留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镶嵌结构沥青焦的制备与表征:重相沥青中QI含量的影响

张春阳 朱亚明 徐允良 胡朝帅 赖仕全 高丽娟 赵雪飞

张春阳, 朱亚明, 徐允良, 胡朝帅, 赖仕全, 高丽娟, 赵雪飞. 镶嵌结构沥青焦的制备与表征:重相沥青中QI含量的影响[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2021057
引用本文: 张春阳, 朱亚明, 徐允良, 胡朝帅, 赖仕全, 高丽娟, 赵雪飞. 镶嵌结构沥青焦的制备与表征:重相沥青中QI含量的影响[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2021057
ZHANG Chun-yang, ZHU Ya-ming, XU Yun-liang, HU Chao-shuai, LAI Shi-quan, GAO Li-juan, ZHAO Xue-fei. Preparation and Characterization of Pitch-based Mosaic Coke from Heavy-Phase Coal Pitch: Effects of Quinoline Insoluble[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2021057
Citation: ZHANG Chun-yang, ZHU Ya-ming, XU Yun-liang, HU Chao-shuai, LAI Shi-quan, GAO Li-juan, ZHAO Xue-fei. Preparation and Characterization of Pitch-based Mosaic Coke from Heavy-Phase Coal Pitch: Effects of Quinoline Insoluble[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2021057

镶嵌结构沥青焦的制备与表征:重相沥青中QI含量的影响

doi: 10.19906/j.cnki.JFCT.2021057
基金项目: 国家自然科学基金(U1361126),辽宁省教育厅优秀青年科技人才项目(2020LNQN03),辽宁省自然科学基金(20180551218)和辽宁科技大学优秀人才培养项目(2018RC07)资助
详细信息
    作者简介:

    张春阳:2285444959@qq.com

    通讯作者:

    E-mail: zhuyaming0504@163.com

    zhao_xuefei@sohu.com

  • 中图分类号: TQ016.1

Preparation and Characterization of Pitch-based Mosaic Coke from Heavy-Phase Coal Pitch: Effects of Quinoline Insoluble

Funds: The project was supported by the National Natural Science Foundation of China (U1361126), Liaoning Provincial Department of Education Project (2020LNQN03), Natural Science Foundation of Liaoning Province (20180551218), Excellent Talent Training Project of University of Science and Technology Liaoning (2018RC07)
  • 摘要: 镶嵌结构沥青焦作为一种特种人造炭材料,是制备高品质各向同性石墨和核石墨的重要原料。镶嵌结构沥青焦的性质在很大程度上决定了其石墨制品的质量。为进一步明确重相沥青中QI含量对其镶嵌结构沥青焦的结构及性质的影响,本研究以九种QI含量迥异的重相沥青为原料,制备了系列镶嵌结构沥青焦。利用偏光显微镜、扫描电镜、XRD、Raman光谱及分峰拟合的方法对镶嵌结构焦的微观结构进行了判定,并对九种镶嵌结构沥青焦的显微强度进行了研究。结果表明,重相沥青中QI含量越高,在液相炭化过程中越有利于镶嵌结构的生成。并且,随着重相沥青QI含量的增加,镶嵌结构沥青焦中趋于规整碳微晶含量逐渐降低,无定型碳含量逐渐增加,强度越大。当重相沥青中QI含量超过7%时,制备的镶嵌结构沥青焦中镶嵌结构总含量(细粒镶嵌、中粒镶嵌和粗粒镶嵌)超过82%,显微强度超过85%。换言之,QI含量超过7%的重相沥青是生产优质镶嵌结构沥青焦的优选原料。
  • 图  1  重相沥青的制备过程

    Figure  1  Preparation process of heavy-phase pitch

    图  2  重相沥青的红外光谱谱图

    Figure  2  FT-IR spectra graph of heavy-phase pitch

    图  3  镶嵌结构沥青焦中六种典型偏光结构:(a)片状结构,(b)粗纤维结构,(c)细纤维结构,(d)粗粒镶嵌结构,(e)中粒镶嵌结构,和(f)西粒镶嵌结构

    Figure  3  Six kinds of typical optical structure in mosaic coke: (a) Leaflet structure, (b) coarse fibrous structure, (c) fine fibrous structure, (d) coarse mosaic structure, (e) medium mosaic structure, and (f) fine mosaic structure

