留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三种木质素水热液化制备生物油实验研究

杨天华 刘正 李秉硕 张海军 王鹤逸

杨天华, 刘正, 李秉硕, 张海军, 王鹤逸. 三种木质素水热液化制备生物油实验研究[J]. 燃料化学学报(中英文), 2023, 51(8): 1084-1095. doi: 10.1016/S1872-5813(23)60345-7
引用本文: 杨天华, 刘正, 李秉硕, 张海军, 王鹤逸. 三种木质素水热液化制备生物油实验研究[J]. 燃料化学学报(中英文), 2023, 51(8): 1084-1095. doi: 10.1016/S1872-5813(23)60345-7
YANG Tian-hua, LIU Zheng, LI Bing-shuo, ZHANG Hai-jun, WANG He-yi. Experimental study on preparation of bio-oil by hydrothermal liquefaction of three kinds of lignin[J]. Journal of Fuel Chemistry and Technology, 2023, 51(8): 1084-1095. doi: 10.1016/S1872-5813(23)60345-7
Citation: YANG Tian-hua, LIU Zheng, LI Bing-shuo, ZHANG Hai-jun, WANG He-yi. Experimental study on preparation of bio-oil by hydrothermal liquefaction of three kinds of lignin[J]. Journal of Fuel Chemistry and Technology, 2023, 51(8): 1084-1095. doi: 10.1016/S1872-5813(23)60345-7

三种木质素水热液化制备生物油实验研究

doi: 10.1016/S1872-5813(23)60345-7
基金项目: 国家自然科学基金(52176195)和辽宁省兴辽英才计划(XLYC200512)资助
详细信息
    通讯作者:

    E-mail: thyang@sau.edu.cn

  • 中图分类号: TK6

Experimental study on preparation of bio-oil by hydrothermal liquefaction of three kinds of lignin

Funds: The project was supported by the National Natural Science Foundation of China (52176195), and Liaoning Revitalization Talents Program (XLYC200512)
  • 摘要: 木质素是具有芳香族结构的天然可再生资源,可以通过水热液化技术将其转化为生物油。不同种类的木质素结构特点和反应活性存在差异,故本研究选取三种木质素(工业碱木质素(KL)、酶解木质素(EHL)和乙醇木质素(OL))为原料,首先对三种原料理化特性进行分析;其次考察反应条件对三种木质素水热液化生物油特性的影响。在三种木质素中,EHL、OL为愈创木基型结构。OL的C、H元素含量最高,其高位热值为23.54 MJ/kg,芳香特征更加明显,酚羟基含量相对较高。KL为紫丁香基型结构,甲氧基与酚羟基含量较少。液化实验结果显示,反应温度为300 ℃时,木质素生物油产率及能量回收率最高,该温度下产率OL>KL>EHL,生物油的H/C比值为1.0–1.4。三种生物油化学成分不同,OL生物油中含有9.14%的芳香烃,EHL生物油酚类物质含量达到41.34%,KL生物油中酸类含量较高。
  • FIG. 2574.  FIG. 2574.

    FIG. 2574.  FIG. 2574.

    图  1  木质素液化实验流程图

    Figure  1  Flow chart of lignin liquefaction experiment

    图  2  木质素的红外光谱谱图

    Figure  2  FT-IR spectra of three types of lignin

    图  3  木质素的 TG 和 DTG 曲线

    Figure  3  TG and DTG curves of three types of lignin

    图  4  热解特性指标确定示意图

    Figure  4  Schematic diagram of pyrolysis characteristic index determination

    图  5  反应温度对木质素液化生物油产率及热值的影响

    Figure  5  Effect of reaction temperature on yield and calorific value of lignin liquefied bio-oil

