留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of pretreatment conditions on the structure and catalytic performance of supported cobalt catalysts derived from metal-organic frameworks

SUN Jia-qiang ZHENG Shen-ke CHEN Jian-gang

孙甲强, 郑申棵, 陈建刚. 预处理条件对金属有机框架衍生的负载钴催化剂的结构和催化性能的影响[J]. 燃料化学学报(中英文), 2023, 51(9): 1291-1297. doi: 10.1016/S1872-5813(23)60352-4
引用本文: 孙甲强, 郑申棵, 陈建刚. 预处理条件对金属有机框架衍生的负载钴催化剂的结构和催化性能的影响[J]. 燃料化学学报(中英文), 2023, 51(9): 1291-1297. doi: 10.1016/S1872-5813(23)60352-4
SUN Jia-qiang, ZHENG Shen-ke, CHEN Jian-gang. Influence of pretreatment conditions on the structure and catalytic performance of supported cobalt catalysts derived from metal-organic frameworks[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1291-1297. doi: 10.1016/S1872-5813(23)60352-4
Citation: SUN Jia-qiang, ZHENG Shen-ke, CHEN Jian-gang. Influence of pretreatment conditions on the structure and catalytic performance of supported cobalt catalysts derived from metal-organic frameworks[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1291-1297. doi: 10.1016/S1872-5813(23)60352-4

预处理条件对金属有机框架衍生的负载钴催化剂的结构和催化性能的影响

doi: 10.1016/S1872-5813(23)60352-4
详细信息
  • 中图分类号: O643

Influence of pretreatment conditions on the structure and catalytic performance of supported cobalt catalysts derived from metal-organic frameworks

Funds: The project was supported by the National Natural Science Foundation of China (21503256, 22072175), “Strategic Priority Research Program” of the Chinese Academy of Sciences (XDA21021000), Sanju Environmental Protection New Material Company and the Research Foundation of Huanggang Normal University (2042020026)
More Information
  • 摘要: 通过金属有机框架材料介导的合成策略制备了负载钴催化剂(Co@C-ZnZrO2和Co/ZnZrO2) 并进行费托合成性能评价,重点研究了金属有机框架材料热解对负载钴催化剂结构和费托合成性能的影响。采用粉末X射线衍射、透射电镜、高分辨率透射电镜、N2吸附-脱附和X射线光电子能谱对负载钴催化剂的晶相和微观结构进行了表征。费托合成性能研究显示,Co/ZnZrO2的CO转化率为18.1%,C5 + 选择性为77.4%,而Co@C-ZnZrO2的CO转化率为8.5%,C5 + 选择性为35.2%。Co/ZnZrO2较高的CO转化率是由于暴露了较多的活性钴位点。而在Co@C-ZnZrO2催化剂上活性Co位点的作用受到碳层的限制,抑制了合成气在Co位点上的吸附和活化。
  • FIG. 2672.  FIG. 2672.

    FIG. 2672.  FIG. 2672.

    Figure  1  TEM image of ZCZ-MOFs

    Figure  2  XRD pattern of ZCZ-MOFs

    Figure  3  XRD pattern of Co@C-ZnZrO2

    Figure  4  XRD patterns of CoOx/ZnZrO2 and Co/ZnZrO2

    Figure  5  TEM ((a), (b)) and HRTEM (c) images of Co@C-ZnZrO2

    Figure  6  TEM ((a), (b)) and HRTEM (c) images of CoOx/ZnZrO2

    Figure  7  XPS full spectra of the catalysts

    Figure  8  Co 2p XPS spectra of the catalysts

    Figure  9  Zr 3d XPS spectra of the catalysts

    Figure  10  Zn 2p XPS spectra of the catalysts

    Figure  11  Catalytic activity of the catalysts with time on stream Reaction conditions: v(H2)/v(CO)=2, GHSV=1 L/(g·h), 2 MPa, 200 °C

    Figure  12  Hydrocarbon product selectivity of the catalysts with time on stream Reaction conditions: v(H2)/v(CO)=2, GHSV=1 L/(g·h), 2 MPa, 200 °C

