留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of ball milling medium on Cu-Al spinel sustained release catalyst for H2 generation from methanol steam reforming

LIU Ya-jie QIN Fa-jie HOU Xiao-ning GAO Zhi-xian

刘雅杰, 覃发玠, 侯晓宁, 高志贤. 球磨介质对铜铝尖晶石缓释催化甲醇水蒸气重整制氢的影响[J]. 燃料化学学报(中英文), 2023, 51(5): 665-672. doi: 10.1016/S1872-5813(23)60342-1
引用本文: 刘雅杰, 覃发玠, 侯晓宁, 高志贤. 球磨介质对铜铝尖晶石缓释催化甲醇水蒸气重整制氢的影响[J]. 燃料化学学报(中英文), 2023, 51(5): 665-672. doi: 10.1016/S1872-5813(23)60342-1
LIU Ya-jie, QIN Fa-jie, HOU Xiao-ning, GAO Zhi-xian. Effects of ball milling medium on Cu-Al spinel sustained release catalyst for H2 generation from methanol steam reforming[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 665-672. doi: 10.1016/S1872-5813(23)60342-1
Citation: LIU Ya-jie, QIN Fa-jie, HOU Xiao-ning, GAO Zhi-xian. Effects of ball milling medium on Cu-Al spinel sustained release catalyst for H2 generation from methanol steam reforming[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 665-672. doi: 10.1016/S1872-5813(23)60342-1

球磨介质对铜铝尖晶石缓释催化甲醇水蒸气重整制氢的影响

doi: 10.1016/S1872-5813(23)60342-1
详细信息
  • 中图分类号: O643

Effects of ball milling medium on Cu-Al spinel sustained release catalyst for H2 generation from methanol steam reforming

Funds: The project was supported by the National Natural Science Foundation of China (21673270, 22202093) and the Natural Science Foundation for Young Scientists of Shanxi Province of China (20210302123358, 20210302124338)
More Information
  • 摘要: 以拟薄水铝石和超细氢氧化铜为原料,选择Cu/Al物质的量比为1∶3,考察了不同机械球磨介质对固相法制备Cu-Al尖晶石缓释催化剂的影响。通过XRD、BET和H2-TPR对合成的催化剂进行了表征,并考察了其对甲醇水蒸气重整制氢的催化性能。结果表明,Cu-Al尖晶石固溶体可通过干式或湿式机械球磨法合成,然而,通过湿式球磨法能使较多Cu2 + 进入尖晶石晶体结构。合成的富含Al的尖晶石固溶体在晶粒尺寸上差异不大,但它们的比表面积、孔隙体积和还原性能却明显不同。与干磨法相比,湿磨法有利于促进固相反应,通过湿式球磨法合成的催化剂只有尖晶石晶相,且具有较高的比表面积和较大的孔隙体积。通过湿法研磨得到的Cu-Al尖晶石催化剂样品在甲醇水蒸气重整制氢反应中表现出更好的催化性能,用乙醇(95%)作为球磨介质制备的CuHAl-Ac-950表现出最高的催化活性。
  • FIG. 2296.  FIG. 2296.

    FIG. 2296.  FIG. 2296.

    Figure  1  XRD patterns of (a) the mixed raw materials and milled precursors and (b) their enlarged (021) peaks of Cu(OH)2

    Figure  2  XRD patterns of the as-synthesized fresh catalysts

    Figure  3  BJH pore size distributions of the as-synthesized fresh catalysts

    Figure  4  H2-TPR profiles of the fresh catalysts

    Figure  5  Catalyst reduction degree versus reduction temperature

    Figure  6  Methanol conversion (a) and CO selectivity (b) versus time of stream for three different catalysts

    Figure  7  XRD patterns of tested catalysts

    Table  1  Relative intensity of six main diffraction peaks of the spinel phase

    Sample(220)(311)(400)(422)(511)(440)
    PDF#78-160550.710016.812.331.138.2
    CuHAl-95048.310025.115.328.542.3
    CuHAl-Ac-95053.410024.313.526.643.8
    CuHAl-H-95050.110025.413.229.946.8
    下载: 导出CSV

