留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of different valence metals doping on methane activation over La2O3(001) surface

ZHANG Jia-yu SUN Na LING Li-xia ZHANG Ri-guang JIA Li-tao LI De-bao WANG Bao-jun

张家宇, 孙娜, 凌丽霞, 章日光, 贾丽涛, 李德宝, 王宝俊. 不同价态金属掺杂对La2O3(001)表面上甲烷活化影响的研究[J]. 燃料化学学报(中英文), 2023, 51(5): 673-683. doi: 10.1016/S1872-5813(23)60343-3
引用本文: 张家宇, 孙娜, 凌丽霞, 章日光, 贾丽涛, 李德宝, 王宝俊. 不同价态金属掺杂对La2O3(001)表面上甲烷活化影响的研究[J]. 燃料化学学报(中英文), 2023, 51(5): 673-683. doi: 10.1016/S1872-5813(23)60343-3
ZHANG Jia-yu, SUN Na, LING Li-xia, ZHANG Ri-guang, JIA Li-tao, LI De-bao, WANG Bao-jun. Effect of different valence metals doping on methane activation over La2O3(001) surface[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 673-683. doi: 10.1016/S1872-5813(23)60343-3
Citation: ZHANG Jia-yu, SUN Na, LING Li-xia, ZHANG Ri-guang, JIA Li-tao, LI De-bao, WANG Bao-jun. Effect of different valence metals doping on methane activation over La2O3(001) surface[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 673-683. doi: 10.1016/S1872-5813(23)60343-3

不同价态金属掺杂对La2O3(001)表面上甲烷活化影响的研究

doi: 10.1016/S1872-5813(23)60343-3
详细信息
  • 中图分类号: O643.3

Effect of different valence metals doping on methane activation over La2O3(001) surface

Funds: The project was supported by the National Key R&D Program of China (2021YFA1502804), Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (2022SX-FR001), the Key Projects of National Natural Science Foundation of China (21736007), and the Natural Science Foundation of Shanxi Province (20210302123094)
More Information
  • 摘要: La2O3因具有优异的稳定性和较高的C2烃选择性,因此,常被用于催化甲烷氧化偶联反应,而较差的甲烷解离活性却限制了其广泛应用。为了提高镧基催化剂活化甲烷的性能,将不同价态的金属掺杂在La2O3(001)表面,并采用密度泛函理论方法对CH4在催化剂表面的活化行为进行了研究。结果表明,低价态金属(Li、Na、K、Mg、Ca、Sr和Ba)和等价态金属(Al、Ga、In)的掺杂可以显著提高La2O3(001)表面的CH4解离活性。其中,CH4在Li-La2O3(001)表面解离的活化能最低,仅为13.0 kJ/mol。而高价态金属(Zr、Nb、Re和W)掺杂不能提高La2O3(001)表面的CH4解离活性。此外,通过研究催化剂表面氧空位形成能、酸碱性与CH4解离活化能之间的关系发现,随着掺杂金属价态的增加,氧空位形成能也逐渐增大,而CH4的解离活性呈现出降低趋势;碱金属和碱土金属的掺杂增大了催化剂表面的碱性,且碱金属掺杂的碱性强于碱土金属,同时,较强的碱性也表现出较高的CH4转化活性。本研究对提高La2O3催化剂的甲烷转化活性具有指导意义。
  • FIG. 2297.  FIG. 2297.

    FIG. 2297.  FIG. 2297.

    Figure  1  Top and side views of the slab model of the M-La2O3(001) surface Purple, blue and red balls denote the doped metal, La and O atoms, respectively

    Figure  2  Calculated binding energies of different valence metals doped on the La2O3(001) surface

    Figure  3  Calculated structures of the initial, transition and final states of CH4 activation on the M-La2O3(001) (M = Li, Na, K, Mg, Ca, Sr and Ba) surfaces (top view) (the unit of bond length is Å)

    Figure  4  Calculated structures of the initial states, transition states and final states of CH4 activation on the M-La2O3(001) (M = Al, Ga, In, Zr, Nb, Re and W) surfaces (the unit of bond length is Å)

    Figure  5  Activation energies of methane on the M-La2O3(001) (M = Li, Na, K, Mg, Ca, Sr and Ba) and pure La2O3(001) surfaces

