留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PdAg/CDs复合催化剂的制备及其葡萄糖氢解性能研究

陈德权 王安 包桂蓉 高鹏 罗嘉 吉学武 邓文瑶 刘力

陈德权, 王安, 包桂蓉, 高鹏, 罗嘉, 吉学武, 邓文瑶, 刘力. PdAg/CDs复合催化剂的制备及其葡萄糖氢解性能研究[J]. 燃料化学学报(中英文), 2023, 51(9): 1273-1281. doi: 10.1016/S1872-5813(23)60340-8
引用本文: 陈德权, 王安, 包桂蓉, 高鹏, 罗嘉, 吉学武, 邓文瑶, 刘力. PdAg/CDs复合催化剂的制备及其葡萄糖氢解性能研究[J]. 燃料化学学报(中英文), 2023, 51(9): 1273-1281. doi: 10.1016/S1872-5813(23)60340-8
CHEN De-quan, WANG An, BAO Gui-rong, GAO Peng, LUO Jia, JI Xue-wu, DENG Wen-yao, LIU Li. Preparation of the PdAg/CDs composite and its catalytic performance in the hydrogenolysis of glucose[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1273-1281. doi: 10.1016/S1872-5813(23)60340-8
Citation: CHEN De-quan, WANG An, BAO Gui-rong, GAO Peng, LUO Jia, JI Xue-wu, DENG Wen-yao, LIU Li. Preparation of the PdAg/CDs composite and its catalytic performance in the hydrogenolysis of glucose[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1273-1281. doi: 10.1016/S1872-5813(23)60340-8

PdAg/CDs复合催化剂的制备及其葡萄糖氢解性能研究

doi: 10.1016/S1872-5813(23)60340-8
基金项目: 国家自然科学基金(51966008)项目资助
详细信息
    作者简介:

    陈德权(1997-),男,硕士研究生,主要从事以碳点为载体双金属纳米催化剂的制备及性能研究工作。E-mail:1092860687@qq.com

    通讯作者:

    E-mail: 1633940830@qq.com

  • 中图分类号: TK6

Preparation of the PdAg/CDs composite and its catalytic performance in the hydrogenolysis of glucose

Funds: The project was supported by the National Natural Science Foundation of China (51966008)
  • 摘要: 以碳点(carbon dots, CDs)为还原剂和载体,采用简便的光照还原法制备出了PdAg/CDs复合催化剂。XRD、TEM、FT-IR和XPS等技术对催化剂的表征分析,结果表明该催化剂平均粒径为10.45 nm,Pd和Ag主要以零价态的合金形式负载在碳点表面。将PdAg/CDs复合催化剂用于水中葡萄糖的氢解,催化评价结果表明,在初始H2压力为4 MPa、葡萄糖100 mg、催化剂25 mg、反应温度140 ℃的条件下反应3 h,该催化剂显示出较好的氢解活性,葡萄糖的转化率为68.85%,氢解产物丙酮醇的收率达到8.36%。
  • FIG. 2670.  FIG. 2670.

    FIG. 2670.  FIG. 2670.

    图  1  PdAg/CDs复合催化剂的EDS元素分析

    Figure  1  EDS elemental analysis of the PdAg/CDs composite catalyst

    图  2  CDs与PdAg/CDs复合催化剂的XRD谱图

    Figure  2  XRD patterns of the CDs support and PdAg/CDs composite catalyst

    图  3  (a)CDs和(b) PdAg/CDs复合催化剂的TEM照片

    Figure  3  TEM analysis of the CDs support (a) and PdAg/CDs composite catalyst (b)

    图  4  PdAg/CDs复合催化剂的EDS mapping分析

    Figure  4  EDS mapping analysis of the PdAg/CDs composite catalyst: (a) electron image; EDS elemental mapping of (b) Ag, (c) Pd

    图  5  CDs与PdAg/CDs复合催化剂的FT-IR谱图

    Figure  5  FT-IR spectra of the CDs support and PdAg/CDs composite catalyst

    图  6  PdAg/CDs复合催化剂的XPS能谱谱图

    Figure  6  XPS spectrum of PdAg/CDs composite catalyst: (a) full spectrum; high-resolution spectrum of (b) C 1s, (c) O 1s; (d) N 1s; (e) Pd 3d; (f) Ag 3d

