留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用拉曼光谱研究大柳塔煤热解焦结构及其燃烧性能

徐艳梅 潘志彦 胡浩权

徐艳梅, 潘志彦, 胡浩权. 利用拉曼光谱研究大柳塔煤热解焦结构及其燃烧性能[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2021059
引用本文: 徐艳梅, 潘志彦, 胡浩权. 利用拉曼光谱研究大柳塔煤热解焦结构及其燃烧性能[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2021059
XU Yan-mei, PAN Zhi-yan, HU Hao-quan. Study on structure and combustion performance of Daliuta coal pyrolysis char by Raman spectroscopy[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2021059
Citation: XU Yan-mei, PAN Zhi-yan, HU Hao-quan. Study on structure and combustion performance of Daliuta coal pyrolysis char by Raman spectroscopy[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2021059

利用拉曼光谱研究大柳塔煤热解焦结构及其燃烧性能

doi: 10.19906/j.cnki.JFCT.2021059
基金项目: 国家重点研发计划(2016YFB0600301)资助
详细信息
    作者简介:

    徐艳梅:xuyanmei1004@qq.com

    通讯作者:

    Tel:0571-88320061,E-mail:panzhiyan@zjut.edu.cn

  • 中图分类号: TQ530.2

Study on structure and combustion performance of Daliuta coal pyrolysis char by Raman spectroscopy

Funds: The project was supported by the National Key R&D Program of China (2016YFB0600301)
  • 摘要: 以大柳塔煤为研究对象,利用拉曼光谱研究了大柳塔原煤、富镜质组煤样、富惰质组煤样和脱矿煤样的热解焦结构以及热解煤焦的燃烧性能。结果表明,相同热解条件下,相比于大柳塔原煤样热解焦,脱矿煤样热解焦具有更多的大芳香环结构(≥ 6环)、更高的着火温度和更低的燃烧性能;相比于富镜质组煤样热解焦,富惰质组煤样热解焦的大芳香环结构含量更高,燃烧性能更低,且富惰质组煤焦的燃尽能力明显低于富镜质组煤焦的燃尽能力。大柳塔煤焦的着火温度(ti)、燃烧反应性指数(tindex)和拉曼光谱D峰的位移(WD)具有较好的相关性,二次曲线拟合得到关联式的相关系数R2分别为0.9159和0.7133,但燃尽温度和WD无明显相关性,说明大柳塔煤焦的碳结构对煤焦的着火温度和燃烧反应性指数具有规律性的影响,但对煤焦燃尽能力的影响没有规律性。
  • 图  1  煤焦拉曼光谱曲线拟合图

    Figure  1  An example of curve-fitting for a Raman spectrum of char

    图  2  DLT煤样的TG-DTG曲线

    Figure  2  TG-DTG curves of DLT coals

    (a): air dried basis; (b): demineralized basis by calculated

    图  3  大柳塔及其富显微组分煤样红外光谱谱图

    Figure  3  FT-IR spectra of DLT raw coal and macerals-rich coal samples

    图  4  大柳塔原煤及富显微组分煤样的拉曼光谱谱图

    Figure  4  Raman spectra of DLT raw coal and macerals-rich coal samples

    图  5  DLT-R不同温度下热解煤焦的(a)红外光谱谱图和(b)拉曼光谱谱图

    Figure  5  Spectra of chars obtain from DLT-R under different temperatures: (a): FT-IR spectra; (b): Raman spectra

    图  6  DLT-R和DLT-D热解煤焦的拉曼光谱特征参数

    Figure  6  Raman spectra characteristic parameters of the chars from DLT-R and DLT-D pyrolysis

    (a): WD; (b): A(GR + VR + VL)/AD; (c): AD/Aall; (d): AD/AG

    图  7  DLT-V和DLT-I热解煤焦的拉曼光谱特征参数

    Figure  7  Raman spectra characteristic parameters of the chars from the DLT-V and DLT-I pyrolysis