    Figure  6  Activation energies of methane on the M-La2O3(001) (M = Al, In and Ga) and pure La2O3(001) surfaces

    Figure  7  Oxygen vacancy formation energies of the threefold-coordinated and sixfold-coordinated lattice oxygen on the M-La2O3(001) (M = Li, Na, K, Mg, Ca, Sr and Ba) and pure La2O3(001) surfaces

    Figure  8  Vacancy formation energies of the threefold-coordinated and sixfold-coordinated lattice oxygen on the M-La2O3(001) (M = Al, Ga, In, Zr, Nb, Re and W) and pure La2O3(001) surfaces

    Figure  9  Correlations between the oxygen vacancy formation energies and activation energies of methane on the different doped La2O3(001) surfaces

    Figure  10  Effect of alkali metals and alkaline earth metals (Li, Na, K, Mg, Ca, Sr and Ba) doping on the activity of La2O3(001) toward methane activation

    Table  1  Calculated energetics of CH4 activation on the M-La2O3(001) (M = Li, Na, K, Mg, Ca, Sr and Ba) surfaces

    CatalystE/(kJ·mol−1)
    Eads(CH4)EaΔEr
    Li-La2O3(001)−4.413.0−28.9
    Na-La2O3(001)−4.729.8−21.2
    K-La2O3(001)−3.623.9−27.8
    Mg-La2O3(001)−3.838.8−3.3
    Ca-La2O3(001)−3.943.2−15.5
    Sr-La2O3(001)−3.733.9−16.4
    Ba-La2O3(001)−3.348.9−11.5
    下载: 导出CSV

    Table  2  Calculated energetics of methane activation on the La2O3(001) surfaces doped with equivalent and high valence metals, including CH4 adsorption energy (Eads), activation energy (Ea), and reaction heat (ΔEr)