    图  7  PdAg/CDs复合催化剂的制备机理示意图

    Figure  7  Preparation mechanism of PdAg/CDs composite catalyst

    图  8  葡萄糖催化/非催化氢解产物的GC-MS总离子流图

    Figure  8  GC-MS total ion chromatograms of the products from glucose hydrogenolysis without and with the PdAg/CDs catalyst

    图  9  葡萄糖催化氢解的反应路径示意图

    Figure  9  Proposed reaction pathways of glucose hydrogenolysis over the PdAg/CDs composite catalyst

    表  1  葡萄糖催化氢解的产物成分

    Table  1  Product components of glucose catalyzed hydrogenolysis

    Serial numberSubstanceRelative content /%
    without catalystPd/CDsAg/CDsPdAg/CDs
    1formic acidacids1.332.342.331.3
    2acetic acid4.1213.814.075.48
    33-deoxy-d-mannonic acid14.113.110.19
    44-methyloctanoic acid2.06
    subtotal of acids19.5529.2416.419.03
    5DL-arabinosesaccharide4.883.39
    6other sugars33.83
    subtotal of saccharides38.713.39
    71-hydroxy-2-butanoneketones1.791.494.07
    81,3-dihydroxyacetone3.725.17
    9 3-hydroxydihydro-2(3H)-furanone1.25
    10furaneol0.881.194.054.63
    114H-pyran-4-one2.260.68
    subtotal of ketones8.112.986.2213.87
    12acetolalcohols10.7133.9444.7240.28
    132,6-dimethyl-3-heptanol3.23
    14tetrahydropyran-2-methanol2.231.07
    subtotal total of alcohols10.7133.9446.9544.58
    155-hydroxymethylfurfuralaldehydes22.920.99
    subtotal total of alcohols22.920.99
    16others33.8430.4318.14
    total100100100100
    Reaction condition: 100 mg glucose; 25 mg catalyst; 30 mL deionized water; reaction temperature 140 ℃; reaction time 3 h and 4 MPa H2
    下载: 导出CSV

    表  2  不同催化剂对葡萄糖氢解转化率及产物收率的影响

    Table  2  Conversion of glucose and yield of products for the glucose hydrogenolysis over different catalysts

    CatalystConversion/%Yield/%
    acetol5-hydroxymethylfurfuralothers
    Without catalyst31.452.0914.7814.58
    Ag/CDs37.606.23031.37
    Pd/CDs51.465.41046.05
    PdAg/CDs68.858.360.6859.81
    下载: 导出CSV
  • [1] TAKASHI B, PAVEL R, EVA D, KEQIN C, ANJALI C, BILL L, IGOR C. Dissociation of biomolecules by an intense low-energy electron beam in a high sensitivity time-of-flight mass spectrometer[J]. J Am Soc Mass Spectr,2021,32(8):1964−1975. doi: 10.1021/jasms.0c00425
    [2] 田宜水, 单明, 孔庚, 麻林巍, 邵思. 我国生物质经济发展战略研究[J]. 中国工程科学,2021,23(1):133−140.

    TIAN Yi-shui, SHAN Ming, KONG Geng, MA Lin-wei, SHAO Si. Development strategy of biomass economy in China[J]. Strat Stud CAE,2021,23(1):133−140.
    [3] 徐英钊, 漆新华, 郭海心, 李陆杨. 离子液体中葡萄糖催化转化为5-羟甲基糠醛[J]. 化工进展,2011,30(3):552−556. doi: 10.16085/j.issn.1000-6613.2011.03.013

