留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硫酸催化柠檬皮水热转化制取平台化合物研究

熊珊珊 凌祎璐 谭郡瑶 韩一帆 罗超 朱玲君 王树荣

熊珊珊, 凌祎璐, 谭郡瑶, 韩一帆, 罗超, 朱玲君, 王树荣. 硫酸催化柠檬皮水热转化制取平台化合物研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2021065
引用本文: 熊珊珊, 凌祎璐, 谭郡瑶, 韩一帆, 罗超, 朱玲君, 王树荣. 硫酸催化柠檬皮水热转化制取平台化合物研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2021065
XIONG Shan-shan, LING Yi-lu, TAN Jun-yao, HAN Yi-fan, LUO Chao, ZHU Ling-jun, WANG Shu-rong. Preparation of platform compounds by hydrothermal conversion of lemon peel under the catalysis of sulfuric acid[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2021065
Citation: XIONG Shan-shan, LING Yi-lu, TAN Jun-yao, HAN Yi-fan, LUO Chao, ZHU Ling-jun, WANG Shu-rong. Preparation of platform compounds by hydrothermal conversion of lemon peel under the catalysis of sulfuric acid[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2021065

硫酸催化柠檬皮水热转化制取平台化合物研究

doi: 10.19906/j.cnki.JFCT.2021065
基金项目: 国家重点研发项目(2018YFB1501500)、国家杰出青年科学基金(51725603)
详细信息
    作者简介:

    熊珊珊:21927018@zju.edu.cn

    通讯作者:

    王树荣,Tel:0571-87952801;E-mail:srwang@zju.edu.cn

  • 中图分类号: TK6

Preparation of platform compounds by hydrothermal conversion of lemon peel under the catalysis of sulfuric acid

Funds: National Key R&D Program of China (2018YFB1501500) and the National Science Fund for Distinguished Young Scholars (51725603).
  • 摘要: 果皮作为水果加工业的典型含碳固废,其高效回收和资源化利用对开发可再生液体燃料和提升水果加工业经济效益均具有重要意义。柠檬皮含有的柠檬酸被证明是一种可有效促进生物质及其衍生物水热转化制取高附加值呋喃产物的弱酸,因此本研究利用柠檬皮经硫酸催化水解制取乙酰丙酸(LA)和糠醛(FF)等重要液体燃料前驱物,并探究常见金属盐对硫酸催化柠檬皮水解过程的促进作用。研究发现柠檬皮本身含有的柠檬酸对水解过程有一定促进作用,联合硫酸催化,可在170 ℃/90 min的温和水解工况下获得产率为22.6wt.%的LA,KCl的加入能够有效抑制柠檬皮水解过程的副反应,并提升硫酸与柠檬皮的相互作用,相比于AlCl3和FeCl3其促进作用更为明显,KCl可将LA产率提升至27.9wt.%。葡萄糖和FF的制取工况相对LA更为温和,温度升高、反应时间延长以及酸性提升都会导致葡萄糖和FF的产率明显下降。
  • 图  1  反应温度及时间对柠檬皮水解产物分布的影响

    Figure  1  Influence of temperature and time on products distribution of hydrolysis of lemon peel

    图  2  底物浓度对柠檬皮水解产物分布的影响

    Figure  2  Influence of feed stock content on products distribution of hydrolysis of lemon peel

    图  3  硫酸浓度对柠檬皮水解的产物分布影响

    Figure  3  Influence of H2SO4 concentration on products distribution of hydrolysis of lemon peel

    图  4  金属盐种类对柠檬皮水解产物分布的影响

    Figure  4  Influence of type of metal salt on products distribution of hydrolysis of lemon peel

    图  5  金属盐浓度对柠檬皮水解产物分布的影响

    Figure  5  Influence of metal salt concentration on products distribution of hydrolysis of lemon peel