    (a): WD; (b): A(GR + VR + VL)/AD; (c): AD/Aall; (d): AD/AG

    图  8  DLT-R煤焦燃烧 (a) TG和 (b) DTG曲线

    Figure  8  Curves of DLT-R chars combustion

    图  9  燃烧特征参数(titbtmaxtindex)随热解温度的变化

    Figure  9  Change of combustion characteristic parameters (ti, tb, tmax, tindex) of chars with pyrolysis temperature

    (a): DLT-R chars; (b): DLT-D chars

    图  10  燃烧特征参数(titbtmaxtindex)随热解温度的变化

    Figure  10  Change of combustion characteristic parameters (ti, tb, tmax, tindex) of chars with pyrolysis temperature

    (a): DLT-V chars; (b): DLT-I chars

    图  11  大柳塔煤焦燃烧性能参数(a) ti、(b) tindex、(c) tb和拉曼特征参数WD的相关性

    Figure  11  Correlation between the DLT chars reactivity parameters (a) ti, (b) tindex, (c) tb and WD

    表  1  煤样的显微组分含量

    Table  1  Vitrinite, inertinite and liptinite groups content in coal samples

    SampleDemineralized basis φ/%
    VitriniteInertiniteLiptinite
    DLT-R62.836.21.0
    DLT-V93.05.81.2
    DLT-I35.763.60.7
    下载: 导出CSV

    表  2  煤样的工业分析和元素分析

    Table  2  Proximate and ultimate analyses of coal samples

    SampleProximate analysis w/%Ultimate analysis wdaf/%H/CbO/Cb
    MadAdVdafCHNSOa
    DLT-R2.4413.1435.7279.534.760.920.2314.560.720.14
    DLT-D1.930.9435.0076.064.930.920.4617.630.780.17
    DLT-V2.332.6440.0478.535.631.100.1914.550.860.14
    DLT-I2.574.4130.6080.334.450.890.5413.790.660.13
    Mad: moisture of air-dried coal sample; Ad: ash content of dry-based coal sample; Vdaf: volatile matter of dry ash-free coal sample. a: by difference; b: atomic ratio
    下载: 导出CSV

    表  3  大柳塔原煤及富显微组分煤样的拉曼光谱参数

    Table  3  Raman spectrum parameters of DLT raw coal and macerals-rich coal samples

    SampleWD /cm–1WG /cm–1A(GR + VR + VL)/ADAD/AGFWHM-G /cm–1
    DLT-R1360.25(1.71)1590.63(1.41)0.85(0.04)1.35(0.05)89.11(1.72)
    DLT-D1361.00(1.50)1590.25(1.09)0.83(0.03)1.45(0.06)86.52(1.27)
    DLT-V1366.45(1.72)1590.91(1.83)0.90(0.01)1.21(0.03)89.84(1.76)
    DLT-I1361.60(2.58)1592.50(1.20)0.80(0.03)1.42(0.06)80.15(2.54)
    in this experiment, each sample was tested 10 times, the table is the average value of 10 tests, and the value in brackets is the standard deviation value of the 10 tests
    下载: 导出CSV
  • [1] ZHU J L, JIN L J, LUO Y W, HU H Q, XIONG Y K, WEI B Y, WANG D C. Fast co-pyrolysis of a massive naomaohu coal and cedar mixture using rapid infrared heating[J]. Energy Convers Manage,2020,205:112442. doi: 10.1016/j.enconman.2019.112442
    [2] REDDY B R, SHRAVANI B, DAS B, DASH P S, VINU R. Microwave-assisted and analytical pyrolysis of coking and non-coking coals: Comparison of tar and char compositions[J]. J Anal Appl Pyrolysis,2019,142:104614. doi: 10.1016/j.jaap.2019.05.003
    [3] YAN J C, LIU M X, FENG Z H, BAI Z Q, SHUI H F, LI Z K, LEI Z P, WANG Z C, REN S B, KANG S G, YAN H L. Study on the pyrolysis kinetics of low-medium rank coals with distributed activation energy model[J]. Fuel,2020,261:116359. doi: 10.1016/j.fuel.2019.116359
    [4] ZHAO Y P, HU H Q, JIN L J, HE X F, WU B. Pyrolysis behavior of vitrinite and inertinite from Chinese pingshuo coal by TG-MS and in a fixed bed reactor[J]. Fuel Process Technol,2011,92(4):780−786. doi: 10.1016/j.fuproc.2010.09.005
    [5] ROBERTS M J, EVERSON R C, NEOMAGUS H W J P, OKOLO G N, VAN NIEKERK D, MATHEWS J P. The characterisation of slow-heated inertinite- and vitrinite-rich coals from the South African coalfields[J]. Fuel,2015,158:591−601. doi: 10.1016/j.fuel.2015.06.006
    [6] SUN Q L, LI W, CHEN H K, LI B Q. The variation of structural characteristics of macerals during pyrolysis[J]. Fuel,2003,82(6):669−676. doi: 10.1016/S0016-2361(02)00356-3
    [7] WANG Y, SERRANO S, SANTIAGO-AVILES J J. Raman characterization of carbon nanofibers prepared using electrospinning[J]. Synth Met,2003,138(3):423−427. doi: 10.1016/S0379-6779(02)00472-1
    [8] CHEN H, GOLDER M R, WANG F, JASTI R, SWAN A K. Raman spectroscopy of carbon nanohoops[J]. Carbon,2014,67:203−213. doi: 10.1016/j.carbon.2013.09.082
    [9] SADEZKY A, MUCKENHUBER H, GROTHE H, NIESSNER R, PÖSCHL U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information[J]. Carbon,2005,43(8):1731−1742. doi: 10.1016/j.carbon.2005.02.018
    [10] 徐俊. 基于拉曼光谱分析的煤和煤焦结构与反应性研究[D]. 武汉: 华中科技大学, 2017.