    XU Ying-zhao, QI Xin-hua, GUO Hai-xin, LI Lu-yang. Preparation of 5-hydroxymethylfurfural from glucose in ionic liquid[J]. Chem Ind Eng Prog,2011,30(3):552−556. doi: 10.16085/j.issn.1000-6613.2011.03.013
    [4] SATO S, SAKAI D, SATO F, YAMADA Y. Vapor-phase dehydration of glycerol into hydroxyacetone over silver catalyst[J]. Chem Lett,2012,41(9):965−966. doi: 10.1246/cl.2012.965
    [5] PILAR H, JOSEP-VICENT S, FRANCESCO M, R A A, PABLO D D M. Biocatalytic strategies for the asymmetric synthesis of alpha-hydroxy ketones[J]. Accounts Chem Res,2010,43(2):288−299. doi: 10.1021/ar900196n
    [6] MOHAMAD M H, AWANG R, YUNUS W M Z W. A review of acetol: Application and production[J]. Am J Appl Sci,2011,8(11):1135−1139. doi: 10.3844/ajassp.2011.1135.1139
    [7] DASARI M A, KIATSIMKUL P-P, SUTTERLIN W R, SUPPES G J. Low-pressure hydrogenolysis of glycerol to propylene glycol[J]. Appl Catal A: Gen,2004,281(1):225−231.
    [8] ZHU H, YI X, LIU Y, HU H, WOOD T K, ZHANG X. Production of acetol from glycerol using engineered Escherichia coli[J]. Bioresour Technol,2013,149:238−243. doi: 10.1016/j.biortech.2013.09.062
    [9] SOUZA P M D, SILVESTER L, SILVA A G M D, FERNANDES C G, RODRIGUES T S, PAUL S, CAMARGO P H C, WOJCIESZAK R. Exploiting the synergetic behavior of PtPd bimetallic catalysts in the selective hydrogenation of glucose and furfural[J]. Catalysts,2019,9(2):1−14.
    [10] ROMERO A, NIETO-MARQUEZ A, ALONSO E. Bimetallic Ru: Ni/MCM-48 catalysts for the effective hydrogenation of d -glucose into sorbitol[J]. Appl Catal A: Gen,2017,529(2017):49−59.
    [11] ZADA B, YAN L, FU Y. Effective conversion of cellobiose and glucose to sorbitol using non-noble bimetallic NiCo/HZSM-5 catalyst[J]. Sci China Chem,2018,61(9):1167−1174. doi: 10.1007/s11426-018-9321-0
    [12] ARUNIMA K A, SREEJITH S, BANU M. Fabrication of mesoporous carbon supported Ni-Mo catalysts for the enhanced conversion of glucose to ethylene glycol[J]. New J Chem,2020,44(37):15958−15965. doi: 10.1039/D0NJ03196H
    [13] CHU D, LUO Z, ZHAO C. Selective production of acetol or methyl lactate from cellulose over RuSn catalysts[J]. J Energy Chem,2022,73(10):607−614.
    [14] MA L L, WANG H Y, ZHU C H, LIU Q Y, TAN J, WANG C G, LIANG Z. Selective conversion of cellulose to hydroxyacetone and 1-Hydroxy-2-Butanone using Sn-Ni bimetal catalysts[J]. ChemSusChem,2019,12(10):2154−2160. doi: 10.1002/cssc.201900172
    [15] LIU X H, LIU X D, XU G Y, ZHANG Y, WANG C, LU Q, MA L L. Highly efficient catalytic conversion of cellulose into acetol over Ni-Sn supported on nanosilica and the mechanism study[J]. Green Chem,2019,21(20):5647−5656. doi: 10.1039/C9GC02449B
    [16] GLYZDOVA D V A, AFONASENKO T N A, KHRAMOV E V B, LEONT’EVA N N A, TRENIKHIN M V A, KREMNEVA A M C, SHLYAPIN D A. Effect of pretreatment with hydrogen on the structure and properties of carbon-supported Pd-Ag-nanoalloys for ethylene production by acetylene hydrogenation[J]. Mol Catal,2021,511:111717.
    [17] AICH P, WEI H J, BASAN B, KROPF A J, SCHWEITZER N M, MARSHALL C L, MILLER J T, MEYER R. Single-atom alloy Pd-Ag catalyst for selective hydrogenation of acrolein[J]. J Phys Chem C,2015,119(32):18140−18148. doi: 10.1021/acs.jpcc.5b01357
    [18] 王宁, 王新旭, 杨海芬, 宋文静, 孙体健. 基于氮磷共掺杂碳点的荧光探针检测汞离子[J]. 化学研究与应用,2019,31(3):440−448.

