留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Support effects on Ru-based catalysts for Fischer-Tropsch synthesis to olefins

YAO Tai-zhen AN Yun-lei YU Hai-ling LIN Tie-jun YU Fei ZHONG Liang-shu

尧泰真, 安芸蕾, 于海玲, 林铁军, 于飞, 钟良枢. 载体效应对Ru基催化剂费托合成制烯烃的性能影响[J]. 燃料化学学报(中英文), 2023, 51(10): 1400-1410. doi: 10.1016/S1872-5813(23)60351-2
引用本文: 尧泰真, 安芸蕾, 于海玲, 林铁军, 于飞, 钟良枢. 载体效应对Ru基催化剂费托合成制烯烃的性能影响[J]. 燃料化学学报(中英文), 2023, 51(10): 1400-1410. doi: 10.1016/S1872-5813(23)60351-2
YAO Tai-zhen, AN Yun-lei, YU Hai-ling, LIN Tie-jun, YU Fei, ZHONG Liang-shu. Support effects on Ru-based catalysts for Fischer-Tropsch synthesis to olefins[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1400-1410. doi: 10.1016/S1872-5813(23)60351-2
Citation: YAO Tai-zhen, AN Yun-lei, YU Hai-ling, LIN Tie-jun, YU Fei, ZHONG Liang-shu. Support effects on Ru-based catalysts for Fischer-Tropsch synthesis to olefins[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1400-1410. doi: 10.1016/S1872-5813(23)60351-2

载体效应对Ru基催化剂费托合成制烯烃的性能影响

doi: 10.1016/S1872-5813(23)60351-2
详细信息
  • 中图分类号: TQ546

Support effects on Ru-based catalysts for Fischer-Tropsch synthesis to olefins

Funds: The project was supported by Natural Science Foundation of China (U22B20136, 91945301, 22202230), National Key R&D Program of China (2021YFF0500702), Natural Science Foundation of Shanghai (22JC1404200), Program of Shanghai Academic/Technology Research Leader (20XD1404000), the “Transformational Technologies for Clean Energy and Demonstration” and Strategic Priority Research Program of Chinese Academy of Sciences (XDA21020600)
More Information
  • 摘要: 本研究考察了不同载体(CeO2、ZrO2、MnO2、SiO2和活性炭)对负载型Ru基费托合成制烯烃(FTO)催化剂结构和催化性能的影响。结果表明,载体的本征属性和金属-载体相互作用(MSI)对催化性能有很大影响。在同一反应条件下的催化活性关系为:Ru/SiO2 > Ru/ZrO2 > Ru/MnO2 > Ru/AC > Ru/CeO2。对于烯烃选择性,Ru/SiO2和Ru/MnO2得到的总烯烃选择性最高,超过70%,而Ru/ZrO2催化剂的烯烃选择性低至29.9%。由于金属Ru与SiO2的金属载体相互作用较弱,反应后的Ru/SiO2催化剂得到适中的Ru纳米颗粒尺寸( ~ 5 nm)且反应活性也最高。对于Ru/AC和Ru/MnO2,其Ru纳米颗粒尺寸仅为1−3 nm,表现出较低的CO转化率。较高的烯烃二次加氢能力导致Ru/AC和Ru/ZrO2催化剂的烯烃选择性偏低。此外,由于存在强的MSI效应,部分Ru纳米颗粒被可还原性CeO2活性层包覆,导致Ru/CeO2催化活性最低。
  • FIG. 2699.  FIG. 2699.

    FIG. 2699.  FIG. 2699.

    Figure  1  Detailed catalytic results over various supported catalysts (a): comparison of O/P and olefins total selectivity over various supported Ru-based catalysts, reaction condition for Ru/CeO2: 1 MPa, 3000 mL/(g·h), H2/CO=2, 300 °C, reaction condition for other catalyst: 1 MPa, 3000 mL/(g·h), H2/CO=2, 270 °C; (b)−(f): products distribution and cumulative olefins selectivity over various catalysts: (b) Ru/SiO2, (c) Ru/MnO2, (d) Ru/CeO2, (e) Ru/AC, (f) Ru/ZrO2

    Figure  2  Hydrocarbon distribution of various supported catalysts with the chain growth probability (α) obtained by the fitting the catalytic results using the ASF model