    XU Jun. A study of the coal/char structures and combustion reactivity using Raman spectroscopy[D]. Wuhan: Huazhong University of Science and Technology, 2017.
    [11] POTGIETER-VERMAAK S, MALEDI N, WAGNER N, VAN HEERDEN J H P, VAN GRIEKEN R, POTGIETER J H. Raman spectroscopy for the analysis of coal: A review[J]. J Raman Spectrosc,2011,42(2):123−129. doi: 10.1002/jrs.2636
    [12] XU Y M, CHEN X, WANG L, BEI K, WANG J, CHOU I M, PAN Z Y. Progress of Raman spectroscopic investigations on the structure and properties of coal[J]. J Raman Spectrosc,2020,51:1874−1884. doi: 10.1002/jrs.5826
    [13] XU Y M, FU Q Y, HONG Y M, ZHANG Y, WANG L, BEI K, CHOU I M, HU H Q, PAN Z Y. Effects of vitrinite in low-rank coal on the structure and combustion ractivity of pyrolysis chars[J]. ACS Omega,2020,5(28):17314−17323. doi: 10.1021/acsomega.0c01542
    [14] GONG X Z, GUO Z C, WANG Z. Variation of char structure during anthracite pyrolysis catalyzed by Fe2O3 and its influence on char combustion reactivity[J]. Energy Fuels,2009,23(9):4547−4552. doi: 10.1021/ef900550w
    [15] LI X J, HAYASHI J, LI C Z. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a victorian brown coal[J]. Fuel,2006,85(12/13):1700−1707. doi: 10.1016/j.fuel.2006.03.008
    [16] 赵慧明, 贾挺豪, 王美君, 鲍卫仁, 常丽萍. 昭通褐煤的热解提质及其对气化反应性能的影响[J]. 燃料化学学报,2016,44(8):904−910. doi: 10.3969/j.issn.0253-2409.2016.08.002