    图  6  木质素及液化生物油的H/C和O/C比的变化

    Figure  6  H/C and O/C variations of lignin and liquefied bio-oil

    图  7  木质素液化生物油的红外光谱谱图

    Figure  7  FT-IR spectra of lignin liquefied bio-oils

    图  8  木质素液化生物油组成分布

    Figure  8  Composition distribution of liquefied of lignin liquefied bio-oils

    表  1  木质素的元素分析及高位热值

    Table  1  Ultimate analysis and higher heating value of lignin

    SampleUltimate analysis w/%QHHV /(MJ·kg−1)
    CHO*NS
    EHL47.265.7444.490.53018.87
    KL39.024.4221.750.382.0317.08
    OL58.045.7834.481.09023.60
    *: by difference
    下载: 导出CSV

    表  2  木质素热解特性

    Table  2  Pyrolysis characteristics of lignin

    SampleStart temperature
    t/℃
    End temperature
    t/℃
    Maximum pyrolysis rate Vp/(%·min−1)Maximum pyrolysis rate temperature
    tp/℃
    Average pyrolysis rate
    Va/(%·min−1)
    KL230.7389.24.57269.83.82
    EHL322.4382.524.27364.324.99
    OL305.5400.313.29360.712.45
    下载: 导出CSV

    表  3  液化反应的质量衡算

    Table  3  Mass balance of liquefaction reaction

    SampleBio-oil
    yield /%
    Solid residue
    yield /%
    Gas + aqueous
    yield /%
    KL (280 ℃)22.59.3468.16
    KL (300 ℃)26.847.2865.88
    KL (320 ℃)19.326.4674.22
    KL (340 ℃)17.16.0476.86
    EHL (280 ℃)20.4435.344.26
    EHL (300 ℃)24.0833.442.52
    EHL (320 ℃)22.2829.847.92
    EHL (340 ℃)16.428.4255.18
    OL (280 ℃)25.742.8631.44
    OL (300 ℃)35.837.6426.56
    OL (320 ℃)25.2835.139.62
    OL (340 ℃)20.1832.4447.38
    下载: 导出CSV

    表  4  不同反应条件下液化生物油的元素分析

    Table  4  Elemental analysis of liquefied bio-oil under different reaction conditions

    SampleElemental analysis w/%H/CO/CQHHV /(MJ·kg−1)
    CHONS
    KL (280 ℃)49.335.3944.180.440.671.310.6719.3
    KL (300 ℃)60.376.0732.420.650.491.210.425.03
    KL (320 ℃)68.566.2324.30.810.111.090.2728.75
    KL (340 ℃)70.86.5121.680.780.231.10.2330.13
    EHL (280 ℃)66.645.9527.060.3601.070.327.42
    EHL (300 ℃)66.755.9126.950.3901.060.327.42
    EHL (320 ℃)69.276.1124.210.4201.060.2628.79
    EHL (340 ℃)71.266.3222.010.4201.060.2329.95
    OL (280 ℃)66.376.5626.071.0101.190.2928.22
    OL (300 ℃)68.347.0927.150.3901.240.329.7
    OL (320 ℃)70.487.0421.251.2301.20.2330.71
    OL (340 ℃)72.056.9720.560.4301.160.2131.17
    下载: 导出CSV

    表  5  木质素液化生物油的化学成分分析(反应温度300 ℃)

    Table  5  GC-MS analysis of lignin liquefaction bio-oil (reaction temperature 300 ℃)

