留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

淖毛湖煤热解产物中不同大小芳核的数量分布及变化规律

杨赫 谢周伟 尚妍 熊言坤 靳立军 李扬 胡浩权

杨赫, 谢周伟, 尚妍, 熊言坤, 靳立军, 李扬, 胡浩权. 淖毛湖煤热解产物中不同大小芳核的数量分布及变化规律[J]. 燃料化学学报(中英文), 2021, 49(11): 1667-1675. doi: 10.19906/j.cnki.JFCT.2021062
引用本文: 杨赫, 谢周伟, 尚妍, 熊言坤, 靳立军, 李扬, 胡浩权. 淖毛湖煤热解产物中不同大小芳核的数量分布及变化规律[J]. 燃料化学学报(中英文), 2021, 49(11): 1667-1675. doi: 10.19906/j.cnki.JFCT.2021062
YANG He, XIE Zhou-wei, SHANG Yan, XIONG Yan-kun, JIN Li-jun, LI Yang, HU Hao-quan. The distribution and variation of aromatic nuclei in the pyrolysis products of Naomaohu coal[J]. Journal of Fuel Chemistry and Technology, 2021, 49(11): 1667-1675. doi: 10.19906/j.cnki.JFCT.2021062
Citation: YANG He, XIE Zhou-wei, SHANG Yan, XIONG Yan-kun, JIN Li-jun, LI Yang, HU Hao-quan. The distribution and variation of aromatic nuclei in the pyrolysis products of Naomaohu coal[J]. Journal of Fuel Chemistry and Technology, 2021, 49(11): 1667-1675. doi: 10.19906/j.cnki.JFCT.2021062

淖毛湖煤热解产物中不同大小芳核的数量分布及变化规律

doi: 10.19906/j.cnki.JFCT.2021062
基金项目: 国家重点研发计划项目(2016YFB0600301),国家自然科学基金青年科学基金(21706025)资助
详细信息
    作者简介:

    杨赫,男,讲师。E-mail:yanghe@dlut.edu.cn

    谢周伟,男,硕士研究生。E-mail:xzw2018@mail.dlut.edu.cn

    通讯作者:

    E-mail:hhu@dlut.edu.cn

  • 中图分类号: TQ530.2

The distribution and variation of aromatic nuclei in the pyrolysis products of Naomaohu coal

Funds: The project was supported by the National Key Research and Development Program of China (2016YFB0600301), National Natural Science Foundation for Young Scientist of China (21706025)
  • 摘要: 本研究利用固定床反应器在不同温度下进行新疆淖毛湖(NMH)煤热解实验,并利用多种表征方法研究了煤热解过程半焦和焦油芳核大小分布变化规律。结果表明,随着温度升高,半焦芳碳含量增加,石墨化程度和晶格条纹有序度增加;焦油中芳核结构主要以一或二环为主,含有少量三环及以上芳核;不同热解温度下焦油同步荧光谱图变化不大,虽然焦油产率随温度升高先增加后减少(550 ℃时最大),但焦油中芳核大小分布变化较小,焦油没有发生显著的缩聚反应,同时表明不同大小芳核受到桥链束缚数量,以及桥链裂解活性相对均一。随热解温度升高,热解半焦及焦油中,1 × 1芳核含量降低;终温在500−600 ℃时,缩聚反应主要以1 × 1芳核向2 × 2和3 × 3芳核的转变为主;终温高于650 ℃,缩聚反应以4 × 4及更大芳核的生成为主。
  • FIG. 1063.  FIG. 1063.

    FIG. 1063.  FIG. 1063.

    图  1  固定床装置示意图

    Figure  1  Schematic diagram of fixed-bed equipment

    图  2  温度对热解产物的影响

    Figure  2  Effect of temperature on tar yield, tar yield and gas yield of coal pyrolysis

    图  3  原煤和半焦的XRD谱图

    Figure  3  XRD patterns of NMH coal and chars

    (a): XRD patterns of coal and chars; (b): fitting XRD analysis curves of char at 450 ℃

    图  4  不同温度下半焦的XRD结构参数

    Figure  4  XRD structural parameters of chars from different final pyrolysis temperatures

    图  5  (a)NMH煤和半焦的拉曼谱图, (b)原煤的拟合曲线

    Figure  5  (a) Raman spectra of NMH coal and chars, (b) fitting curves of raw coal

    图  6  不同热解终温下半焦的Raman结构参数

    Figure  6  Raman structural parameters of chars from different final pyrolysis temperatures