    ZHAO Hui-ming, JIA Ting-hao, WANG Mei-jun, BAO Wei-ren, CHANG Li-ping. Upgrading of Zhaotong coal by pyrolysis and its effect on the gasification reactivity[J]. J Fuel Chem Technol,2016,44(8):904−910. doi: 10.3969/j.issn.0253-2409.2016.08.002
    [17] LIU X F, YOU J L, WANG Y Y, LU L M, XIE Y F, YU L W, FU Q. Raman spectroscopic study on the pyrolysis of australian bituminous coal[J]. J Fuel Chem Technol,2014,42(3):270−276. doi: 10.1016/S1872-5813(14)60019-0
    [18] XU S P, ZENG X, HAN Z N, CHENG J G, WU R C, CHEN Z H, MASĔK O, FAN X F, XU G W. Quick pyrolysis of a massive coal sample via rapid infrared heating[J]. Appl Energy,2019,242:732−740. doi: 10.1016/j.apenergy.2019.03.079
    [19] WANG G J, HOU B L, ZHANG J, WANG H, GAO D Y, CHANG G Z, THALLADA B. Effect of pressure and H2 on the pyrolysis characteristics of lignite: Thermal behavior and coal char structural properties[J]. J Anal Appl Pyrolysis,2018,135:1−9. doi: 10.1016/j.jaap.2018.10.003
    [20] FAN C, YAN J W, HUANG Y R, HAN X X, JIANG X M. XRD and TG-FTIR study of the effect of mineral matrix on the pyrolysis and combustion of organic matter in shale char[J]. Fuel,2015,139:502−510. doi: 10.1016/j.fuel.2014.09.021
    [21] 余晓露, 白帆, 李志明. 衰减全反射-显微傅立叶变换红外光谱原位分析煤有机显微组分[J]. 石油实验地质,2012,34(6):664−670. doi: 10.11781/sysydz201206664

    YU Xiao-lu, BAI Fan, LI Zhi-ming. Application of attenuated total reflectance-micro-Fourier transform infrared (ATR-FTIR) spectroscopy to in situ study of coal macerals[J]. Pet Geol Exp,2012,34(6):664−670. doi: 10.11781/sysydz201206664
    [22] TIRONI A, TREZZA M A, SCIAN A N, IRASSAR E F. Kaolinitic calcined clays: Factors affecting its performance as pozzolans[J]. Constr Build Mater,2012,28(1):276−281. doi: 10.1016/j.conbuildmat.2011.08.064
    [23] OBOIRIEN B O, ENGELBRECHT A D, NORTH B C, DU CANN V M, VERRYN S, FALCON R. Study on the structure and gasification characteristics of selected south african bituminous coals in fluidised bed gasification[J]. Fuel Process Technol,2011,92(4):735−742. doi: 10.1016/j.fuproc.2010.08.013
    [24] ZHANG L, LI T T, QUYN D, DONG L, QIU P H, LI C Z. Structural transformation of nascent char during the fast pyrolysis of mallee wood and low-rank coals[J]. Fuel Process Technol,2015,138:390−396. doi: 10.1016/j.fuproc.2015.05.003
    [25] ZHANG L, KAJITANI S, UMEMOTO S, WANG S, QUYN D, SONG Y, LI T T, ZHANG S, DONG L, LI C Z. Changes in nascent char structure during the gasification of low-rank coals in CO2[J]. Fuel,2015,158:711−718. doi: 10.1016/j.fuel.2015.06.014
    [26] SHARMA A, MATSUMURA A. A comparative study on demineralization of coals by acid-washing and solvent-extraction methods for low temperature catalytic coal gasification application[J]. Carbon Resour Convers,2019,2(3):175−181. doi: 10.1016/j.crcon.2019.09.001
    [27] WANG M F, WANG J J, TAO S, TANG D, WANG C, YI J. Quantitative characterization of void and demineralization effect in coal based on dual-resolution X-ray computed tomography[J]. Fuel,2020,267:116836. doi: 10.1016/j.fuel.2019.116836
    [28] LIU J X, JIANG X M, HAN X X, SHEN J, ZHANG H. Chemical properties of superfine pulverized coals. Part 2. demineralization effects on free radical characteristics[J]. Fuel,2014,115:685−696. doi: 10.1016/j.fuel.2013.07.099
    [29] 何选明. 煤化学[M]. 2版. 北京: 冶金工业出版社, 2014.

    HE Xuan-ming. Coal Chemistry[M]. 2nd ed. Beijing: Metallurgical Industry Press, 2014.
    [30] 毛宁, 王强, 杨妍, 徐敦信, 冯炜, 张金鹏, 白红存, 郭庆杰. 基于显微组分化学键特征的宁夏庆华煤热解特性及动力学分析[J]. 化工学报,2020,71(2):811−820.

