留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

载体对Au/BN催化剂苯甲醇选择性氧化性能的影响

畅通 马瑞婧 宋昌

畅通, 马瑞婧, 宋昌. 载体对Au/BN催化剂苯甲醇选择性氧化性能的影响[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2021060
引用本文: 畅通, 马瑞婧, 宋昌. 载体对Au/BN催化剂苯甲醇选择性氧化性能的影响[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2021060
CHANG Tong, MA Rui-jing, SONG Chang. Effect of support factors on the selective catalytic oxidation of benzyl alcohol over Au/BN catalyst[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2021060
Citation: CHANG Tong, MA Rui-jing, SONG Chang. Effect of support factors on the selective catalytic oxidation of benzyl alcohol over Au/BN catalyst[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2021060

载体对Au/BN催化剂苯甲醇选择性氧化性能的影响

doi: 10.19906/j.cnki.JFCT.2021060
基金项目: 山西省教育厅高校科技创新项目(No. 2020L0561)和运城学院(QZX-2019006)资助
详细信息
    作者简介:

    畅通:changtongct@163.com

    通讯作者:

    Tel: 0351-4084072 Email: songchang@sxicc.ac.cn

  • 中图分类号: TQ530.2

Effect of support factors on the selective catalytic oxidation of benzyl alcohol over Au/BN catalyst

Funds: The project was supported by the research funding of Shanxi Provincial Education Department (No.2020L0561) and Yuncheng University (QZX-2019006)
More Information
  • 摘要: 伯醇的选择性氧化是重要的有机合成反应,所得醛是药物、香料等精细化工品的重要中间体。利用空气中的氧分子,气相催化氧化制取醛具有连续、高效、无溶剂、绿色易分离的特点,是近年来学术界和工业界共同关心的话题。类石墨结构的氮化硼是近年发展起来的新型催化剂,具有稳定性高、导热性能好的特点。本文以三种不同结构特点的氮化硼(BN)充当载体,负载Au纳米颗粒进行苯甲醇选择性氧化反应,发现载体的结晶性、比表面积对活性相Au的尺寸具有显著影响。Au/BN500的比表面积是晶化程度高的Au/BN600、Au/BN700催化剂的四倍以上。相较于Au/BN700而言,Au/BN500催化剂Au纳米颗粒具有更好的分散性以及更小的粒径(13 vs. 3.2 nm),且Au/BN500的活性是其他催化剂的两倍,但其催化活性在5小时以内有30%左右的流失。本文的实验结果对理性设计和发展新型高性能氮化硼基氧化脱氢催化剂提供一定的实验参考和理论借鉴。
  • 图  1  所得三种BN基催化剂的X射线粉末衍射花样,自上到下分别为Au/BN500,Au/BN600以及Au/BN700,底部为标准卡片JCPDS No. 34-0421(hBN),45-1171(rBN)以及04-0784(Au)

    Figure  1  The X-ray powder diffraction patterns of the Au/BN500, Au/BN600 and Au/BN700, referenced by the standard cards JCPDS No. of 34-0421(hBN), 45-1171(rBN) and 04-0784 (Au)

    图  2  三种催化剂的形态结构

    Figure  2  The transmission electron microscopy characterizations of three catalysts

    (a, b): Au/BN500, Au/BN600 (c, d): Au/BN700 (e, f): The low-magnification and high-magnification electron spectroscopies are shown in left and right column, respectively,the illustration of figures b、d and f show the statistical distribution of particle size

    图  3  所得三种催化剂的N2气吸附等温曲线

    Figure  3  The N2 gas adsorption isotherms of three as-prepared catalysts

    (a–c): from the top are Au/BN500, Au/BN600, Au/BN700, respectively

    图  4  三种Au/BN催化剂以模拟空气为氧化剂,选择性催化氧化苯甲醇制备苯甲醛

    Figure  4  The catalytic performance of three Au/BN catalysts in selective oxidization of benzyl alcohol to synthesize benzaldehyde

    From top to bottom (■): Au/BN500, (●): Au/BN600, (▲): Au/BN700, where the black dotted line represents conversion rate and blue dotted line denotes selectivity as function of time