    CatalystE/(kJ·mol−1)
    Eads(CH4)EaΔEr
    Al-La2O3(001)−3.3111.039.5
    Ga-La2O3(001)−3.3125.720.4
    In-La2O3(001)−2.9116.610.1
    Zr-La2O3(001)−2.5162.1147.2
    Nb-La2O3(001)−3.3205.5153.9
    Re-La2O3(001)−4.3233.4151.0
    W-La2O3(001)−4.3180.7104.9
    下载: 导出CSV
  • [1] SCHWACH P, PAN X L, BAO X H. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects[J]. Chem Rev,2017,117(13):8497−8520. doi: 10.1021/acs.chemrev.6b00715
    [2] NWAOHA C, WOOD D A. A review of the utilization and monetization of Nigeria's natural gas resources: Current realities[J]. J Nat Gas Sci Eng,2014,18:412−432. doi: 10.1016/j.jngse.2014.03.019
    [3] PULIYALIL H, JURKOVIĆ D L, DASIREDDY V D B C, LIKOZAR B. A review of plasma-assisted catalytic conversion of gaseous carbon dioxide and methane into value-added platform chemicals and fuels[J]. RSC Adv,2018,8:27481−27508. doi: 10.1039/C8RA03146K
    [4] RAVI M, RANOCCHIARI M, BOKHOVEN J A. The direct catalytic oxidation of methane to methanol-A critical assessment[J]. Angew Chem Int Ed,2017,56(52):16464−16483. doi: 10.1002/anie.201702550
    [5] WANG B W, ALBARRACÍN-SUAZO S, PAGÁN-TORRES Y, NIKOLLA E. Advances in methane conversion processes[J]. Catal Today,2017,285:147−158. doi: 10.1016/j.cattod.2017.01.023
    [6] SIDIK S M, TRIWAHYONO S, JALIL A A, MAJID Z A, SALAMUN N, TALIB N B, ABDULLAH T A T. CO2 reforming of CH4 over Ni-Co/MSN for syngas production: Role of Co as a binder and optimization using RSM[J]. Chem Eng J,2016,295:1−10. doi: 10.1016/j.cej.2016.03.041
    [7] WANG S B, CONG L N, ZHAO C C, LI Y T, PANG Y Q, ZHAO Y H, LI S G, SUN Y H. First principles studies of CO2 and O2 chemisorption on La2O3 surfaces[J]. Phys Chem Chem Phys,2017,19:26799−26811. doi: 10.1039/C7CP05471H
    [8] GAMBO Y, JALIL A A, TRIWAHYONO S, ABDULRASHEED A A. Recent advances and future prospect in catalysts for oxidative coupling of methane to ethylene: A review[J]. J Ind Eng Chem,2018,59:218−229. doi: 10.1016/j.jiec.2017.10.027
    [9] OLIVOS-SUAREZ A I, SZECSENYI A, HENSEN E J M, RUIZ-MARTINEZ J. Strategies for the direct catalytic valorization of methane using heterogeneous catalysis: challenges and opportunities[J]. ACS Catal,2016,6(5):2965−2981. doi: 10.1021/acscatal.6b00428
    [10] BECK B, FLEISCHER V, ARNDT S, HEVIA M G, URAKAWA A, HUGO P, SCHOMÄCKER R. Oxidative coupling of methane-A complex surface/gas phase mechanism with strong impact on the reaction engineering[J]. Catal Today,2014,228:212−218. doi: 10.1016/j.cattod.2013.11.059
    [11] LOMONOSOV V I, SINEV M Y. Oxidative coupling of methane: Mechanism and kinetics[J]. Kinet Catal,2016,57:647−676. doi: 10.1134/S0023158416050128
    [12] LUNSFORD J H. The catalytic oxidative coupling of methane[J]. Angew Chem Int Ed,1995,34:970−980. doi: 10.1002/anie.199509701
    [13] SUN J J, THYBAUT J W, MARIN G B. Microkinetics of methane oxidative coupling[J]. Catal Today,2008,137(1):90−102. doi: 10.1016/j.cattod.2008.02.026
    [14] SUN X Y, LI B, METIU H. Methane dissociation on Li-, Na-, K-, and Cu-doped flat and stepped CaO(001)[J]. J Phys Chem C,2013,117(14):7114−7122. doi: 10.1021/jp4002803
    [15] LUO L, JIN Y, PAN H. Distribution and role of Li in Li-doped MgO catalysts for oxidative coupling of methane[J]. J Catal,2017,346:57−61. doi: 10.1016/j.jcat.2016.11.034
    [16] MASUNO A, INOUE H. High refractive index of 0.30 La2O3–0.70 Nb2O5 glass prepared by containerless processing[J]. Appl Phys Express,2010,3(10):102601. doi: 10.1143/APEX.3.102601
    [17] SUN Y N, SHEN Y, SONG J J, BA R B, HUANG S S, ZHAO Y H, ZHANG J, SUN Y H, ZHU Y. Facet-controlled CeO2 nanocrystals for oxidative coupling of methane[J]. J Nanosci Nanotechnol,2016,16(5):4692−4700. doi: 10.1166/jnn.2016.11623
    [18] HUANG P, ZHAO Y H, ZHANG J, ZHU Y, SUN Y H. Exploiting shape effects of La2O3 nanocatalysts for oxidative coupling of methane reaction[J]. Nanoscale,2013,5(22):10844−10848. doi: 10.1039/c3nr03617k
    [19] FENG R, NIU P Y, HOU B, WANG Q, JIA L T, LIN M G, LI D B. Synthesis and characterization of the flower-like LaxCe1−xO1.5 + δ catalyst for low-temperature oxidative coupling of methane[J]. J Energy Chem,2022,67:342−353. doi: 10.1016/j.jechem.2021.10.018
