and used Ni3Fe-LDH;(c): Ni 2p XPS spectrum of different LDH catalysts;(d): Mn 2s XPS spectrum of Ni3Mn-LDH

    图  10  新鲜及反应后Ni3Fe-LDH的Fe 2p XPS 谱图

    Figure  10  Fe 2p XPS spectrum of Fresh and used Ni3Fe-LDH

    图  12  (a):新鲜Ni3Fe-LDH的O 1s XPS谱图;(b):RH < 5%条件下失活的Ni3Fe-LDH的O 1s XPS谱图;(c): RH > 90%条件下失活的Ni3Fe-LDH的O 1s XPS谱图; (d):新鲜Ni3Co-LDH的Co 2p XPS谱图

    Figure  12  (a): O 1s XPS spectrum of fresh Ni3Fe-LDH; (b): O 1s XPS spectrum of Ni3Fe-G; (c): O 1s XPS spectrum of Ni3Fe-S; (d): Co 2p XPS spectra of fresh Ni3Co-LDH

    图  9  反应后的Ni3Co-LDH Co 2p XPS谱图

    Figure  9  Co 2p XPS spectrum of used Ni3Co-LDH

    图  11  Ni3Mn-LDH的Mn 2p XPS谱图

    Figure  11  Mn 2p XPS spectrum of Ni3Mn-LDH

    图  7  LDH催化剂上臭氧催化分解反应机理示意图

    Figure  7  Schematic diagram of ozone catalytic decomposition mechanism over hydrotalcite-based catalyst

    表  1  不同LDH催化剂的织构参数

    Table  1  Texture properties of different LDH catalysts

    SamplesSurface area/m2·g−1Pore volume/cm3·g−1Pore diameter/nm
    Ni3Co140.8650.18403.811
    Ni3Mn81.3150.33773.408
    Ni3Fe96.8390.22773.840
    Co3Fe105.6030.29263.813
    下载: 导出CSV

    表  3  Ni3Co-LDH反应前后的Co2 + 与Co3 + 含量

    Table  3  Co2 + and Co3 + contents in fresh and spent Ni3Co-LDH samples

    CatalystCo2 + /%Co3 + /%
    Ni3Co63.0136.99
    Ni3Co-G13.5286.48
    Ni3Co-S52.8747.13
    下载: 导出CSV

    表  2  不同催化剂的表面氧物种分析结果

    Table  2  Quantitative analysis of surface oxygen species on different catalysts

    CatalystOOH/Ototal
    %
    Oads/Ototal
    %
    Olat/Ototal
    %
    Ni3Fe28.9867.613.41
    Ni3Co15.4183.151.44
    Ni3Mn36.4057.705.91
    Co3Fe35.1458.116.76
    Ni3Fe-G53.6943.742.57
    Ni3Fe-S33.2963.003.70
    Ni3Co-G35.1261.493.39
    Ni3Co-S11.5380.967.51
    下载: 导出CSV
  • [1] 刘卫华, 王胜, 薛勇. 飞机燃油箱防爆系统设计与适航[M]. 北京: 科学出版社, 2022.

    Liu Wei-hua, Wang Sheng, Xue Yong. Aircraft fuel tank explosion-proof system design and airworthiness[M]. Beijing: Science Press, 2022.
    [2] CAO S, TAO F, TANG Y, LI Y, YU J. Size-and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts[J]. Chem Soc Rev,2016,45:4747−4765. doi: 10.1039/C6CS00094K
    [3] LI X, MA J, HE H. Recent advances in catalytic decomposition of ozone[J]. J Environ Sci,2020,94:14−31. doi: 10.1016/j.jes.2020.03.058
    [4] HELMIG D. Ozone removal techniques in the sampling of atmospheric volatile organic trace gases[J]. Atmos. Environ,1997,31:3635−3651. doi: 10.1016/S1352-2310(97)00144-1
    [5] STEPHENS S, ROSSI M J, GOLDEN D M. The heterogeneous reaction of ozone on carbonaceous Surfaces[J]. Int J Chem Kinet,1986,18:1133−1149. doi: 10.1002/kin.550181004
    [6] LIAN Z, MA J, HE H. Decomposition of high-level ozone under high humidity over Mn-Fe catalyst: The influence of iron precursors[J]. Catal Commun,2015,59:156−160. doi: 10.1016/j.catcom.2014.10.005
    [7] SPASOVA I, NIKOLOV P, MEHANDJIEV D. Ozone decomposition over alumina-supported copper, manganese and copper-manganese catalysts[J]. Ozone Sci Eng,2007,29:41−45. doi: 10.1080/01919510601111665
    [8] NIKOLOV P, GENOV K, KONOVA P, MILENOVA K, BATAKLIEV T, GEORGIEV V, KUMAR N, SARKER D K, PISHEV D, RAKOVSKY S. Ozone decomposition on Ag/SiO2 and Ag/clinoptilolite catalysts at ambient temperature[J]. J Hazard Mater,2010,184:16−19. doi: 10.1016/j.jhazmat.2010.07.056
    [9] HEISIG C, ZHANG W, OYAMA S T. Decomposition of ozone using carbon-supported metal oxide catalysts[J]. Appl Catal B:Environ,1997,14:117−129. doi: 10.1016/S0926-3373(97)00017-9
    [10] GUROL M D, SINGER P C. Kinetics of ozone decomposition: A dynamic approach[J]. Environ Sci Technol,1982,16(7):377−383. doi: 10.1021/es00101a003
    [11] 王婷, 王胜, 符启军, 邢德风, 王树东. 负载型贵金属催化剂的臭氧分解性能[J]. 工业催化,2022,30(1):30−38.