  • [1] DELLA PINA C, FALLETTA E, PRATI L, ROSSI M. Selective oxidation using gold[J]. Chem Soc Rev,2008,37(9):2077−2095. doi: 10.1039/b707319b
    [2] CHEN J, ZHANG Q H, WANG Y, WAN H L. Size-dependent catalytic activity of supported palladium nanoparticles for aerobic oxidation of alcohols[J]. Adv Synth Catal,2008,350(3):453−464. doi: 10.1002/adsc.200700350
    [3] RODRIGUEZ-GOMEZ A, HOLGADO J P, CABALLERO A. cobalt carbide identified as catalytic site for the dehydrogenation of ethanol to acetaldehyde[J]. ACS Catal,2017,7(8):5243−5247. doi: 10.1021/acscatal.7b01348
    [4] ADNAN R H, GOLOVKO V B. Benzyl alcohol oxidation using gold catalysts derived from Au- clusters on TiO2[J]. Catalysis Letters,2019,149(2):449−455. doi: 10.1007/s10562-018-2625-8
    [5] DIMITRATOS N, LOPEZ-SANCHEZ J A, MORGAN D, et al. Solvent free liquid phase oxidation of benzyl alcohol using Au supported catalysts prepared using a sol immobilization technique[J]. Catalysis Today,2007,122(3/4):317−324.
    [6] CHEN Y, WANG H, LIU C J, et al. Formation of monometallic Au and Pd and bimetallic Au-Pd nanoparticles confined in mesopores via Ar glow-discharge plasma reduction and their catalytic applications in aerobic oxidation of benzyl alcohol[J]. Journal of Catalysis,2012,289:105−117. doi: 10.1016/j.jcat.2012.01.020
    [7] ZHOU Q Y, ZHOU C Y, ZHOU Y H, HONG W, ZOU S H, GONG X Q, LIU J J, XIAO L P, FAN J. More than oxygen vacancies: a collective crystal- plane effect of CeO2 in gas- phase selective oxidation of benzyl alcohol[J]. Catalysis Science & Technology,2019,9(11):2960−2967.
    [8] GAO Y, ZHANG L, VAN HOOF A J F, FRIEDRICH H, HENSEN E J M. A robust Au/ZnCr2O4 catalyst with highly dispersed gold nanoparticles for gas-phase selective oxidation of cyclohexanol to cyclohexanone[J]. ACS Catal,2019,9(12):11104−11115. doi: 10.1021/acscatal.9b02821
    [9] LIU P, HENSEN E J M. Highly efficient and robust Au/MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde[J]. J Am Chem Soc,2013,135(38):14032−14035. doi: 10.1021/ja406820f
    [10] HOU W B, DEHM N A, SCOTT R W J. Alcohol oxidations in aqueous solutions using Au, Pd, and bimetallic AuPd nanoparticle catalysts[J]. J Catal,2008,253(1):22−27. doi: 10.1016/j.jcat.2007.10.025
    [11] DAI Y, YAN X, TANG Y, LIU X, XIAO L, FAN J. Low-temperature gas-phase oxidation of benzyl alcohol on mesoporous K-Cu-TiO2through oxidative dehydrogenation[J]. Chem Cat Chem,2012,4(10):1603−1610.
    [12] ZHAO G, LI Y, ZHANG Q, DENG M, CAO F, LU Y. Galvanic deposition of silver on 80-μm-Cu-fiber for gas-phase oxidation of alcohols[J]. AlChE J,2014,60(3):1045−1053. doi: 10.1002/aic.14295
    [13] MAO J, DENG M, CHEN L, LIU Y, LU Y. Novel microfibrous-structured silver catalyst for high efficiency gas-phase oxidation of alcohols[J]. AlChE J,2010,56(6):1545−1556. doi: 10.1002/aic.12088
    [14] JACOBSEN C, BORON NITRIDE. A novel support for ruthenium-based ammonia synthesis catalysts[J]. J Catal,2001,200(1):1−3. doi: 10.1006/jcat.2001.3200