    图  4  镶嵌结构沥青焦的XRD谱图(a)和AGDP-0.3-50%-C拟合谱图(b)

    Figure  4  XRD graph of mosaic cokes (a) and curve-fitted graph of AGDP-0.3-50%-C (b)

    图  5  镶嵌结构焦的Raman光谱谱图(a)和AGDP-0.3-50%-C的拟合谱图(b)

    Figure  5  Raman spectra of mosaic cokes (a) and curve-fitted graph of AGDP-0.3-50%-C (b)

    图  6  镶嵌结构沥青焦的SEM照片:(a)AGDP-0.3-50%-C,(b)AGDP-0.4-50%-C,(c)AGDP-0.5-50%-C,(d)AGDP-0.6-50%-C,(e)AGDP-0.7-50%-C,(f)AGDP-0.8-50%-C,(g)AGDP-0.8-60%-C,(h)AGDP-0.8-70%-C和(i)AGDP-0.8-80%-C

    Figure  6  SEM graphs of mosaic cokes: (a) AGDP-0.3-50%-C, (b) AGDP-0.4-50%-C, (c) AGDP-0.5-50%-C, (d) AGDP-0.6-50%-C, (e) AGDP-0.7-50%-C, (f) AGDP-0.8-50%-C, (g) AGDP-0.8-60%-C,(h) AGDP-0.8-70%-C and (i) AGDP-0.8-80%-C

    图  7  镶嵌结构沥青焦的显微强度

    Figure  7  Micro-strength of mosaic cokes

    表  1  重相沥青的工业分析

    Table  1  Proximate analysis of heavy-phase pitches

    SampleSP /℃TI /%QI /%CV /%
    AGDP-0.3-50%7820.314.9953.84
    AGDP-0.4-50%7922.507.0455.93
    AGDP-0.5-50%8025.677.0654.77
    AGDP-0.6-50%8224.187.2155.36
    AGDP-0.7-50%8223.726.1354.00
    AGDP-0.8-50%8625.906.6458.99
    AGDP-0.8-60%12031.559.7061.00
    AGDP-0.8-70%13037.2314.0264.49
    AGDP-0.8-80%15645.2120.2267.82
    下载: 导出CSV

    表  2  重相沥青的元素分析

    Table  2  Ultimate analysis of heavy-phase pitches

    SampleC /%H /%N /%S /%O* /%
    AGDP-0.3-50%92.214.091.080.751.87
    AGDP-0.4-50%93.23.910.860.571.46
    AGDP-0.5-50%93.253.880.910.541.42
    AGDP-0.6-50%93.013.951.010.591.44
    AGDP-0.7-50%93.034.031.120.621.2
    AGDP-0.8-50%92.764.061.001.171.01
    AGDP-0.8-60%91.903.601.020.942.54
    AGDP-0.8-70%91.823.641.030.792.72
    AGDP-0.8-80%91.813.230.950.783.23
    *: by difference
    下载: 导出CSV

    表  3  九种镶嵌结构沥青焦的光学显微结构分布

    Table  3  Distribution of optical micro-structure of 9 kinds of mosaic cokes

    SampleOptical microstructure /%
    LFcFfMcMmMf∑M*
    AGDP-0.3-50%-C24.002.503.5014.5016.0039.5070.00
    AGDP-0.4-50%-C15.190.630.6323.4219.6240.5183.55
    AGDP-0.5-50%-C13.940.001.9219.7123.0841.3584.14
    AGDP-0.6-50%-C12.930.684.0814.2925.1742.8582.31
    AGDP-0.7-50%-C26.711.431.4316.8616.4337.1470.43
    AGDP-0.8-50%-C25.811.072.1418.0411.2341.7170.98
    AGDP-0.8-60%-C20.120.612.4421.9516.4738.4176.83
    AGDP-0.8-70%-C11.941.000.5020.4021.8944.2786.56
    AGDP-0.8-80%-C11.411.040.3417.4124.8344.9787.21
    ∑M:Mc + Mm + Mf
    下载: 导出CSV