    WANG Ting, WANG Sheng, FU Qi-jun, XING De-feng, WANG Shu-dong. Ozonation performance of supported noble metal catalysts[J]. Ind Catal,2022,30(1):30−38.
    [12] ZHANG L, WANG S, LV L, DING Y, TIAN D, WANG S. Insights into the reactive and deactivation mechanisms of manganese oxides for ozone elimination: The roles of surface oxygen species[J]. Langmuir,2021,37:1410−1419. doi: 10.1021/acs.langmuir.0c02841
    [13] LIU Y, ZHANG P. Removing surface hydroxyl groups of Ce-modified MnO2 to significantly improve its stability for gaseous ozone decomposition[J]. J Phys Chem C,2017,121:23488−23497. doi: 10.1021/acs.jpcc.7b07931
    [14] 王丝雨. 锰基水滑石的合成及臭氧催化分解性能研究[D]. 北京: 化工大学, 2020.

    WANG Si-yu. Preparation of manganese-based layered doble hydroxide high catalytic ozone decomposition performance[D]. Beijing: University of Chemical Technology, 2020.
    [15] ZOU X, GOSWAMI A, ASEFA T. Efficient noble metal-free (electro) catalysis of water and alcohol oxidations by zinc-cobalt layered double hydroxide[J]. J Am Chem Soc,2013,135:17242−17245. doi: 10.1021/ja407174u
    [16] YING M, LIN X, YANG G, YE H, PAN H, DU M. Rich oxygen vacancies on ultrathin NiFe layered double hydroxide nanosheets raised by cerium-assisted synthesis for enhanced electrocatalytic water oxidation[J]. Colloid Surface A,2021,627:127142. doi: 10.1016/j.colsurfa.2021.127142
    [17] 陈慧琴, 詹正坤. 铜锰铝水滑石的合成、表征及衍生复合氧化物酸碱催化活性研究[J]. 化学研究与应用,2007,19(8):877−881.