    [15] OHASHI T, WANG Y, SHINADA S. Preparation and high catalytic performance of hollow BN spheres-supported Ni for hydrogen production from methanol[J]. J Mater Chem,2010,20(24):5129−5135. doi: 10.1039/c0jm00412j
    [16] POSTOLE G, GERVASINI A, GUIMON C, AUROUX A, BONNETOT B. Influence of the preparation method on the surface characteristics and activity of boron-nitride-supported noble metal catalysts[J]. J Phys Chem B,2006,110(25):12572−12580. doi: 10.1021/jp060183x
    [17] LIN C A, WU J C S, PAN J W, YEH C T. Characterization of boron-nitride-supported Pt catalysts for the deer oxidation of benzene[J]. J Catal,2002,210(1):39−45. doi: 10.1006/jcat.2002.3638
    [18] UOSAKI K, ELUMALAI G, NOGUCHI H, MASUDA T, LYALIN A, NAKAYAMA A, TAKETSUGU T. Boron nitride nanosheet on gold as an electrocatalyst for oxygen reduction reaction: theoretical suggestion and experimental proof[J]. J Am Chem Soc,2014,136(18):6542−5. doi: 10.1021/ja500393g
    [19] WANG L, HANG R, XU Y, GUO C, QIAN Y. From ultrathin nanosheets, triangular plates to nanocrystals with exposed (102) facets, a morphology and phase transformation of sp2 hybrid BN nanomaterials[J]. RSC Adv,2014,4(27):14233. doi: 10.1039/c3ra47005a
    [20] CHUBAROV M, PEDERSEN H, HÖGBERG H, CZIGÄNY Z, GARBRECHT M, HENRY A. Polytype pure sp2-BN thin films as dictated by the substrate crystal structure[J]. Chem Mater,2015,27(5):1640−1645. doi: 10.1021/cm5043815
    [21] SUZUKI K, YAMAGUCHI T, MATSUSHITA K, IITSUKA C, MIURA J, AKAOGI T, ISHIDA H. Aerobic oxidative esterification of aldehydes with alcohols by gold-nickel oxide nanoparticle catalysts with a core-shell structure[J]. ACS Catal,2013,3(8):1845−1849. doi: 10.1021/cs4004084
    [22] YAP, Y K. B−C−N nanotubes and related nanostructures. Springer: 2009.
    [23] DELLA PINA C, FALLETTA E, ROSSI M. Highly selective oxidation of benzyl alcohol to benzaldehyde catalyzed by bimetallic gold–copper catalyst[J]. J Catal,2008,260(2):384−386. doi: 10.1016/j.jcat.2008.10.003
    [24] HAO C, ZHENZHEN Y, ZIHAO Z, ZITAO C, MIAOFANG C, SONG W, JIE F, SHENG D. Construction of a nanoporous highly crystalline hexagonal boron nitride from an amorphous precursor for catalytic dehydrogenation[J]. Angew Chem Int Ed,2019,58:1−6. doi: 10.1002/anie.201813481
    [25] LEI W W, PORTEHAULT D, LIU D, QIN S, CHEN Y. Porous boron nitride nanosheets for effective water cleaning[J]. Nature Commun,2013,4.
    [26] LIU M, TAN L, ZHOU B, LI L, MI Z, LI C J. Group-III nitrides catalyzed transformations of organic molecules[J]. Chem,2021,7(1):64−92. doi: 10.1016/j.chempr.2020.09.014
    [27] XIANGZHAN M, ZENGXI L, YONGQIANG Z, RUIYI Y, HUI W. Deactivation behavior and aggregation mechanism of supported Au T nanoparticles in the oxidation of monoethanolamine to glycine[J]. Catalysis Communications,2020,(146):106127.
    [28] ZHONG L, YU F, AN Y, ZHAO Y, SUN Y, LI Z, LIN T, LIN Y, QI X, DAI Y, GU L, HU J, JIN S, SHEN Q, WANG H. Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J]. Nature,2016,538(7623):84−87. doi: 10.1038/nature19786
  • 加载中
图(4)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  18
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-06-16

目录

    /

    返回文章
    返回