    图  6  柠檬皮水热解聚残渣的红外吸收光谱

    Figure  6  FTIR of residues of hydrolysis of lemon peel

  • [1] ZHANG Z, SONG J, HAN B. Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids[J]. Chemical Reviews,2017,117(10):6834−6880. doi: 10.1021/acs.chemrev.6b00457
    [2] 周琦, 藕志强, 饶鑫, 杜学禹. 椰子果皮废弃物的高值化利用现状及发展趋势[J]. 广州化工,2020,48(18):16−19. doi: 10.3969/j.issn.1001-9677.2020.18.007
    [3] 邓理, 廖兵, 郭庆祥. 纤维素选择性催化转化为重要平台化合物的研究进展[J]. 化工进展,2013,32(02):245−254.
    [4] 林海周. 生物质碳水化合物液相催化转化制取呋喃类平台化合物研究[D]. 浙江大学, 2017.
    [5] THIRUMAVALAVAN M, LAI Y, LIN L, LEE J. Cellulose-based native and surface modified fruit peels for the adsorption of heavy metal ions from aqueous solution: Langmuir adsorption isotherms[J]. Journal of Chemical and Engineering Data,2010,55(3):1186−1192. doi: 10.1021/je900585t
    [6] MAX B, SALGADO JM, RODRÍGUEZ N, CORTÉS S, CONVERTI A, DOMÍNGUEZ JM. Biotechnological production of citric acid[J]. Brazilian Journal of Microbiology,2010,41(4):862−875. doi: 10.1590/S1517-83822010000400005
    [7] 章凯, 黄国林, 陈中胜, 等. 微波辅助萃取柠檬皮中果胶动力学及热力学研究[J]. 食品科学,2010,(15):107−111.
    [8] 章凯, 黄国林, 黄小兰, 等. 响应面法优化微波辅助萃取柠檬皮中果胶的研究[J]. 精细化工,2010,(01):52−56.
    [9] 张苒, 刘咏, 王军辉. 不同工艺提取柠檬皮果胶的理化及流变学特性研究[C]//中国食品科学技术学会第十五届年会论文摘要集. 2018.
    [10] ZHAO Y, LU K, XU H, ZHU L, WANG S. A critical review of recent advances in the production of furfural and 5-hydroxymethylfurfural from lignocellulosic biomass through homogeneous catalytic hydrothermal conversion[J]. Renewable & Sustainable Energy Reviews,2021,139:110706−110733.
    [11] ZHENG X, ZHI Z, GU X, LI X, ZHANG R, LU X. Kinetic study of levulinic acid production from corn stalk at mild temperature using FeCl3 as catalyst[J]. Fuel (Guildford),2017,187:261−267. doi: 10.1016/j.fuel.2016.09.019
    [12] XIANG Q, LEE Y Y, TORGET R W. Kinetics of glucose decomposition during dilute-acid hydrolysis of lignocellulosic biomass[J]. Appl Biochem Biotechnol.,2004,113−116(1):1127−1138.
    [13] HU X, WANG S, WU L, DONG D, MAHMUDUL HASAN M, LI C. Acid-treatment of C5 and C6 sugar monomers/oligomers: Insight into their interactions[J]. Fuel Processing Technology,2014,126:315−323. doi: 10.1016/j.fuproc.2014.05.024
    [14] ZHAO Y, XU H, WANG K, LU K, QU Y, ZHU L, et al. Enhanced furfural production from biomass and its derived carbohydrates in the renewable butanone-water solvent system[J]. Sustainable Energy & Fuels,2019,3(11):3208−3218.
    [15] ZHAO Y, XU H, LU K, QU Y, ZHU L, WANG S. Experimental and kinetic study of arabinose conversion to furfural in renewable butanone-water solvent mixture catalyzed by lewis acidic ionic liquid catalyst[J]. Industrial & Engineering Chemistry Research,2019,58(36):17088−17097.
    [16] LI X, PENG K, LIU X, XIA Q, WANG Y. Comprehensive understanding of the role of brønsted and lewis acid sites in glucose conversion into 5-hydromethylfurfural[J]. ChemCatChem,2017,9(14):2739−2746. doi: 10.1002/cctc.201601203
    [17] ENSLOW K R, BELL A T. The role of metal halides in enhancing the dehydration of xylose to furfural[J]. ChemCatChem,2015,7(3):479−489. doi: 10.1002/cctc.201402842
    [18] LI X, PENG K, LIU X, XIA Q, WANG Y. Comprehensive understanding of the role of brønsted and lewis acid sites in glucose conversion into 5-hydromethylfurfural[J]. ChemCatChem,2017,9(14):2739−2746. doi: 10.1002/cctc.201601203
    [19] ENSLOW K R, BELL A T. The role of metal halides in enhancing the dehydration of xylose to furfural[J]. ChemCatChem,2015,7(3):479−489. doi: 10.1002/cctc.201402842
    [20] 徐志磊. 葡萄糖催化转化制备5-羟甲基糠醛的研究[D]. 长春工业大学, 2016.
    [21] 王兰英. 生物质糖类制备5-羟甲基糠醛和乙酰丙酸的研究[D]. 华南理工大学.
    [22] 尉慰奇. 碳水化合物催化转化制备羟甲基糠醛及乙酰丙酸的研究[D]. 华南理工大学.
    [23] QU Y, ZHAO Y, XIONG S, WANG C, WANG S, ZHU L, et al. Conversion of glucose into 5-hydroxymethylfurfural and levulinic acid catalyzed by SO42-/ZrO2 in a biphasic solvent system[J]. Energy & Fuels,2020,34(9):11041−11049.
    [24] 陆强, 张栋, 朱锡锋. 四种金属氯化物对纤维素快速热解的影响(Ⅱ)机理分析[J]. 化工学报,2010,61(4):1025−1032.
    [25] 徐志磊. 葡萄糖催化转化制备5-羟甲基糠醛的研究[D]. 长春工业大学, 2016. 林海周. 生物质碳水化合物液相催化转化制取呋喃类平台化合物研究[D]. 浙江大学, 2017.
    [26] 袁永朋. 降解植物纤维素制备5-羟甲基糠醛[D]. 长春工业大学, 2013.
    [27] GUO Y, ZENG Z, ZHU Y, et al. Catalytic oxidation of aqueous organic contaminants by persulfate activated with sulfur-doped hierarchically porous carbon derived from thiophene[J]. Applied Catalysis B: Environmental,2017,635−644.
    [28] SIVANANTHAM M, KESAVAMOORTHY R, SAIRAM T N, SABHARWAL K N, RAJ B. Stimulus response and molecular structural modification of polyacrylamide gel in nitric acid: A study by Raman, FTIR, and photoluminescence techniques[J]. Journal of Polymer Science Part B, Polymer Physics,2008,46(7):710−720. doi: 10.1002/polb.21402
  • 加载中
图(6)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  7
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-31
  • 修回日期:  2021-06-23
  • 网络出版日期:  2021-07-16

目录

    /

    返回文章
    返回