    No.RTCompoundFormulaKL-oilEHL-oilOL-oil
    15.87acetic acid, methyl esterC3H6O24.372.38
    26.67acetic acidC2H4O22.29
    36.74pentane, 3-methyl-C6H142.651.93
    46.79ethane, 1,1-dimethoxy-C4H10O23.2212.72
    56.862-butanoneC4H8O6.381.40
    67.48cyclopentane, methyl-C6H120.58
    79.31propane, 1,1-dimethoxy-C5H12O21.27
    89.382-butanone, 3-methyl-C5H10O1.33
    99.392-pentanoneC5H10O0.48
    109.541,3-dioxolane, 2,2-dimethyl-C5H10O21.81
    1110.65butanoic acid, methyl esterC5H10O20.392.62
    1212.39tolueneC7H81.235.59
    1312.85butanoic acid, 2-methyl-, methyl esterC6H12O20.47
    1413.67furan, 2-methoxy-C5H6O224.01
    1514.37acetic acid, butyl esterC6H12O20.573.06
    1615.15cyclohexane, ethyl-C8H160.571.880.52
    1715.281,1,4-trimethylcyclohexaneC9H180.53
    1815.482-pentanone, 4-hydroxy-4-methyl-C6H12O28.435.55
    1916.34ethylbenzeneC8H103.577.53
    2017.06acetamide, N-(cyanomethyl)-C4H6N2O2.64
    2117.073-penten-2-one, 4-methyl-C6H10O0.97
    2217.072-hexanone, 6-(acetyloxy)-C8H14O32.55
    2317.63ethylbenzeneC8H102.96
    2418.302-pentanone, 4-methoxy-4-methyl-C7H14O23.8813.896.89
    2519.91alpha-hydroxyisobutyric acid, acetateC6H10O42.99
    2620.88phenolC6H6O6.742.22
    2721.501benzene, 1,2,4-trimethyl-C9H121.831.20
    2823.51dl-erythro-1-phenyl-1,2-propanediolC9H12O21.00
    2924.19p-cresolC7H8O0.82
    3024.69benzene, 1-methyl-3-(1-methylethyl)-C10H140.571.78
    3124.7o-cymeneC10H141.26
    3224.85phenol, 2-methoxy-C7H8O27.752.55
    3325.75benzene, 1-ethyl-2,4-dimethyl-C10H140.57
    3425.89benzene, 1,2,4,5-tetramethyl-C10H141.64
    3526.54benzene, 1,2-dimethoxy-C8H10O22.98
    3627.93phenol, 4-methoxy-3-methyl-C8H10O21.48
    3727.13phenol, 4-ethyl-C8H10O13.3614.55
    3828.132-methoxy-5-methylphenolC8H10O25.540.98
    3929.372,3-dimethoxytolueneC9H12O22.49
    4030.70phenol, 4-ethyl-2-methoxy-C9H12O25.835.634.74
    4130.78ethanone, 1-(2,4-dihydroxyphenyl)-C8H8O31.75
    4231.521,2,3-trimethoxybenzeneC9H12O31.46
    4331.991-methylindan-2-oneC10H10O0.83
    4432.682,3-dimethoxyphenolC8H10O32.617.27
    4532.69phenol, 2,6-dimethoxy-, acetateC10H12O412.87
    4633.18phenol, 2-methoxy-4-propyl-C10H14O21.12
    4733.97benzene, 1,2,3-trimethoxy-5-methyl-C10H14O31.28
    4835.213,5-dimethoxy-4-hydroxytolueneC9H12O32.011.54
    4935.48dimethyl phthalateC10H10O43.871.49
    5035.94ethanone, 1-(4-hydroxy-3,5-dimethoxyphenyl)-C10H12O40.916.54