    Figure  3  Powder X-ray diffraction patterns of (a) supports, (b) calcined catalysts, (c) reduced catalysts and (d) spent catalysts

    Figure  4  (HR)TEM images of the reduced catalysts: (a) Ru/SiO2, (b) Ru/MnO2, (c) Ru/CeO2, (d) Ru/AC, (e) Ru/ZrO2

    Figure  5  (HR)TEM images of the spent catalysts: (a) Ru/SiO2, (b) Ru/MnO2, (c) Ru/CeO2, (d) Ru/AC, (e) Ru/ZrO2

    Figure  6  (a) H2-TPR profiles of Ru/CeO2, Ru/MnO2, Ru/ZrO2, Ru/AC, Ru/SiO2; (b) Ru 3p regions of Ru/CeO2, Ru/MnO2, Ru/ZrO2, Ru/AC and Ru/SiO2

    Figure  7  Transient response curves obtained for propylene-pulse experiment: (a) Ru/SiO2, (b) Ru/MnO2, (c) Ru/CeO2, (d) Ru/AC, (e) Ru/ZrO2, (f) the relationship between R value and olefins selectivity over various catalysts

    Table  1  Catalytic performance of various supported catalysts

    CatalystCO conversion /%Product selectivity /%
    ROHCO2CH4olefinsC2 + paraffins
    Ru/SiO233.61.32.82.579.414.2
    Ru/MnO212.04.910.24.470.110.4
    Ru/CeO2a8.38.321.512.449.78.1
    Ru/AC7.80.67.446.533.512.0
    Ru/ZrO217.610.13.718.029.938.4
    a: Reaction condition for Ru/CeO2: 1 MPa, 3000 mL/(g·h), φH2/φCO=2, 300 °C; reaction condition for other catalysts: 1 MPa, 3000 mL/(g·h), φH2/φCO=2, 270 °C
    下载: 导出CSV