    图  7  HRTEM图片处理过程

    Figure  7  HRTEM image processing

    (a): the original HRTEM image; (b): Fourier transform; (c): threshold; (d): texture; (e): color the texture according to the length

    图  8  原煤和半焦的HRTEM图片及晶格条纹图片

    Figure  8  HRTEM images of coal and chars, and their corresponding extracted images of the lattice fringe

    (a): coal; (b): 450 ℃; (c): 500 ℃; (d): 550 ℃; (e): 600 ℃; (f): 650 ℃; (g): 700 ℃

    图  9  5 × 5晶格条纹示意图[23]

    Figure  9  Example of a 5 × 5 fringe[23]

    图  10  原煤和不同温度下制备半焦的晶格条纹大小分布

    Figure  10  Lattice fringe size distribution of samples prepared at different temperatures

    图  11  (a)焦油的同步荧光分析;(b)500 ℃焦油的同步荧光光谱的拟合

    Figure  11  (a) Synchronous fluorescence analysis of tars from different temperature; (b) the fitting curves of synchronous fluorescence spectra of tar at 500 ℃

    图  12  不同温度下焦油中多环芳烃相对含量

    Figure  12  Relative content of PAHs in tar at different temperatures

    图  13  (a)原煤和热解产物的芳核大小分布,(b)焦油和半焦中的芳核大小分布

    Figure  13  (a)Aromatic nucleus distribution of raw coal and pyrolysis products,(b)aromatic nucleus distribution in tar and char

    表  1  煤样的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of NMH coal sample

    Proximate analysis w/%Ultimate analysis wdaf/%
    MadAdVdafCHNSO*
    3.545.2252.2371.646.010.850.4221.08
    *: by difference
    下载: 导出CSV

    表  2  拉曼光谱中峰形的归属 [29]

    Table  2  Attribution of ten bands in Raman spectrum of NMH coal [29]

    δ/cm−1Reflected structural informationVibration type of key
    GL1710carbonyl group C=Osp2
    G1590aromatic ring quadrant breathing; alkene C=Csp2
    GR1540aromatic with 3−5 rings; amorphous
    carbon structures

    sp2sp3
    VL1506
    VR1430
    D1370C−C between aromatic rings and aromatics with not less than 6 ringssp2
    SL1290aryl-alkyl ether; para-aromaticssp2sp3
    S1180Caromatic−Calkyl; aromatic (aliphatic) ethers; C−C on hydroaromatic rings; hexagonal diamond carbon sp3; C−H on aromatic ringssp2sp3
    SR1065C−H on aromatic rings; benzene (ortho-di-substituted) ringsp2
    R800−960C−C on alkanes and cyclic alkanes; C−C on aromatic ringssp2sp3
    下载: 导出CSV

    表  3  HRTEM中晶格条纹的归属[23]

    Table  3  Attribution of aromatic fringe in HRTEM[23]

    Aromatic sheetMin L/
    Å
    Ma × L/
    Å
    Mean/
    Å
    Grouping/
    Å
    1 × 12.84.93.93.0−5.4
    2 × 24.97.16.05.5−7.4
    3 × 37.411.39.37.5−11.4
    4 × 49.815.612.711.5−14.4
    5 × 512.319.816.014.5−17.4
    6 × 614.724.119.417.5−20.4
    7 × 717.228.422.820.5−24.4
    8 × 819.632.626.124.5−28.4
    下载: 导出CSV
  • [1] 谢克昌. 以煤为主格局决定能源转型立足点和首要任务[N]. 中国科学报, 2019, 007: 1−2.