    5136.37ethanone, 1-(3-hydroxy-4-methoxyphenyl)-C9H10O30.71
    5237.212,5-dihydroxy-4-methoxyacetophenoneC9H10O41.58
    5337.224-ethyl-2,6-dimethoxyphenolC10H14O32.941.62
    5438.787-methylnaphthalen-2-ol, me derivativeC12H12O0.49
    5539.252,6-dimethoxy-4-propylphenolC11H16O32.30
    5642.154,5-dimethoxy-2-hydroxyacetophenoneC10H12O41.65
    5742.571-naphthol, 6,7-dimethyl-C12H12O0.77
    5845.86hexadecanoic acid, methyl esterC17H34O22.933.01
    5949.71methyl stearateC19H38O20.76
    下载: 导出CSV
  • [1] RAGAUSKAS A J, BECKHAM G T, BIDDY M J. Lignin valorization: Improving lignin processing in the biorefinery[J]. Science,2014,344:6185.
    [2] BISWAS B, KUMAR A A, BISHT Y, SINGH R, KUMAR J, BHASKAR T. Effects of temperature and solvent on hydrothermal liquefaction of Sargassum tenerrimum algae[J]. Bioresour Technol,2017,242:344−350. doi: 10.1016/j.biortech.2017.03.045
    [3] XU D, WANG Y, LIN G, GUO S, WANG S, WU Z. Co-hydrothermal liquefaction of microalgae and sewage sludge in subcritical water: Ash effects on bio-oil production[J]. Renewable Energy,2019,138:1143−1151. doi: 10.1016/j.renene.2019.02.020
    [4] WEN J L, CHEN T Y, SUN R C. Progress in research methods of biomass lignin separation and structure[J]. J Eng,2017,2(5):76−84.
    [5] JIN Y, RUAN X, CHENG X, LV Q F. Liquefaction of lignin by polyethyleneglycol and glycerol[J]. Bioresour Technol,2011,102(3):3581−3583. doi: 10.1016/j.biortech.2010.10.050
    [6] VANHOLME R, MORREEL K, RALPH J, BOERJAN W. Lignin engineering[J]. Curr Opin Plant Biol,2008,11(3):278−285. doi: 10.1016/j.pbi.2008.03.005
    [7] VANHOLME R, DEMEDETS B, MORREEL K, JOHN R, WOUT B. Lignin biosynthesis and structure[J]. Plant Physiol,2010,153(3):895−905. doi: 10.1104/pp.110.155119
    [8] RALPH J. Hydroxycinnamates in lignification[J]. Phytochem Rev,2010,9(1):65−83. doi: 10.1007/s11101-009-9141-9
    [9] WANG S R, RU B, LIN H Z, SUN W X, LUO Z Y. Pyrolysis behaviors of four lignin polymers isolated from the same pine wood[J]. Bioresour Technol,2015,182:120−127. doi: 10.1016/j.biortech.2015.01.127
    [10] GUO Z, JIANG X Y, LIAO Y, ZHANG M, HUANG Y. Fast pyrolysis of Masson Pine lignin and analysis of pyrolysis products[J]. J Cent South Univ Forest Technol,2017,37(6):106−107.
    [11] 黄明, 朱亮, 马中青, 周秉亮, 刘晓欢, 叶结旺, 赵超. 金属改性分子筛催化热解木质素制取轻质芳烃[J]. 燃料化学学报,2021,49(3):292−302. doi: 10.19906/j.cnki.JFCT.2021021