    Table  2  Texture property and Ru loading content of various catalysts

    SBET /(m2·g−1) aAverage pore
    width /nm a
    Ru 3p5/2 /eVbRu /%c
    SiO227923.6
    MnO211011.4
    CeO2887.3
    AC14382.1
    ZrO2833.1
    Ru/SiO221510.6461.711.94
    Ru/MnO26914.4462.282.28
    Ru/CeO2895.6462.481.82
    Ru/AC13402.1462.502.03
    Ru/ZrO2602.7461.921.79
    a: Particle physical property determined by BET test, b: BE of Ru 3p determined by XPS test, c: Ru content determined by ICP test
    下载: 导出CSV
  • [1] DRY M E. The Fischer-Tropsch process: 1950–2000[J]. Catal Today,2002,71(3):227−241.
    [2] TORRES GALVIS H M, BITTER J H, KHARE C B, RUITENBEEK M, DUGULAN A I, DE JONG K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science,2012,335(6070):835−838. doi: 10.1126/science.1215614
    [3] YU F, LI Z J, AN Y L, GAO P, ZHONG L S, Research progress in the direct conversion of syngas to lower olefin[J]. J Fuel Chem Technol, 2016, 44(7): 801−814.
    [4] YU F, LIN T J, AN Y L, GONG K, WANG X X, SUN Y H, ZHONG L S. Recent advances in Co2C-based nanocatalysts for direct production of olefins from syngas conversion[J]. Chem Commun,2022,58(70):9712−9727. doi: 10.1039/D2CC03048A
    [5] CHENG K, GU B, LIU X L, KANG J C, ZHANG Q H, WANG Y. Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angew Chem Int Ed,2016,55(15):4725−4728. doi: 10.1002/anie.201601208
    [6] JIAO F, LI J J, PAN X L, XIAO J P, LI H B, MA H, WEI M M, PAN Y, ZHOU Z Y, LI M R, MIAO S, LI J, ZHU Y F, XIAO D, HE T, YANG J H, QI F, FU Q, BAO X H. Selective conversion of syngas to light olefins[J]. Science,2016,351(6277):1065−1068. doi: 10.1126/science.aaf1835
    [7] SONG F, YONG X J, WU X M, ZHANG W, MA Q X, ZHAO T J, TAN M H, GUO Z S, ZHAO H, YANG G H, TSUBAKI N, TAN Y S. FeMn@HZSM-5 capsule catalyst for light olefins direct synthesis via Fischer-Tropsch synthesis: studies on depressing the CO2 formation[J]. Appl Catal B: Environ,2022,300:120713. doi: 10.1016/j.apcatb.2021.120713
    [8] LIN T J, AN Y L, YU F, GONG K, YU H L, WANG C Q, SUN Y H, ZHONG L S. Advances in selectivity control for Fischer-Tropsch synthesis to fuels and chemicals with high carbon efficiency[J]. ACS Catal,2022,12(19):12092−12112. doi: 10.1021/acscatal.2c03404
    [9] ZHAO H B, MA D. χ-Fe5C2: Structure, synthesis, and tuning of catalytic properties[J]. Acta Phys-Chim Sin,2020,36(1):32−41.
    [10] LÓPEZ C, CORMA A. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. ChemCatChem,2012,4(6):751−752. doi: 10.1002/cctc.201200178
    [11] ZHONG L S, YU F, AN Y L, ZHAO Y H, SUN Y H, LI Z J, LIN T J, LIN Y J, QI X Z, DAI Y Y, GU L, HU J S, JIN S F, SHEN Q, WANG H. Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J]. Nature,2016,538(7623):84−87. doi: 10.1038/nature19786
    [12] XU Y F, LI X Y, GAO J H, WANG J, MA G Y, WEN X D, YANG Y, LI Y W, DING M Y. A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products[J]. Science,2021,371(6529):610−613. doi: 10.1126/science.abb3649
    [13] LIN T J, LIU P G, GONG K, AN Y L, YU F, WANG X X, ZHONG L S, SUN Y H. Designing silica-coated CoMn-based catalyst for Fischer-Tropsch synthesis to olefins with low CO2 emission[J]. Appl Catal B: Environ,2021,299:120683. doi: 10.1016/j.apcatb.2021.120683
    [14] ZHANG Y R, YANG X L, YANG X F, DUAN H M, QI H F, SU Y, LIANG B B, TAO H B, LIU B, CHEN D, SU X, HUANG Y Q, ZHANG T. Tuning reactivity of Fischer-Tropsch synthesis by regulating TiOx overlayer over Ru/TiO2 nanocatalysts[J]. Nat Commun,2020,11(1):3185. doi: 10.1038/s41467-020-17044-4
    [15] YU H L, WANG C Q, LIN T J, AN Y L, WANG Y C, CHANG Q Y, YU F, WEI Y, SUN F F, JIANG Z, LI S G, SUN Y H, ZHONG L S. Direct production of olefins from syngas with ultrahigh carbon efficiency[J]. Nat Commun,2022,13(1):5987. doi: 10.1038/s41467-022-33715-w
    [16] OKAL J, ZAWADZKI M, KRASZKIEWICZ P, ADAMSKA K. Ru/CeO2 catalysts for combustion of mixture of light hydrocarbons: Effect of preparation method and metal salt precursors[J]. Appl Catal A: Gen,2018,549:161−169. doi: 10.1016/j.apcata.2017.09.036