    Table  2  Characteristic parameters of the fresh and tested catalysts

    Fresh catalystCuHAl-950CuHAl-Ac-950CuHAl-H-950
    d a spinel /nm12.111.912.3
    SBET /(m2·g−1)56.186.489.5
    Pore volume /(cm3·g−1)0.3800.7270.663
    Y b spinel /%69.579.880.7
    x in Cu1−3xVxAl2 + 2xO40.1550.1330.131
    Tested catalystsCuHAl-950-tCuHAl-Ac-950-tCuHAl-H-950-t
    d c Cu /nm15.716.011.3
    a: Cu-Al spinel crystal size; b: Spinel Cu2 + content; c: Cu crystal size
    下载: 导出CSV
  • [1] MINDRU I, GINGASU D, PATRON L, MARINESCU G, CALDERON-MORENO J M, PREDA S, OPREA O, NITA S. Copper aluminate spinel by soft chemical routes[J]. Ceram Int,2016,42:154−164. doi: 10.1016/j.ceramint.2015.08.058
    [2] KWAK B K, PARK D S, YUN Y S, YI J. Preparation and characterization of nanocrystalline CuAl2O4 spinel catalysts by sol-gel method for the hydrogenolysis of glycerol[J]. Catal Commun,2012,24:90−95. doi: 10.1016/j.catcom.2012.03.029
    [3] PATEL S, PANT K K. Activity and stability enhancement of copper-alumina catalysts using cerium and zinc promoters for the selective production of hydrogen via steam reforming of methanol[J]. J Power Sources,2006,159:139−143. doi: 10.1016/j.jpowsour.2006.04.008
    [4] HUANG Y H, WANG S F, TSAI A P, KAMEOKA S. Reduction behaviors and catalytic properties for methanol steam reforming of Cu-based spinel compounds CuX2O4 (X=Fe, Mn, Al, La)[J]. Ceram Int,2014,40:4541−4551. doi: 10.1016/j.ceramint.2013.08.130
    [5] XI H J, LI G J, QING S J, HOU X N, ZHAO J Z, LIU Y J, GAO Z X. Cu-Al spinel catalyst prepared by solid phase method for methanol steam reforming[J]. J Fuel Chem Technol,2013,41:998−1002.
    [6] QIN F J, LIU Y J, QING S J, HOU X N, GAO Z X. Cu-Al spinel as a sustained release catalyst for H2 production from methanol steam reforming: Effects of different copper sources[J]. J Fuel Chem Technol,2017,45:1481−1488. doi: 10.1016/S1872-5813(17)30065-8
    [7] XI H J, HOU X N, LIU Y J, QING S J, GAO Z X. Cu-Al spinel oxide as an efficient catalyst for methanol steam reforming[J]. Angew Chem Int Ed,2014,53:11886−11889. doi: 10.1002/anie.201405213
    [8] LIU Y J, QING S J, HOU X N, QIN F J, WANG X, GAO Z X, XIANG H W. Temperature dependence of Cu-Al spinel formation and its catalytic performance in methanol steam reforming[J]. Catal Sci Technol,2017,7:5069−5078. doi: 10.1039/C7CY01236E
    [9] FAN Y, LU X B, NI Y W, ZHANG H J, ZHU M W, LI Y, CHEN J P. Catalytic destruction of chlorinated aromatic pollutants over mesoporous CuxMg1–xAl2O4 spinel oxides[J]. Appl Catal B: Environ,2011,101:606−612. doi: 10.1016/j.apcatb.2010.11.001
    [10] BAYAL N, JEEVANANDAM P. Synthesis of metal aluminate nanoparticles by sol-gel method and studies on their reactivity[J]. J Alloys Compd,2012,516:27−32. doi: 10.1016/j.jallcom.2011.11.080
    [11] LV W Z, LUO Z L, YANG H, LIU B, WENG W J, LIU J H. Effect of processing conditions on sonochemical synthesis of nanosized copper aluminate powders[J]. Ultrason Sonochem,2010,17:344−351. doi: 10.1016/j.ultsonch.2009.06.006
    [12] RIVAS M E. Ball milling towards green synthesis: applications, projects, challenges[J]. Johnson Matthey Tech Rev,2016,60:148−150. doi: 10.1595/205651316X691375
    [13] QIN F J. Synthesis and characterization of Cu-Al spinel sustained release catalysts[D]. Beijing: University of Chinese Academy of Sciences, 2018.