    HUANG Ming, ZHU Liang, MA Zhong-qing, ZHOU Bing-liang, LIU Xiao-huan, YE Jie-wang, ZHAO Chao. Production of light aromatics from the fast pyrolysis of lignin catalyzed by metal-modified H-ZSM-5 zeolite[J]. J Fuel Chem Technol,2021,49(3):292−302. doi: 10.19906/j.cnki.JFCT.2021021
    [12] CAPRARIIS D, BENEDETTA, FILIPPIS D, FILIPPIS, PAOLO, PETRULLO A, SCARSELLA M. Hydrothermal liquefaction of biomass: Influence of temperature and biomass composition on the bio-oil production[J]. Fuel,2017,208:618−625. doi: 10.1016/j.fuel.2017.07.054
    [13] CAO Y, GAO J, ZHANG C, DANIEL C W T, FAN J, JAMES H C, LUO G, ZHU X D, ZHANG S C. Fast and selective production of aromatics via efficient lignin depolymerization: Critical factors and mechanism studies[J]. ACS Sustainable Chem Eng,2022,10(46):15273−15283. doi: 10.1021/acssuschemeng.2c05018
    [14] BARBIER J, CHARON N, DUPASSIEUX N. Hydrothermal conversion of lignin compounds: A detailed study of fragmentation and condensation reaction pathways[J]. Biomass Bioenergy,2012,46:479−491. doi: 10.1016/j.biombioe.2012.07.011
    [15] SHEEHAN J D, SAVAGE P E. Modeling the effects of microalga biochemical content on the kinetics and biocrude yields from hydrothermal liquefaction[J]. Bioresour Technol,2017,239:144−150. doi: 10.1016/j.biortech.2017.05.013
    [16] ZHU Z, ROSENDAHL L, TOOR S S, YU D, CHEN G. Hydrothermal liquefaction of barley straw to bio-crude oil: Effects of reaction temperature and aqueous phase recirculation[J]. Appl Energy,2015,137(jan.1):183−192.
    [17] DURAK H, AYSU T. Structural analysis of bio-oils from subcritical and supercritical hydrothermal liquefaction of Datura stramonium L[J]. J Supercrit Fluid,2016,108:123−135. doi: 10.1016/j.supflu.2015.10.016
    [18] KIM S J, UM B H. Biocude production from Korean native kenaf through suberitical hydrothermal liquefaction under mild alkaline catalytic conditions[J]. Ind Crop Prod,2020,145(1):1−7.
    [19] PIŃKOWSKA H, WOLAK P, ZŁOCIŃSKA A. Hydrothermal decomposition of alkali lignin in sub-and supercritical water[J]. Chem Eng J,2012,187:410−414. doi: 10.1016/j.cej.2012.01.092
    [20] YANG T H, WU K Y, LI B S, DU C Z, WANG J, LI R D. Conversion of lignin into phenolic-rich oil by two-step liquefaction in sub-supercritical ethanol system assisted by carbon dioxide[J]. J Energy Inst,2021,94:329−336. doi: 10.1016/j.joei.2020.10.001
    [21] LI B S, YANG T H, LI R D, KAI X P. Co-generation of liquid biofuels from lignocellulose by integrated biochemical and hydrothermal liquefaction process[J]. Energy,2020,200:117524.
    [22] LIN X H, CHEN L H, LI H Y, LV Y C, LIU Y F. Mild depolymerization of the sinocalamus oldhami alkali lignin to phenolic monomer with base and activated carbon supported nickel-tungsten carbide catalyst composite system[J]. Bioresour Technol,2021,333:125136. doi: 10.1016/j.biortech.2021.125136
    [23] CHAUDHARY R, DHEPE P L. Depolymerization of lignin using a solid base catalyst[J]. Energy Fuels,2019,33(MAY):4369−4377.
    [24] FENG X B, CAO J P, ZHAO X Y, SONG C, LIU T L, WANG J X, FAN X, WEI X Y. Organic oxygen transformation during pyrolysis of Baiyinhua lignite[J]. J Anal Appl Pyrolysis,2016,117:106−115.
    [25] 徐昊, 王冠宇, 李允超, 陆凯锋, 王树荣. 生物质液相解聚残渣热解行为对比研究[J]. 工程热物理学报,2021,42(12):3045−3053.