    表  4  镶嵌结构焦中炭微晶结构参数

    Table  4  Structural parameters of the microcrystalline structure in mosaic cokes

    Sampleγ /°π /°AγAπIg /%Lc /nmNn
    AGDP-0.3-50%-C21.6101825.58083743.273920.4684.061.786.1312.01
    AGDP-0.4-50%-C21.5234325.47738553.912665.3682.791.684.767.25
    AGDP-0.5-50%-C22.1867525.46421591.042874.0982.941.734.717.09
    AGDP-0.6-50%-C21.3819025.44661413.722140.8583.801.704.446.30
    AGDP-0.7-50%-C21.8518225.5768433.772476.1785.091.766.0211.61
    AGDP-0.8-50%-C21.7716525.54868547.422964.7284.411.775.7510.57
    AGDP-0.8-60%-C21.8599625.43312842.343380.2180.051.754.406.20
    AGDP-0.8-70%-C21.3862025.38444548.102816.6183.711.723.804.61
    AGDP-0.8-80%-C21.3101225.41089517.702672.6583.771.694.045.23
    下载: 导出CSV

    表  5  镶嵌结构焦的分峰拟合数据

    Table  5  Curve-fitting data of mosaic cokes

    SampleIntegrate areaRatio /%
    ID1ID2ID3ID4IGIG/IAllID3/IAll
    AGDP-0.3-50%-C 241513.7 29201.65 35629.39 41520.8 40177.34 10.35 9.18
    AGDP-0.4-50%-C 541957.9 61585.15 88291.38 114910 81506.39 9.18 9.94
    AGDP-0.5-50%-C 365501.6 41021.28 57707.57 88800.16 53698.82 8.85 9.51
    AGDP-0.6-50%-C 274546.2 36099.4 45174.6 58339.46 39870.09 8.78 9.95
    AGDP-0.7-50%-C 615535.8 63206.43 95462.96 162349.3 113947.1 10.85 9.09
    AGDP-0.8-50%-C 419794.9 41435.38 64913.62 109506 69256.43 9.82 9.21
    AGDP-0.8-60%-C 406857.8 50986.83 65061.17 96048.75 56192.3 8.32 9.64
    AGDP-0.8-70%-C 503672.7 54928.00 78977.61 103660.2 66017.56 8.18 9.78
    AGDP-0.8-80%-C 328627.9 46658.08 54453.43 81594.12 41748.72 7.55 9.85
    下载: 导出CSV
  • [1] HOSSEINI M S CHARTRAND P. Thermodynamics and phase relationship of carbonaceous mesophase appearing during coal tar pitch carbonization[J]. Fuel,2020,275:117899. doi: 10.1016/j.fuel.2020.117899
    [2] ZHANG X W, MA Z K, MENG Y C, XIAO M, FAN B L, SONG H H, YIN Y Z. Effects of the addition of conductive graphene on the preparation of mesophase from refined coal tar pitch[J]. J Anal Appl Pyrolysis,2019,140:274−280. doi: 10.1016/j.jaap.2019.04.004
    [3] YUAN M, CAO B, MENG C Y, ZUO H M, LI A, MA Z K, CHEN X H, SONG H H. Preparation of pitch-based carbon microbeads by a simultaneous spheroidization and stabilization process for lithium-ion batteries[J]. Chem Eng J,2020,400:125948. doi: 10.1016/j.cej.2020.125948
    [4] DONG Y, ZHU J Y, LI Q Q, ZHANG S, SONG H H, JIA D Z. Carbon materials for high mass loading supercapacitors: filling the gap between new materials and practical applications[J]. J Mater Chem A,2020,8:21930−21946. doi: 10.1039/D0TA08265A
    [5] HU H, WU M B. Heavy oil-derived carbon for energy storage applications[J]. J Mater Chem A,2020,8(15):7066−7082. doi: 10.1039/D0TA00095G
    [6] LI L, LIN X C, HE J, ZHANG Y K, LV J X, WANG Y G. Preparation of mesocarbon microbeads from coal tar pitch with blending of biomass tar pitch[J]. J Anal Appl Pyrolysis,2021,155:105039. doi: 10.1016/j.jaap.2021.105039
    [7] YANG X, WANG X, TSANG D K L. The effect of thermal oxidation on the coefficient of thermal expansion of nuclear graphite[J]. J Mater Sci,2020,55:7805−7815. doi: 10.1007/s10853-020-04577-8
    [8] NIU H, ZUO P, SHEN W, QU S. Evaluating multi: tep oxidative stabilization behavior of coal tar pitch-based fiber[J]. J Appl Polym Sci,2020,e50002.
    [9] 林雄超, 盛喆, 邵苛苛, 许德平, 王永刚. 煤焦油沥青族组成对针状焦中间相结构的影响[J]. 燃料化学学报,2021,49(2):151−159.