    [17] LI J H, LIU Z Q, CULLEN D A, HU W H, HUANG J, YAO L B, PENG Z M, LIAO P L, WANG R G. Distribution and valence state of Ru species on CeO2 supports: Support shape effect and its influence on CO oxidation[J]. ACS Catal,2019,9(12):11088−11103. doi: 10.1021/acscatal.9b03113
    [18] HUANG H, DAI Q G, WANG X Y. Morphology effect of Ru/CeO2 catalysts for the catalytic combustion of chlorobenzene[J]. Appl Catal B: Environ,2014,158-159:96−105. doi: 10.1016/j.apcatb.2014.01.062
    [19] NDOLOMINGO M J, MEIJBOOM R. Noble and base-metal nanoparticles supported on mesoporous metal oxides: Efficient catalysts for the selective hydrogenation of levulinic acid to γ-valerolactone[J]. Catal Lett,2019,149(10):2807−2822. doi: 10.1007/s10562-019-02790-y
    [20] ZHU L J, YIN S, YIN Q Q, WANG H X, WANG S R. Biochar: A new promising catalyst support using methanation as a probe reaction[J]. Energy Sci Eng,2015,3(2):126−134. doi: 10.1002/ese3.58
    [21] GARCÍA-GARCÍA F R, FERNÁNDEZ-GARCÍA M, NEWTON M A, RODRÍGUEZ-RAMOS I, GUERRERO-RUIZ A. Following the evolution of Ru/activated carbon catalysts during the decomposition-reduction of the Ru(NO)(NO3)3 precursor[J]. ChemCatChem,2013,5(8):2446−2452. doi: 10.1002/cctc.201300065
    [22] DEKA J R, SAIKIA D, HSIA K S, KAO H M, YANG Y C, CHEN C S. Ru nanoparticles embedded in cubic mesoporous silica SBA-1 as highly efficient catalysts for hydrogen generation from ammonia borane[J]. Catalysts,2020,10(3):267. doi: 10.3390/catal10030267
    [23] WANG C Q, YU H L, LIN T J, QI X Z, YU F, ZHONG L S, SUN Y H. Direct synthesis of higher alcohols from syngas over modified Mo2C catalysts under mild reaction conditions[J]. Catal Sci Technol,2022,12(5):1697−1708. doi: 10.1039/D1CY02186A
    [24] TUXEN A, CARENCO S, CHINTAPALLI M, CHUANG C H, ESCUDERO C, PACH E, JIANG P, BORONDICS F, BEBERWYCK B, ALIVISATOS A P, THORNTON G, PONG W F, GUO J H, PEREZ R, BESENBACHER F, SALMERON M. Size-dependent dissociation of carbon monoxide on cobalt nanoparticles[J]. J Am Chem Soc,2013,135(6):2273−2278. doi: 10.1021/ja3105889
    [25] QUEK X Y, PESTMAN R, VAN SANTEN R A, HENSEN E J M. Structure sensitivity in the ruthenium nanoparticle catalyzed aqueous-phase Fischer-Tropsch reaction[J]. Catal Sci Technol,2014,4(10):3510−3523. doi: 10.1039/C4CY00709C
    [26] MOHAMED Z, DASIREDDY V D B C, SINGH S, FRIEDRICH H B. TiO2 and ZrO2 supported Ru catalysts for CO mitigation following the water-gas shift reaction[J]. Int J Hydrogen Energy,2018,43(49):22291−22302. doi: 10.1016/j.ijhydene.2018.10.061
    [27] LI Z J, YU D M, YANG L Y, CEN J, XIAO K, YAO N, LI X N. Formation mechanism of the Co2C nanoprisms studied with the CoCe System in the Fischer-Tropsch to olefin reaction[J]. ACS Catal,2021,11(5):2746−2753. doi: 10.1021/acscatal.0c04504
    [28] ZHANG H W, ZHANG H T, QIAN W X, WU X, MA H F, SUN Q W, YING W Y. Sodium modified Fe-Mn microsphere catalyst for Fischer-Tropsch synthesis of light olefins[J]. Catal Today,2022,388-389:199−207. doi: 10.1016/j.cattod.2020.07.040
    [29] LIN J, WANG A Q, QIAO B T, LIU X Y, YANG X F, WANG X D, LIANG J X, LI J, LIU J Y, ZHANG T. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction[J]. J Am Chem Soc,2013,135(41):15314−15317. doi: 10.1021/ja408574m
    [30] VECCHIETTI J, BONIVARDI A, XU W, STACCHIOLA D, DELGADO J J, CALATAYUD M, COLLINS S E. Understanding the role of oxygen vacancies in the water gas shift reaction on ceria-supported platinum catalysts[J]. ACS Catal,2014,4(6):2088−2096. doi: 10.1021/cs500323u
    [31] RAJESH T, DEVI R N. Role of oxygen vacancies in water gas shift reaction: activity study on BaCe0.98–xYx Pt0.02O3−δ perovskites[J]. J Phys Chem,2014,118(36):20867−20874.
    [32] JACKSON N B, EKERDT J G. Methanol synthesis mechanism over zirconium dioxide[J]. J Catal,1986,101(1):90−102. doi: 10.1016/0021-9517(86)90232-0
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  274
  • HTML全文浏览量:  135
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-20
  • 修回日期:  2023-01-10
  • 录用日期:  2023-01-11
  • 网络出版日期:  2023-03-24
  • 刊出日期:  2023-10-10

目录

    /

    返回文章
    返回