    Figure  13  Hydrocarbon product distributions of the catalysts

    Figure  14  H2-TPD profiles of the catalysts

    Table  1  N2 adsorption-desorption measurement results of the catalysts

    SampleSBET /(m2·g−1)vmic /(cm3·g−1)dave /nm
    ZCZ-MOF67.20.028.7
    Co@C-ZnZrO2132.60.2110.4
    CoOx/ZnZrO228.30.1117.5
    下载: 导出CSV
  • [1] GATES B C. Supported metal-clusters: Synthesis, structure, and catalysis[J]. Chem Rev,1995,95(3):511−522. doi: 10.1021/cr00035a003
    [2] MUNNIK P, DE JONGH P E, DE JONG K P. Recent developments in the synthesis of supported catalysts[J]. Chem Rev,2015,115(14):6687−6718. doi: 10.1021/cr500486u
    [3] TORRES GALVIS H M, BITTER J H, KHARE C B, RUITENBEEK M, IULIAN DUGULAN A, DE JONG K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science,2012,335(6070):835−838. doi: 10.1126/science.1215614
    [4] RAHMATI M, SAFDARI M S, FLETCHER T H, ARGYLE M D, BARTHOLOMEW C H. Chemical and thermal sintering of supported metals with emphasis on cobalt catalysts during Fischer-Tropsch synthesis[J]. Chem Rev,2020,120(10):4455−4533. doi: 10.1021/acs.chemrev.9b00417
    [5] KHODAKOV A Y, CHU W, FONGARLAND P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels[J]. Chem Rev,2007,107(5):1692−1744. doi: 10.1021/cr050972v
    [6] FISCHER N, VAN STEEN E, CLAEYS M. Structure sensitivity of the Fischer-Tropsch activity and selectivity on alumina supported cobalt catalysts[J]. J Catal,2013,299(1):67−80.
    [7] JPHNSON B G, BARTHOLOMEW C H, GOODMAN D W. The role of surface structure and dispersion in CO hydrogenation on cobalt[J]. J Catal,1991,128(1):231−247. doi: 10.1016/0021-9517(91)90080-N
    [8] DEN BREEJEN J P, RADSTAKE P B, BEZEMER G L, BITTER J H, FRØSETH V, HOLMEN A, DE JONG K P. On the origin of the cobalt particle size effects in Fischer-Tropsch catalysis[J]. J Am Chem Soc,2009,131(20):7197−7203. doi: 10.1021/ja901006x
    [9] IGLESIA E, SOLED S L, FIATO R A. Fischer-Tropsch synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity[J]. J Catal,1992,137(1):212−224. doi: 10.1016/0021-9517(92)90150-G
    [10] LIU J X, SU H Y, SUN D P, ZHANG B Y, LI W X. Crystallographic dependence of CO activation on cobalt catalysts: HCP versus FCC[J]. J Am Chem Soc,2013,135(44):16284−16287. doi: 10.1021/ja408521w
    [11] BEZEMER G L, BITTER J H, KUIPERS H P C E. OOSTERBEEK H, HOLEWIJN J E, Xu X, KAPTEIJN F, VAN DILLEN A J, DE JONG K P, Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts[J]. J Am Chem Soc,2006,128(12):3956−3964. doi: 10.1021/ja058282w
    [12] PENG X, CHENG K, KANG J, GU B, YU X, ZHANG Q, WANG Y. Impact of hydrogenolysis on the selectivity of the Fischer-Tropsch synthesis: diesel fuel production over mesoporous zeolite-Y-supported cobalt nanoparticles[J]. Angew Chem Int Ed, 2015, 54 (15): 4553–4556.
    [13] DAVARI M, KARIMI S, TAVASOLI A, KARIMI A. Enhancement of activity, selectivity and stability of CNTs-supported cobalt catalyst in Fischer-Tropsch via CNTs functionalization[J]. Appl Catal A: Gen,2014,485:133−142. doi: 10.1016/j.apcata.2014.07.023
    [14] JACOBS G, DAS T K, ZHANG Y, LI J, RACOILLET G, DAVIS B H. Fischer-Tropsch synthesis: Support, loading, and promoter effects on the reducibility of cobalt catalysts[J]. Appl Catal A: Gen,2002,233:263−281.
    [15] GIRARDON J S, LERMONTOV A S, GENGEMBRE L, CHERNAVSKII P A, GRIBOVAL-CONSTANT A, KHODAKOV A Y. Effect of cobalt precursor and pretreatment conditions on the structure and catalytic performance of cobalt silica-supported Fischer-Tropsch catalysts[J]. J Catal,2005,230(2):339−352. doi: 10.1016/j.jcat.2004.12.014
    [16] MUNNIK P, KRANS N A, DE JONGH P E, DE JONG K P. Effects of drying conditions on the synthesis of Co/SiO2 and Co/Al2O3 Fischer-Tropsch catalysts[J]. ACS Catal,2014,4(9):3219−3226. doi: 10.1021/cs5006772