    LIN Xiong-chao, SHENG Zhe, SHAO Ke-ke, XU De-ping, WANG Yong-gang. Influence of group component distribution of coal tar pitch on mesophase structure development of needle coke[J]. J Fuel Chem Technol,2021,49(2):151−159.
    [10] ZHU Y M, HU C S, ZHAO C L, XU Y L, GAO L J, ZHAO X F. Thermal conversion behavior of medium-low-temperature coal tar pitch during liquid-phase carbonization process[J]. ChemistrySelect,2019,4:11886−11892. doi: 10.1002/slct.201902397
    [11] ZHU Y M, ZHAO X F, YUAN J, ZHAO C L, HU C S. Changes in structure of coal liquefied pitch during liquid-phase carbonization process[J]. Carbon Lett,2019,29(1):37−45. doi: 10.1007/s42823-019-00016-0
    [12] GAO F, ZANG Y H, WANG Y, GUAN C Q, QU J Y, WU M B. A review of the synthesis of carbon materials for energy storage from biomass and coal/heavy oil waste[J]. New Carbon Mater,2021,36(1):34−48. doi: 10.1016/S1872-5805(21)60003-3
    [13] 许蕾, 王相君, 杨桃, 池永庆, 宋燕, 宋怀河, 刘占军. 高温煤沥青不同组分中间相形成过程[J]. 新型炭材料,2020,35(5):599−608.

    XU Lei, WANG Xiang-jun, YANG Tao, CHI Yong-qing, SONG Yan, SONG Huai-he, LIU Zhan-jun. Formation of mesophase from the components of high temperature coal tar pitch[J]. New Carbon Mater,2020,35(5):599−608.
    [14] ZHU Y M, SUN S S, XU Y L, ZHAO C L, HU C S, CHENG J X, ZHAO X F. Preparation and characterization of pitch coke from oxidized polymerized pitch[J]. Asia-Pac J Chem Eng,2020,e2497.
    [15] 方登科, 杨栋梁, 杨侨, 李轩科. 以石油焦和高温煤沥青制备各向同性石墨材料的研究[J]. 武汉科技大学学报,2012,35(4):298−303.

    FANG Deng-ke, YANG Dong-liang, YANG Qiao, LI Xuan-ke. Preparation of isotropic graphite from petroleum coke and high-temperature coal tar pitch[J]. J Wuhan Univ Technol,2012,35(4):298−303.
    [16] MOSKALEV I V, KISELKOV D M, ABATUROV A L. Formation of isotropic coke microstructure. 1. Production of isotropic coke from mixtures of the anthracene fraction and coal pitch[J]. Coke Chem,2021,63(10):481−494.
    [17] ABATUROV A L, MOSKALEV I V, KISELKOV D M, STRELNIKOV V N. Production of isotropic coke from shale: Microstructure of coke from the thermally oxidized distillation residue of shale tar[J]. Coke Chem,2018,61(11):433−446. doi: 10.3103/S1068364X18110029
    [18] 袁观明, 薛政, 崔正威, 董志军, 李轩科, 张中伟, 王俊山. 高定向石墨块的控制制备及其导热性能影响因素研究[J]. 无机材料学报,2017,32(6):587−595. doi: 10.15541/jim20160480