    Xie Ke-chang. The coal-based pattern determines the foothold and primary task of the energy transition[N]. Chin Sci Daily, 2019, 007: 1−2.
    [2] SOLOMON P R, FLETCHER T H. Impact of coal pyrolysis on combustion[J]. Symp Comb,1994,25(1):463−474. doi: 10.1016/S0082-0784(06)80675-2
    [3] SHURTZ R C, KOLSTE K K, FLETCHER T H. Coal swelling model for high heating rate pyrolysis applications[J]. Energy Fuels,2011,26(5):3612−3627.
    [4] SHURTZ R C, HOGGE J W, FOWERS K C, SORENSEN G S, FLETCHER T H. Coal swelling model for pressurized high particle heating rate pyrolysis applications[J]. Energy Fuels,2012,26(6):3612−3627. doi: 10.1021/ef300442r
    [5] WANG C A, WATSON J K, LOUW E, MATHEWS J P. Construction strategy for atomistic models of coal chars capturing stacking diversity and pore size distribution[J]. Energy Fuels,2015,29(8):4814−4826. doi: 10.1021/acs.energyfuels.5b00816
    [6] ZHANG H X, LIU Z Y, LIU I Y. Case study of quantification of aromatic ring structures in lignite using sequential oxidation[J]. Energy Fuels,2016,30(3):2005−2011. doi: 10.1021/acs.energyfuels.5b02617
    [7] SHUI H F, ZHU W W, WANG W W, PAN C X, WANG Z C, LEI Z P, REN S B, KANG S G. Thermal dissolution of lignite and liquefaction behaviors of its thermal dissolution soluble fractions[J]. Fuel,2015,139(1):515−522.
    [8] JIANG J, YANG W, CHENG Y, LIU Z, ZHAO K. Molecular structure characterization of middle-high rank coal via XRD, Raman and FTIR spectroscopy: Implications for coalification[J]. Fuel,2019,239:559−572. doi: 10.1016/j.fuel.2018.11.057
    [9] TAKAGI H, MARUYAMA K, YOSHIZAWA N, YAMADA Y, SATO Y. XRD analysis of carbon stacking structure in coal during heat treatment[J]. Fuel,2004,83(17/18):2427−2433. doi: 10.1016/j.fuel.2004.06.019
    [10] FOLEY H. Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy[J]. Energy,2010,35:5347−5353. doi: 10.1016/j.energy.2010.07.025
    [11] ZHANG S X. Structure of the organic crystallite unit in coal as determined by X-ray diffraction[J]. Int J Min Sci Technol,2011,21:667−671.
    [12] 张小蕊, 邹冲, 赵俊学, 马成, 胡冰, 刘诗薇, 何江永. XRD和Raman法评估热解气氛中H2和CO对半焦化学结构的影响[J]. 燃料化学学报.,2019,47(11):1288−1297.

    ZHANG Xiao-rui, ZHOU Chong, ZHAO Jun-xue, MA Cheng, HU Bing, LIU Shi-wei, HE Jiang-yong. Effect of H2 and CO as pyrolysis atmosphere on chemical structure of char by XRD and Raman methods[J]. J Fuel Chem Technol,2019,47(11):1288−1297.
    [13] RONG L, YANG Y, LI D, WANG X, JIA F, WANG J. Effect of rare earth oxides on the formation of semi-char from low-rank coal pyrolysis: a comparative study based on X-ray diffraction and Raman analysis[J]. Energy source Part A,2020,1−14.
    [14] GUEDES A, VALENTIM B, PRIETO A C, NORONHA F. Raman spectroscopy of coal macerals and fluidized bed char morphotypes[J]. Fuel,2012,97:443−449. doi: 10.1016/j.fuel.2012.02.054
    [15] 苏现波, 司青, 宋金星. 煤的拉曼光谱特征[J]. 煤炭学报,2016,41(5):1197−1202.

    SU Xian-bo, SI Qing, SONG Jin-xing. Characteristics of coal Raman spectrum[J]. J China Coal Soc,2016,41(5):1197−1202.
    [16] 李霞, 曾凡桂, 王威, 董夔. 低中煤级煤结构演化的拉曼光谱表征[J]. 煤炭学报,2016,41(9):2298−2304.