    [17] BEZEMER G L, RADSTAKE P B, KOOT V, VAN DILLEN A J, GEUS J W, DE JONG K P. Preparation of Fischer-Tropsch cobalt catalysts supported on carbon nanofibers and silica using homogeneous deposition-precipitation[J]. J Catal,2006,237(2):291−302. doi: 10.1016/j.jcat.2005.11.015
    [18] OKABE K, LI X, WEI M, ARAKAWA H. Fischer-Tropsch synthesis over Co-SiO2 catalysts prepared by the sol-gel method[J]. Catal Today,2004,89(4):431−438. doi: 10.1016/j.cattod.2004.01.005
    [19] MUNNIK P, DE JONGH P E, DE JONG K P. Control and impact of the nanoscale distribution of supported cobalt particles used in Fischer-Tropsch catalysis[J]. J Am Chem Soc,2014,136(20):7333−7340. doi: 10.1021/ja500436y
    [20] MEEK S T, GREATHOUSE J A, ALLENDORF M D. Metal-organic frameworks: A rapidly growing class of versatile nanoporous materials[J]. Adv Mater,2011,23(2):249−267. doi: 10.1002/adma.201002854
    [21] LONG J R, YAGHI O M. The pervasive chemistry of metal-organic frameworks[J]. Chem Soc Rev,2009,38(5):1213−1214. doi: 10.1039/b903811f
    [22] HUANG Y B, LIANG J, WANG X S, CAO R. Multifunctional metal-organic framework catalysts: Synergistic catalysis and tandem reactions[J]. Chem Soc Rev,2017,46(1):126−157. doi: 10.1039/C6CS00250A
    [23] CORMA A, GARCIA H, LLABRÉS I XAMENA F X. Engineering metal organic frameworks for heterogeneous catalysis[J]. Chem Rev,2010,110(8):4606−4655. doi: 10.1021/cr9003924
    [24] JAGADEESH R V, MURUGESAN K, ALSHAMMARI A S, NEUMANN H, POHL M M, RADNI J, BELLER M. MOF-derived cobalt nanoparticles catalyze a general synthesis of amines[J]. Science,2017,358(6361):326−332. doi: 10.1126/science.aan6245
    [25] QIU B, YANG C, GUO W, XU Y, LIANG Z, MA D, ZOU R. Highly dispersed Co-based Fischer-Tropsch synthesis catalysts from metal-organic frameworks[J]. J Mater Chem A,2017,5(17):8081−8086. doi: 10.1039/C7TA02128C
    [26] CHEN Y, LI X, NISA M U, LV J, LI Z. ZIF-67 as precursor to prepare high loading and dispersion catalysts for Fischer-Tropsch synthesis: Particle size effect[J]. Fuel,2019,241:802−812. doi: 10.1016/j.fuel.2018.12.085
    [27] LUO Q X, GUO L P, YAO S Y, BAO J, LIU Z T, LIU Z W. Cobalt nanoparticles confined in carbon matrix for probing the size dependence in Fischer-Tropsch synthesis[J]. J Catal,2019,369:143−156. doi: 10.1016/j.jcat.2018.11.002
    [28] PEI Y, LI Z, LI Y. Highly active and selective Co-based Fischer-Tropsch catalysts derived from metal-organic frameworks[J]. AIChE J,2017,63(7):2935−2944. doi: 10.1002/aic.15677
    [29] ZHANG C, GUO X, YUAN Q, ZHANG R. CHANG Q, LI K, XIAO B, LIU S, MA C, LIU X, XU Y, WEN X, YANG Y, LI Y. Ethyne-reducing metal-organic frameworks to control fabrications of core/shell nanoparticles as catalysts[J]. ACS Catal,2018,8(8):7120−7130. doi: 10.1021/acscatal.8b01691
    [30] SUN X, OLIVOS-SUAREZ A I, MEIJERINK M, VAN DEELEN T, OULD-CHIKH S, ZECEVIC J, DE JONG K P, KAPTEIJN F, GASCON J. ́Manufacture of highly loaded silica-supported cobalt Fischer-Tropsch catalysts from a metal organic framework[J]. Nat Commun,2017,8(1):1680−1687. doi: 10.1038/s41467-017-01910-9
    [31] KAYE S S, DAILLY A, YAGHI O M, LONG J R. Impact of preparation and handling on the hydrogen storage properties of Zn4O(1, 4-benzenedicarboxylate)3 (MOF-5)[J]. J Am Chem Soc,2007,129(46):14176−14177. doi: 10.1021/ja076877g
    [32] JOHNSON G R, BELL A T. Role of ZrO2 in promoting the activity and selectivity of Co-based Fischer-Tropsch synthesis catalysts[J]. ACS Catal,2016,6(1):100−114. doi: 10.1021/acscatal.5b02205
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  169
  • HTML全文浏览量:  58
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-12
  • 修回日期:  2023-02-06
  • 录用日期:  2023-02-06
  • 网络出版日期:  2023-03-24
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回