    YUAN Guan-ming, XUE Zheng, CUI Zheng-wei, DONG Zhi-jun, LI Xuan-ke, ZHANG Zhong-wei, WANG Jun-shan. Controlled preparation and thermal conductivity of highly oriented graphite blocks[J]. J Inorg Mater,2017,32(6):587−595. doi: 10.15541/jim20160480
    [19] THEODOSIOU A, JONES A N, BURTON D, POWELL M, ROGERS M, LIVESEY V B. The complete oxidation of nuclear graphite waste via thermal treatment: An alternative to geological disposal[J]. J Nucl Mater,2018,507:208−217. doi: 10.1016/j.jnucmat.2018.05.002
    [20] ZHU Y M, XU Y L, HU C S, YIN X T, ZHAO C L, GAO L J, ZHAO X F. Preparation and characterization of mosaic coke from heavy-phase coal pitch[J]. Asia-Pac J Chem Eng,2019,e2369.
    [21] ZHU Y M, ZHAO C L, XU Y L, HU C S, ZHAO X F. Preparation and characterization of coal pitch-based needle coke (Part I): the effects of aromatic index (F(A)) in refined coal pitch[J]. Energy Fuels,2019,33:3456−3464. doi: 10.1021/acs.energyfuels.9b00160
    [22] ZHU Y M, HU C S, XU Y L, ZHAO C L, YIN X T, ZHAO X F. Preparation and characterization of coal pitch-based needle coke (Part II): the effects of β resin in refined coal pitch[J]. Energy Fuels,2020,34:2126−2134. doi: 10.1021/acs.energyfuels.9b03406
    [23] ZHU Y M, LIU H M, XU Y L, HU C S, ZHAO C L, CHENG J X, CHEN X X, ZHAO X F. Preparation and characterization of coal pitch based needle coke (Part III): The effects of quinoline insoluble in coal tar pitch[J]. Energy Fuels,2020,34(7):8676−8684. doi: 10.1021/acs.energyfuels.0c01049
    [24] YANG Y S, WANG C Y, CHEN M M, ZHENG J M. The role of primary quinoline insoluble on the formation of mesocarbon microbeads[J]. Fuel Process Technol,2010,92(1):154−157.
    [25] PETROVA B, TSYNTSARSKI B, BUIDINOVA T, PETROV N, ANIA C O, PARRA J B, MLADENOV M, TZVETKOV P. Synthesis of nanoporous carbons from mixtures of coal tar pitch and furfural and their application as electrode materials[J]. Fuel Process Technol,2010,91:1710−1716. doi: 10.1016/j.fuproc.2010.07.008
    [26] HE X Q, LIU X F, NIE B S, SONG D Z. FTIR and Raman Spectroscopy characterization of functional groups in various rank coals[J]. Fuel,2017,206:555−563. doi: 10.1016/j.fuel.2017.05.101
    [27] ZHU Y M, TANG S, ZHAO X F, GAO L J. Co-carbonization of single coking coal and pyrolytic extracts from datong long-flame coal[J]. Metall Res Technol,2019,116(1):115. doi: 10.1051/metal/2018049
    [28] ZHU Y M, ZHAO X F, GAO L J, LV J, CHENG J X, LAI S Q. Study on the pyrolysis characteristic and the microstructure of the pyrolysis products of β resins from different coal tar pitch[J]. J Chem Soc Pak,2018,40:343−353.
    [29] HE X Q, LIU X F, NIE B S, SONG D Z. FTIR and raman spectroscopy characterization of functional groups in various rank coals[J]. Fuel,2017,206:555−563. doi: 10.1016/j.fuel.2017.05.101
    [30] 王成扬, 陈明鸣, 李明伟. 沥青基炭材料[M]. 北京: 化学工业出版社, 2018.

    WANG Cheng-yang, CHEN Ming-ming, LI Ming-wei. Pitch-Based Carbon Materials[M]. Beijing: Chemical Industry Press, 2018.
    [31] 李磊, 林雄超, 刘哲, 张玉坤, 寇世博, 王永刚. 煤系针状焦偏光显微结构的识别及定量分析[J]. 燃料化学学报,2021,49(3):265−273.

    LI Lei, LIN Xiong-chao, LIU Zhe, ZHANG Yu-kun, KOU Shi-bo, WANG Yong-gang. Identification and quantitative analysis of polarized light microstructure of coal-derived needle coke[J]. J Fuel Chem Technol,2021,49(3):265−273.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  63
  • HTML全文浏览量:  24
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-26
  • 修回日期:  2021-04-20
  • 网络出版日期:  2021-06-09

目录

    /

    返回文章
    返回