    LI Xia, ZENG Fan-gui, WANG Wei, DONG Kui. Raman characterization of structural evolution in the low-middle rank coals[J]. J China Coal Soc,2016,41(9):2298−2304.
    [17] MENG D, YUE C, WANG T, CHEN X. Evolution of carbon structure and functional group during Shenmu lump coal pyrolysis[J]. Fuel,2020,287(38):119538.
    [18] SHENG C. Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity[J]. Fuel,2007,86(15):2316−2324. doi: 10.1016/j.fuel.2007.01.029
    [19] SONG Q, ZHAO H, JIA J, YANG L, LV W, GU Q, SHU X. Effects of demineralization on the surface morphology, microcrystalline and thermal transformation characteristics of coal[J]. J Anal Appl Pyrolysis,2020,145:104711−104716.
    [20] WANG S, CHEN H, ZHANG X. Transformation of aromatic structure of vitrinite with different coal ranks by HRTEM in situ heating[J]. Fuel,2020,260:116309. doi: 10.1016/j.fuel.2019.116309
    [21] SHARMA A, KYOTANI T, TOMITA A. A new quantitative approach for microstructural analysis of coal char using HRTEM images[J]. Fuel,1999,78(10):1203−1212. doi: 10.1016/S0016-2361(99)00046-0
    [22] NIEKERK D V, MATHEWS J P. Molecular representations of Permian-aged vitrinite-rich and inertinite-rich South African coals[J]. Fuel,2010,89(1):73−82. doi: 10.1016/j.fuel.2009.07.020
    [23] MATHEWS J P, FERNANDEZ-ALSO V, DANIEL J A, SCHOBERT H H. Determining the molecular weight distribution of Pocahontas No. 3 low-volatile bituminous coal utilizing HRTEM and laser desorption ionization mass spectra data[J]. Fuel,2010,89:1461−1469. doi: 10.1016/j.fuel.2009.10.014
    [24] SONG Y, JIANG B, LI M, HOU C, MATHEWS J P. Macromolecular transformations for tectonically-deformed high volatile bituminous via HRTEM and XRD analyses[J]. Fuel,2019,263:116756.
    [25] FERNANDEZ-ALSO V, WATSON J K, WAL R V, MATHEWS J P. Soot and char molecular representations generated directly from HRTEM lattice fringe images using Fringe3D[J]. Combust Flame,2011,158(9):1807−1813. doi: 10.1016/j.combustflame.2011.01.003
    [26] CHEN H, WANG S Q, TANG Y G, ZENG F G, HAROLD H. Aromatic cluster and graphite-like structure distinguished by HRTEM in thermally altered coal and their genesis[J]. Fuel,2021,292(8):120373.
    [27] 赵洪宇, 李玉环, 舒元锋, 宋强, 吕俊鑫, 王子民, 曾鸣, 舒新前. CaO对褐煤和无烟煤热解产物分布及煤焦结构的影响[J]. 煤炭科学技术,2016,44(3):177−183.

    ZHAO Hong-yu, LI Yu-huan, SHU Yuan-feng, SONG Qiang, LV Jun-xin, WANG Zi-min, ZENG Ming, SHU xin-qian. Effect of calcium oxide on pyrolysis products distribution and char structure of lignite and anthracite[J]. Coal Soc Technol,2016,44(3):177−183.
    [28] 邱海鹏, 郭全贵, 宋永忠, 翟更太, 宋进仁, 刘朗. 石墨材料导热性能与微晶参数关系的研究[J]. 新型炭材料,2002,17(1):36−40.

    Qiu Hai-peng, Guo Quan-gui, Song Yong-zhong, zhai Geng-tai, song jin-ren, liu lang. Study of the relationship between thermal conductivity and microcrystalline parameters of bulk graphite[J]. New Carbon Mater,2002,17(1):36−40.
    [29] XU J, SU S, SUN Z, QING M, XIONG Z, WANG Y, JIANG L, HU S, XIANG J. Effects of steam and CO2 on the characteristics of chars during devolatilization in oxy-steam combustion process[J]. Appl Energy,2016,182:20−28. doi: 10.1016/j.apenergy.2016.08.121
    [30] SONG Y, FENG W, LI N, LI Y, ZHI K, TENG Y, HE R, ZHOU H, LIU Q. Effects of demineralization on the structure and combustion properties of Shengli lignite[J]. Fuel,2016,183(1):659−667.
    [31] MATHEWS J P, SHARMA A. The structural alignment of coal and the analogous case of Argonne Upper Freeport coal[J]. Fuel,2012,95:19−24. doi: 10.1016/j.fuel.2011.12.046
    [32] XIONG Y, JIN L, YANG H, LI Y, HU H. Insight into the aromatic ring structures of a low-rank coal by step-wise oxidation degradation[J]. Fuel Process Technol,2020,210:106563. doi: 10.1016/j.fuproc.2020.106563
    [33] KERSHAW J R, SATHE C, HAYASHI J I, LI C Z, CHIBA T. Fluorescence spectroscopic analysis of tars from the pyrolysis of a Victorian Brown Coal in a Wire-Mesh Reactor[J]. Energy Fuels,2000,14:476−482. doi: 10.1021/ef990181u
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  497
  • HTML全文浏览量:  121
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-31
  • 修回日期:  2021-05-06
  • 网络出版日期:  2021-06-25
  • 刊出日期:  2021-11-30

目录

    /

    返回文章
    返回