    CHEN Hui-qin, ZHAN Zheng-kun. Synthesis, characterization and acid-base catalytic activity of composite oxides derived from copper, manganese and aluminum hydrotalcite[J]. Chem Res Appl,2007,19(8):877−881.
    [18] TAOUFIK N, SADIQ M, ABDENNOURI M, QOURZAL S, KHATAEE A, SILLANPÄÄ M, BARKA N. Recent advances in the synthesis and environmental catalytic applications of layered double hydroxides-based materials for degradation of emerging pollutants through advanced oxidation processes[J]. Mater Res Bull,2022,154:111924. doi: 10.1016/j.materresbull.2022.111924
    [19] WANG S, ZHU Y, ZHANG Y, WANG B, YAN H, LIU W, LIN Y. Manganese-based layered double hydroxide nanoparticles as highly efficient ozone decomposition catalysts with tunable valence state[J]. Nanoscale,2020,12:12817−12823. doi: 10.1039/D0NR02796K
    [20] MA J, CHEN Y, HE G, HE H. A robust H-transfer redox mechanism determines the high-efficiency catalytic performance of layered double hydroxides[J]. Appl Catal B:Environ,2021,285:119806. doi: 10.1016/j.apcatb.2020.119806
    [21] LIU B, ZHANG M, YANG J, ZHU M, Efficient ozone decomposition over bifunctional Co3Mn-layered double hydroxide with strong electronic interaction[J]. Chinese Chem Lett, 2022, 33: 4679–4682.
    [22] DAI X, DAI Y, LU J, PU L, WANG W, JIN J, MA F, TIE N. Cobalt oxide nanocomposites modified by NiCo-layered double hydroxide nanosheets as advanced electrodes for supercapacitors[J]. Ionics,2020,26:2501−2511. doi: 10.1007/s11581-019-03333-6
    [23] ZHOU X, SHI J, BAI X. Ultrasonic assisted preparation of ultrafine Pd supported on NiFe-layered double hydroxides for p-nitrophenol degradation[J]. Environ Sci Pollut Res. 2022.
    [24] HOU B, DU Y, LIU X, CI C, WU X, XIE X. Tunable preparation of highly dispersed NixMn-LDO catalysts derived from NixMn-LDHs precursors and application in low-temperature NH3-SCR reactions[J]. RSC Adv,2019,9:24377. doi: 10.1039/C9RA04578C
    [25] SRIRAM B, BABY J N, WANG S F, RANJITHA R, GOVINDASAMY M, GEORGE M. Eutectic solvent-mediated synthesis of NiFe-LDH/sulfur-doped carbon nitride arrays: Investigation of electrocatalytic activity for the dimetridazole sensor in human sustenance[J]. ACS Sustain Chem Eng,2020,8:17772−17782. doi: 10.1021/acssuschemeng.0c06070
    [26] ZHOU D, WANG S, JIA Y, XIONG X, YANG H, LIU S, TANG J, ZHANG J, LIU D, ZHENG L, KUANG Y, SUN X, LIU B. NiFe hydroxide lattice tensile strain: Enhancement of adsorption of oxygenated intermediates for efficient water oxidation catalysis[J]. Angew Chem,2019,131:746−750. doi: 10.1002/ange.201809689
    [27] XU H, WU J, LIU J, CHEN Y, FAN X. Growth of cobalt-nickel layered double hydroxide on nitrogen-doped graphene by simple co-precipitation method for supercapacitor electrodes[J]. J Mater Sci:Mater Electron,2018,29:17234−17244.
    [28] LIU S, ZHU J, SUN M, MA Z, HU K, NAKAJIMA T, LIU X, SCHMUKI P, WANG L. Promoting the hydrogen evolution reaction through oxygen vacancies and phase transformation engineering on layered double hydroxide nanosheets[J]. J Mater Chem A,2020,8:2490. doi: 10.1039/C9TA12768B
    [29] ZHU J, SUN M, LIU S, LIU X, HU K, WANG L. Study of active sites on Se-MnS/NiS heterojunctions as highly efficient bifunctional electrocatalysts for overall water splitting[J]. J Mater Chem A,2019,7:26975. doi: 10.1039/C9TA10860B
    [30] ZHANG W, ANGUITA P, DÍEZ-RAMÍREZ J, DESCORME C, VALVERDE J L, GIROIR-FENDLER A. Comparison of different metal doping effects on Co3O4 catalysts for the total oxidation of toluene and propane[J]. Catalysts,2020,10(8):865. doi: 10.3390/catal10080865
    [31] SING K S W, EVERETT D H, HAUL R A W, MOSCOU L, PIEROTTI R A, ROUQUÉROL J, SIEMIENIEWSKA T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure Appl Chem,1985,57(4):603−619. doi: 10.1351/pac198557040603
    [32] WANG Z, CHEN Y, LI X, HE G, MA J, HE H. Layered double hydroxide catalysts for ozone decomposition: The synergic role of M2 + and M3 + [J]. Environ Sci Technol,2022,56:1386−1394.
    [33] LU Z, QIAN L, TIAN Y, LI Y, SUN X, DUAN X. Ternary NiFeMn layered double hydroxides as highly-efficient oxygen evolution catalysts[J]. Chem Commun,2016,52(5):908−911. doi: 10.1039/C5CC08845C
    [34] ZHAO J, CHEN J, XU S, SHAO M, ZHANG Q, WEI F, MA J, WEI M, EVANS D G, DUAN X. Hierarchical NiMn layered double hydroxide/carbon nanotubes architecture with superb energy density for flexible supercapacitors[J]. Adv Funct Mater,2014,24:2938−2946. doi: 10.1002/adfm.201303638
    [35] LV L, XU K, WANG C, WAN H, RUAN Y, LIU J, ZOU R, MIAO L, OSTRIKOV K, LAN Y, JIANG J. Intercalation of glucose in NiMn-layered double hydroxide nanosheets: An effective path way towards battery-type electrodes with enhanced performance[J]. Electrochimica Acta,2016,216:35−43. doi: 10.1016/j.electacta.2016.08.149
    [36] YANG Y, HUANG J, WANG S, DENG S, WANG B, YU G. Catalytic removal of gaseous unintentional POPs on manganese oxide octahedral molecular sieves[J]. Appl Catal B: Environ, 2013, 142–143: 567–568.
    [37] CARDINALE A M, CARBONE C, CONSANI S, FORTUNATO M, PARODI N. Layered double hydroxides for remediation of industrial wastewater from a galvanic plant[J]. Crystals,2020,10(6):443. doi: 10.3390/cryst10060443
  • 2022-F075_supporting+information_燃料化学学报(中英文).docx
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  1
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-16
  • 录用日期:  2022-12-23
  • 修回日期:  2022-12-21
  • 网络出版日期:  2023-01-18

目录

    /

    返回文章
    返回