    MAO Ning, WANG Qiang, YANG Yan, XU Dun-xin, FENG Wei, ZHANG Jin-peng, BAI Hong-cun, GUO Qing-jie. Pyrolysis characteristics and kinetics analysis of Qinghua coal, Ningxia based on chemical bonding characteristics of macerals[J]. CIESC J,2020,71(2):811−820.
    [31] XU J L, BAI Z Q, BAI J, KONG L X, LV D M, HAN Y N, DAI X, LI W. Physico-chemical structure and combustion properties of chars derived from co-pyrolysis of lignite with direct coal liquefaction residue[J]. Fuel,2017,187:103−110. doi: 10.1016/j.fuel.2016.09.028
    [32] MENG F R, YU J L, TAHMASEBI A, HAN Y N. Pyrolysis and combustion behavior of coal gangue in O2/CO2 and O2/N2 mixtures using thermogravimetric analysis and a drop tube furnace[J]. Energy Fuels,2013,27(6):2923−2932. doi: 10.1021/ef400411w
    [33] XU J, TANG H, SU S, LIU J W, XU K, QIAN K, WANG Y, ZHOU Y B, HU S, ZHANG A C, XIANG J. A study of the relationships between coal structures and combustion characteristics: The insights from micro-Raman spectroscopy based on 32 kinds of Chinese coals[J]. Appl Energy,2018,212:46−56. doi: 10.1016/j.apenergy.2017.11.094
    [34] 赵云鹏, 胡浩权, 靳立军, 魏贤勇. 矿物质对不同还原程度煤显微组分半焦燃烧特性影响[J]. 化工学报,2019,70(8):2946−2953.

    ZHAO Yun-peng, HU Hao-quan, JIN Li-jun, WEI Xian-yong. Effect of minerals on semi-coke combustion characteristics of maceral with different reducibility[J]. CIESC J,2019,70(8):2946−2953.
    [35] ZHANG H, PU W X, HA S, LI Y, SUN M. The influence of included minerals on the intrinsic reactivity of chars prepared at 900 °C in a drop tube furnace and a muffle furnace[J]. Fuel,2009,88(11):2303−2310. doi: 10.1016/j.fuel.2009.05.014
    [36] SONG Y M, FENG W, LI N, LI Y, ZHI K D, TENG Y Y, HE R X, ZHOU H C, LIU Q S. Effects of demineralization on the structure and combustion properties of Shengli lignite[J]. Fuel,2016,183:659−667. doi: 10.1016/j.fuel.2016.06.109
    [37] HILLIG D M, POHLMANN J G, MANERA C, PERONDI D, PEREIRA F M, ALTAFINI C R, GODINHO M. Evaluation of the structural changes of a char produced by slow pyrolysis of biomass and of a high-ash coal during its combustion and their role in the reactivity and flue gas emissions[J]. Energy,2020,202:117793. doi: 10.1016/j.energy.2020.117793
    [38] HINRICHS R, BROWN M T, VASCONCELLOS M A Z, ABRASHEV M V, KALKREUTH W. Simple procedure for an estimation of the coal rank using micro-Raman spectroscopy[J]. Int J Coal Geol,2014,136:52−58. doi: 10.1016/j.coal.2014.10.013
    [39] LÜNSDORF N K. Raman spectroscopy of dispersed vitrinite -Methodical aspects and correlation with reflectance[J]. Int J Coal Geol,2016,153:75−86. doi: 10.1016/j.coal.2015.11.010
    [40] MA C, ZOU C, ZHAO J X, HE J Y, ZHANG X R. Combustion behavior of chars derived from coal pyrolysis under a CO-containing atmosphere[J]. Thermochim Acta,2020,688:178576.
    [41] HAN Y N, LIAO J J, BAI Z Q, BAI J, LI X, LI W. Correlation between the combustion behavior of brown coal char and its aromaticity and pore structure[J]. Energy Fuels,2016,30(4):3419−3427. doi: 10.1021/acs.energyfuels.5b02755
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  11
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-01
  • 修回日期:  2021-05-06
  • 网络出版日期:  2021-06-16

目录

    /

    返回文章
    返回