    [14] BAKKER H, ZHOU G F, YANG H. Mechanically driven disorder and phase transformations in alloys[J]. Prog Mater Sci,1995,39:159−241. doi: 10.1016/0079-6425(95)00001-1
    [15] LEE W H, LEE J, BAE J D, BYUN C S, KIM D K. Syntheses of Ni2Si, Ni5Si2, and NiSi by mechanical alloying[J]. Scripta Mater,2001,44:97−103. doi: 10.1016/S1359-6462(00)00547-9
    [16] KRYSTNA W C, GAMRAT K, FELA K. Chemical reactions during high-energy ball milling of the Cu2(OH)2CO3–Al0 system[J]. Solid State Ionics,2003,164:193−198. doi: 10.1016/S0167-2738(03)00320-5
    [17] AKGUL F A, AKGUL G. Microstructural properties and local atomic structures of cobalt oxide nanoparticles synthesized by mechanical ball-milling process[J]. Kurban M Philos Mag,2016,96:3211−3226. doi: 10.1080/14786435.2016.1232493
    [18] MCCORMICK P G, TSUZUKI T, ROBINSON J S, DING J. Nanopowders synthesized by mechanochemical processing[J]. Adv Mater,2001,13:1008−1010. doi: 10.1002/1521-4095(200107)13:12/13<1008::AID-ADMA1008>3.0.CO;2-Q
    [19] GOYA G F, RECHENBERG H R. Magnetic properties of ZnFe2O4 synthesized by ball milling[J]. J Magn Magn Mater,1999,203:141−142. doi: 10.1016/S0304-8853(99)00250-4
    [20] JANOT R, GUÉRARD D. One-step synthesis of maghemite nanometric powders by ball-milling[J]. J Alloys Compd,2002,333:302−307. doi: 10.1016/S0925-8388(01)01737-6
    [21] CROCKER M, HEROLD R H M, EMEIS C A, KRIJGER M. Preparation of acidic forms of montmorillonite clay via solid-state ion-exchange reactions[J]. Catal Lett,1992,1:339−345.
    [22] KECSENOVITY E, FEJES D, RETI B, HERNADI K. Growth and characterization of bamboo-like carbon nanotubes synthesized on Fe-Co-Cu catalysts prepared by high-energy ball milling[J]. Phys Status Solidi B,2013,250:2544−2548. doi: 10.1002/pssb.201300075
    [23] HUANG L, KRAMER G J, WIELDRAAIJER W, BRANDS D S, POELS E K, CASTRICUM H L, BAKKER H. Methanol synthesis over Cu/ZnO catalysts prepared by ball milling[J]. Catal Lett,1997,48:55−59. doi: 10.1023/A:1019014701674
    [24] GRANDJEAN D, CASTRICUM H L, VAN J C, WECKHUYSEN B M. Highly mixed phases in ball-milled Cu/ZnO catalysts: an EXAFS and XANES study[J]. J Phys Chem B,2006,110:16892−16901. doi: 10.1021/jp055820i
    [25] MAHMOUD M H, HASSAN A M, SAID E A A, HAMDEH H H. Structural; magnetic and catalytic properties of nanocrystalline Cu0.5Zn0.5Fe2O4 synthesized by microwave combustion and ball milling methods[J]. J Mol Struct,2016,1114:1−6. doi: 10.1016/j.molstruc.2016.02.051
    [26] RALPHS K, HARDACRE C, JAMES S L. Application of heterogeneous catalysts prepared by mechanochemical synthesis[J]. Chem Soc Rev,2013,42:7701−7718. doi: 10.1039/c3cs60066a
    [27] XU J L, GUO Q, GAO W, KANG Z, XI G Q, ZHANG L. Effect of milling mediums on nano-Sb powders prepared by ball milling[J]. J Aeronaut Mater,2013,33:50−55.
    [28] LIU Y J, QING S J, HOU X N, ZHANG L, GAO Z X, XIANG H W. Synthesis of Cu-Al spinels and its non-isothermal formation kinetics analysis[J]. J Fuel Chem Technol,2020,48:338−348.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  1983
  • HTML全文浏览量:  31
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-30
  • 修回日期:  2023-01-11
  • 录用日期:  2023-01-11
  • 网络出版日期:  2023-03-06
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回