    WANG Ning, WANG Xin-xv, YANG Hai-fen, SONG Wen-jing, SUN Ti-jian. A fluorescent probe for determination of mercury ion based on phosphorus and nitrogen co-doped carbon dot[J]. Chem Res Appl,2019,31(3):440−448.
    [19] SINGH R P, SHARMA G, SONAL, SINGH S, PATNE S C U, PANDEY B L, KOCH B, MUTHU M S. Effects of transferrin conjugated multi-walled carbon nanotubes in lung cancer delivery[J]. Mat Sci Eng C,2016,67:313−325. doi: 10.1016/j.msec.2016.05.013
    [20] ZHAO D, GAO X, WU C, XIE R, FENG S, CHEN C. Facile preparation of amino functionalized graphene oxide decorated with Fe3O4 nanoparticles for the adsorption of Cr(VI)[J]. Appl Surf Sci,2016,384:1−9. doi: 10.1016/j.apsusc.2016.05.022
    [21] ZHAO Y, LI C, FAN X, WANG J, YUAN G, SONG X, CHEN J, LI Z. Study on the separation performance of the multi-channel reduced graphene oxide membranes[J]. Appl Surf Sci,2016,384:279−286. doi: 10.1016/j.apsusc.2016.05.036
    [22] 黎剑辉, 庄少玲. 碳点的制备研究进展[J]. 稀有金属材料与工程,2019,48(10):3401−3416.

    LI Jian-hui, ZHUANG Shao-ling. Research progress of carbon dots preparation[J]. Rare Metal Mater Eng,2019,48(10):3401−3416.
    [23] SHEN L M, CHEN M L, HU L L, CHEN X W, WANG J H. Growth and stabilization of silver nanoparticles on carbon dots and sensing application[J]. Langmuir,2013,29(52):16135−16140. doi: 10.1021/la404270w
    [24] HAN S, ZHANG H, XIE Y J, LIU L L, SHAN C F, LI X K, LIU W S, TANG Y. Application of cow milk-derived carbon dots/Ag NPs composite as the antibacterial agent[J]. Appl Surf Sci,2015,328:368−373. doi: 10.1016/j.apsusc.2014.12.074
    [25] TIAN L, GHOSH D, CHEN W. Nanosized carbon particles from natural gas soot[J]. Chem Mater,2009,21(13):2803−2809. doi: 10.1021/cm900709w
    [26] 刘源. 碳点负载Ru基金属复合材料的构筑及其电催化析氢性能研究[D]. 郑州: 郑州大学, 2020.

    LIU Yuan. Construction of carbon dots loaded ruthenium-based metal composite materials and their application in hydrogen evolution reaction[D]. Zhengzhou: Zhengzhou University, 2020.
    [27] NAMASIVAYAM D, KING-CHUEN L. Photochemically synthesized ruthenium nanoparticle-decorated carbon-dot nanochains: An efficient catalyst for synergistic redox reactions[J]. ACS Appl Mater Inter,2020,12(12):13759−13769. doi: 10.1021/acsami.9b20477
    [28] ZHANG J, CHEN Y, TAN J, SANG H T, ZHANG L Q, YUE D M. The synthesis of rhodium/carbon dots nanoparticles and its hydrogenation application[J]. Appl Surf Sci,2017,396(1):1138−1145.
    [29] 刘源, 李卫东, 吴捍, 卢思宇. 碳点增强的Ru纳米颗粒复合材料用于碱性条件下高效电解水析氢(英文)[J]. 物理化学学报,2021,37(7):169−180.

    LIU Yuan, LI Wei-dong, WU Han, LU Si-yu. Carbon dots enhance ruthenium nanoparticles for efficient hydrogen production in alkaline[J]. Acta Phys-chim Sin,2021,37(7):169−180.
    [30] DEY D, BHATTACHARYA T, MAJUMDAR B, MANDANI S, SHARMA B, SARMA T K. Carbon dot reduced palladium nanoparticles as active catalysts for carbon-carbon bond formation[J]. Dalton Trans,2013,42(38):13821−13825. doi: 10.1039/c3dt51234g
    [31] GLYZDOVA D V, AFONASENKO T N, KHRAMOV E V, LEONT'EVA N N, PROSVIRIN I P, BUKHTIYAROV A V, SHLYAPIN D A. Liquid-phase acetylene hydrogenation over Ag-modified Pd/sibunit catalysts: Effect of Pd to Ag molar ratio[J]. Appl Catal A: Gen, 2020, 600: 117627.
    [32] 王都留, 马蓉, 杨建东, 燕翔, 吴生平, 张少飞. 温敏型碳点的新法合成[J]. 四川大学学报(自然科学版),2018,55(6):1287−1291.