    XU Hao, WANG Guan-yu, LI Yun-chao, LU Kai-feng, WANG Shu-rong. Comparative study on pyrolysis behavior of biomass liquid depolymerization residues[J]. J Eng Thermophys,2021,42(12):3045−3053.
    [26] 刘素敏, 杨海平, 胡俊豪, 邹俊, 陈汉平, 王晨光. 典型木质素气化动力学及产物析出特性[J]. 燃料化学学报,2022,50(4):428−435.

    LIU Su-min, YANG Hai-ping, HU Jun-hao, ZOU Jun, CHEN Han-ping, WANG Chen-guang. Study on gasification kinetics and product characteristics of typical lignin[J]. J Fuel Chem Technol,2022,50(4):428−435.
    [27] 叶俊, 李广学, 周博涵, 曹从伟, 杨和彦, 李家鸣. ZnCl2催化木质素磺酸盐加氢液化的溶剂效应[J]. 燃料化学学报,2012,40(3):321−325. doi: 10.3969/j.issn.0253-2409.2012.03.011

    YE Jun, LI Guang-xue, ZHOU Bo-han, CAO Cong-wei, YANG He-yan, LI Jia-ming. Solvent effect of lignosulfonate liquefaction by ZnCl2 catalyzed hydrogenation[J]. J Fuel Chem Technol,2012,40(3):321−325. doi: 10.3969/j.issn.0253-2409.2012.03.011
    [28] MA Z Q, WANG J H, ZHOU H Z. Relationship of thermal degradation behavior and chemical structure of lignin isolated from palm kernel shell under different process severities[J]. Fuel Process Technol,2018,181:142−156. doi: 10.1016/j.fuproc.2018.09.020
    [29] WANG S R, LIN H Z, R B, SUN W X, WANG Y R, LUO Z Y. Comparison of the pyrolysis behavior of pyrolytic lignin and milled wood lignin by using TG-FTIR analysis[J]. J Anal Appl Pyrolysis, 2014, 2014, 108(-): 78–85.
    [30] ZHANG B, CHEN J X, KANDASAMY S, HE Z X. Hydrothermal liquefaction of fresh lemon-peel and Spirulina platensis blending-operation parameter and biocrude chemistry investigation[J]. Energy,2020,193:116645. doi: 10.1016/j.energy.2019.116645
    [31] 郭大亮, 王林芳, 郭惠萍, 陈梦薇, 薛国新, 武书彬. 结合态与无机态钠对木质素半焦气化特性的影响[J]. 农业机械学报,2017,48(3):332−337. doi: 10.6041/j.issn.1000-1298.2017.03.042

    GUO Da-liang, WANG Lin-fang, GUO Hui-ping, CHEN Meng-wei, XUE Guo-xin, WU Shu-bin. Influence of inorganic and organic bound Na on char gasification characteristics of lignin[J]. Trans Chin Soc Agric Mach,2017,48(3):332−337. doi: 10.6041/j.issn.1000-1298.2017.03.042
    [32] LIU Z C, WANG Z W, GAO S, TONG Y X, LE X, HU N W, YAN Q S, ZHOU X G, HE Y R, WANG L. Isolation and Fractionation of the Tobacco Stalk Lignin for Customized Value-Added Utilization[J]. Front Bioeng Biotechnol,2021,9:811287.
    [33] FARAVELLI T, FRASSOLDATI A, MIGLIAVACCA G, RANZI E. Detailed kinetic modeling of the thermal degradation of lignins[J]. Biomass Bioenergy,2010,34(3):290−301. doi: 10.1016/j.biombioe.2009.10.018
    [34] KRUSE A, DINJUS E. Hot compressed water as reaction medium and reactant 2. Degradation reactions[J]. J Supercrit Fluid,2007,41(3):361−379. doi: 10.1016/j.supflu.2006.12.006
    [35] YANG J, HE Q, CORSCADDEN K. Advanced models for the prediction of product yield in hydrothermal liquefaction via a mixture design of biomass model components coupled with process variables[J]. Appl Energy, 2019, 233234: 906–915.
    [36] YANG T H, WANG J, LI B S, KAI X P, XING W L. Behaviors of rice straw two-step liquefaction with sub/supercritical ethanol in carbon dioxide atmosphere[J]. Bioresour Technol,2018,258:287−294. doi: 10.1016/j.biortech.2018.02.099
    [37] LI B S, LIU Y X, LI R D, YANG T H, KAI X P. Aluminum-water reactions assisted in situ hydrodeoxygenation of enzymolysis lignin from bioconversion of rice straw over NiMo catalyst[J]. Ind Crop Prod,2020,154:112727. doi: 10.1016/j.indcrop.2020.112727
    [38] CHEN P, ZHANG Q, SHU R, XU Y, MA L L. Catalytic depolymerization of the hydrolyzed lignin over mesoporous catalysts[J]. Bioresour Technol,2017,226(1):125−131.
    [39] ABOULKAS A, HAMMANI H, ACHABY M EL, BILAL E, BARAKAT A, HARFI K EL. Valorization of algal waste via pyrolysis in a fixed-bed reactor: production and characterization of bio-oil and bio-char[J]. Bioresour Technol,2017,243:400−408. doi: 10.1016/j.biortech.2017.06.098
    [40] KUMAR B, BHARDWAJ N, AGRAWAL K, CHATURVEDI V, VERMA P. Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept[J]. Fuel Process Technol,2020,199:106244. doi: 10.1016/j.fuproc.2019.106244
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  1113
  • HTML全文浏览量:  237
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-20
  • 修回日期:  2023-01-25
  • 录用日期:  2023-02-09
  • 网络出版日期:  2023-03-08
  • 刊出日期:  2023-08-01

目录

    /

    返回文章
    返回