    [20] PALMER M S, NEUROCK M, OLKEN M M. Periodic density functional theory study of methane activation over La2O3:   activity of O2−, O, O22−, oxygen point defect, and Sr2 + -doped surface sites[J]. J Am Chem Soc,2002,124(28):8452−8461. doi: 10.1021/ja0121235
    [21] ZAVYALOVA U, HOLENA M, SCHLÖGL R, BAERNS M. Statistical analysis of past catalytic data on oxidative methane coupling for new insights into the composition of high‐performance catalysts[J]. ChemCatChem,2011,3(12):1935−1947. doi: 10.1002/cctc.201100186
    [22] WANG S B, LI S G, DIXON D A. Mechanism of selective and complete oxidation in La2O3-catalyzed oxidative coupling of methane[J]. Catal Sci Technol,2020,10:2602−2614. doi: 10.1039/D0CY00141D
    [23] ALVAREZ-GALVAN M C, MOTA N, OJEDA M, ROJAS S, NAVARRO R M, FIERRO J L G. Direct methane conversion routes to chemicals and fuels[J]. Catal Today,2011,171(1):15−23. doi: 10.1016/j.cattod.2011.02.028
    [24] IGENEGBAI V O, MEYER R J, LINIC S. In search of membrane-catalyst materials for oxidative coupling of methane: performance and phase stability studies of gadolinium-doped barium cerate and the impact of Zr doping[J]. Appl Catal B: Environ,2018,230(15):29−35.
    [25] SOLLIER B. M, BONNE M, KHENOUSSI N, MICHELIN L, MIRÓ E E, GÓMEZ L. E, BOIX A V, LEBEAU B. Synthesis and characterization of electrospun nanofibers of Sr-La-Ce oxides as catalysts for the oxidative coupling of methane[J]. Ind Eng Chem Res,2020,59(25):11419−11430. doi: 10.1021/acs.iecr.0c01154
    [26] SONG J J, SUN Y N, BA R B, HUANG S S, ZHAO Y H, ZHANG J, SUN Y H, ZHU Y. Monodisperse Sr-La2O3 hybrid nanofibers for oxidative coupling of methane to synthesize C2 hydrocarbons[J]. Nanoscale,2015,7(6):2260−2264. doi: 10.1039/C4NR06660J
    [27] DEBOY J M, HICKS R F. Oxidative coupling of methane over alkaline earth promoted La2O3[J]. J Chem Soc, Chem Commun,1988,982−984.
    [28] LI B, METIU H. DFT studies of oxygen vacancies on undoped and doped La2O3 surfaces[J]. J Phys Chem C,2010,114(28):12234−12244. doi: 10.1021/jp103604b
    [29] MCFARLAND E W, METIU H. Catalysis by doped oxides[J]. Chem Rev,2013,113(6):4391−4427. doi: 10.1021/cr300418s
    [30] LICHTENSTEIN A I, KATSNELSON M I. Ab initio calculations of quasiparticle band structure in correlated systems: LDA + + approach[J]. Phys Rev B,1998,57(12):6884. doi: 10.1103/PhysRevB.57.6884
    [31] KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comp Mater Sci,1996,6(1):15−50. doi: 10.1016/0927-0256(96)00008-0
    [32] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett,1996,77(18):3865−3868. doi: 10.1103/PhysRevLett.77.3865
    [33] MONKHORST H J, PACK J D. Special points for brillonin-zone integrations[J]. Phys Rev B,1976,13(12):5188−5192. doi: 10.1103/PhysRevB.13.5188
    [34] SHEPPARD D, XIAO P H, CHEMELEWSKI W, JOHNSON D D, HENKELMAN G. A generalized solid-state nudged elastic band method[J]. J Chem Phys,2012,136(7):074103. doi: 10.1063/1.3684549
    [35] SHEPPARD D, TERRELL R, HENKELMAN G. Optimization methods for finding minimum energy paths[J]. J Chem Phys,2008,128(13):134106. doi: 10.1063/1.2841941
    [36] OLSEN R A, KROES G J, HENKELMAN G, ARNALDSSON A, JÓNSSON H. Comparison of methods for finding saddle points without knowledge of the final states[J]. J Chem Phys,2004,121(20):9776−9792. doi: 10.1063/1.1809574
    [37] HENKELMAN G, UBERUAGA B P, JÓNSSON H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. J Chem Phys,2000,113(22):9901−9904. doi: 10.1063/1.1329672
    [38] ALAVI A, HU P J, DEUTSCH T, SLIVESTRELLI P L, HUTTER J. CO oxidation on Pt(111): An ab initio density functional theory study[J]. Phys Rev Lett,1998,80(16):3650−3653. doi: 10.1103/PhysRevLett.80.3650
    [39] WANG Z Q, WANG D, GONG X Q. Strategies to improve the activity while maintaining the selectivity of oxidative coupling of methane at La2O3: A density functional theory study[J]. ACS Catal,2020,10(1):586−594. doi: 10.1021/acscatal.9b03066
    [40] LI B, METIU H. Dissociation of methane on La2O3 surfaces doped with Cu, Mg, or Zn[J]. J Phys Chem C,2011,115(37):18239−18246. doi: 10.1021/jp2049603
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  225
  • HTML全文浏览量:  38
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-23
  • 修回日期:  2022-12-08
  • 录用日期:  2022-12-15
  • 网络出版日期:  2023-02-27
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回