    WANG Du-liu, MA Rong, YANG Jian-dong, YAN Xiang, WU Sheng-ping, ZHANG Shao-fei. New microwave synthesis of temperature sensitive carbon dots[J]. J Sichuan Univ (Nat Sci Ed),2018,55(6):1287−1291.
    [33] CHUNTANAPUM A, MATSUMURA Y. Char formation mechanism in supercritical water gasification process: A study of model compounds[J]. Ind Eng Chem Res,2010,49(9):4055−4062. doi: 10.1021/ie901346h
    [34] WANG T, NOLTE M W, SHANKS B H. Catalytic dehydration of C6 carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical[J]. Green Chem,2014,16(2):548−572. doi: 10.1039/C3GC41365A
    [35] 刘毅强, 裘依梅, 唐兴, 孙勇, 曾宪海, 林鹿. 化学催化葡萄糖异构化果糖[J]. 化学进展,2021,33(11):2128−2137.

    LIU Yi-qiang, QIU Yi-mei, TANG Xing, SUN Yong, ZENG Xian-hai, LIN Lu. Glucose isomerization into fructose by chemocatalytic route[J]. Prog Chem,2021,33(11):2128−2137.
    [36] 李思婵, 邓玉龙, 王海永, 王晨光, 马隆龙, 刘琪英. Sn-Fe@C催化纤维素氢解制备丙酮醇和乳酸[J]. 燃料化学学报,2022,50(3):314−325. doi: 10.1016/S1872-5813(21)60153-6

    LI Si-chan, DENG Yu-long, WANG Hai-yong, WANG Chen-guang, MA Long-long, LIU Qi-ying. Production of acetol and lactic acid from cellulose hydrogenolysis over Sn-Fe@C catalysts[J]. J Fuel Chem Technol,2022,50(3):314−325. doi: 10.1016/S1872-5813(21)60153-6
    [37] 狄艳冰, 肖子辉, 邸鑫, 李闯, 梁长海. 双金属NiCu/MgO催化剂上葡萄糖氢解制备高附加值C2-C4化学品(英文)[J]. 分子催化,2016,30(4):324−337. doi: 10.16084/j.cnki.issn1001-3555.2016.04.011

    DI Yan-bing, XIAO Zi-hui, DI Xin, LI Chuang, LIANG Chang-hai. Hydrogenolysis of glucose to value-added C2-C4 compounds over bimetallic NiCu/MgO catalysts[J]. J Mol Catal (China),2016,30(4):324−337. doi: 10.16084/j.cnki.issn1001-3555.2016.04.011
    [38] ALLISON E G, BOND G C. The structure and catalytic properties of palladium-silver and palladium-gold alloys[J]. Catal Rev,1972,7(2):233−289. doi: 10.1080/01614947208062259
    [39] RASSOLOV A V A, MARKOV P V A, BRAGINA G O A, BAEVA G N A, KRIVORUCHENKO D S A, MASHKOVSKII I S A, YAKUSHEV I A B, VARGAFTIK M N B, STAKHEEV A Y A. Formation of Pd-Ag nanoparticles in supported catalysts based on the heterobimetallic complex PdAg2(OAc)4(HOAc)4[J]. Kinet Catal ,2016,57(6):859−865. doi: 10.1134/S0023158416060112
    [40] MEI D, NEUROCK M, SMITH C M. Hydrogenation of acetylene-ethylene mixtures over Pd and Pd-Ag alloys: First-principles-based kinetic Monte Carlo simulations[J]. J Catal,2009,268(2):181−195. doi: 10.1016/j.jcat.2009.09.004
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  381
  • HTML全文浏览量:  113
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-13
  • 修回日期:  2023-01-11
  • 录用日期:  2023-01-13
  • 网络出版日期:  2023-02-27
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回