留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

竹材纤维定向醇解转化制备乙酰丙酸甲酯的研究

徐杨杨 祝慧敏 李辰 潘晖 冯君锋

徐杨杨, 祝慧敏, 李辰, 潘晖, 冯君锋. 竹材纤维定向醇解转化制备乙酰丙酸甲酯的研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2021069
引用本文: 徐杨杨, 祝慧敏, 李辰, 潘晖, 冯君锋. 竹材纤维定向醇解转化制备乙酰丙酸甲酯的研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2021069
XU Yang-yang, ZHU Hui-min, LI Chen, PAN Hui, FENG Jun-feng. Study on Preparation of Methyl Levulinate by Directional Alcoholysis of Bamboo Biomass[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2021069
Citation: XU Yang-yang, ZHU Hui-min, LI Chen, PAN Hui, FENG Jun-feng. Study on Preparation of Methyl Levulinate by Directional Alcoholysis of Bamboo Biomass[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2021069

竹材纤维定向醇解转化制备乙酰丙酸甲酯的研究

doi: 10.19906/j.cnki.JFCT.2021069
基金项目: 江苏省高校自然科学基金(20KJB220010)项目资助
详细信息
    作者简介:

    徐杨杨(2000-),女,本科生,从事林产化学加工方面的研究。E-mail:Xueyya@163.com

    通讯作者:

    潘晖(1971-),女,博士,教授,从事木质纤维催化转化方面的研究。E-mail:hpan@njfu.edu.cn

    冯君锋(1990-),女,博士,副教授,从事农林生物质定向液化方面的研究。E-mail:2018149@njfu.edu.cn

  • 中图分类号: TQ35; TK5

Study on Preparation of Methyl Levulinate by Directional Alcoholysis of Bamboo Biomass

Funds: The project was supported by Natural Science Fund for Colleges and Universities in Jiangsu Province (20KJB220010)
  • 摘要: 以固体酸为催化剂、二烷氧基甲烷/低碳醇为复合溶剂,考察竹材中纤维素和半纤维素定向醇解的过程。通过调控反应条件(复合溶剂的组成和配比、固体酸催化剂的种类和用量、反应温度和时间),获得最佳反应条件(复合溶剂为二甲氧基甲烷/甲醇质量比为5 g/15 g,硅钨酸的用量为0.002 mol,120 min,200 ℃)下,竹材的转化率为81.53 wt%,乙酰丙酸甲酯的得率为28.39 wt%。同时,研究多种生物质模型化合物(葡萄糖、木糖、5-羟甲基糠醛、糠醛、戊聚糖和微晶纤维素)的转化过程,结合反应过程中间产物的检测结果,推断竹材中半纤维素、纤维素“一步法”定向醇解制备乙酰丙酸酯的过程。
  • 图  1  不同催化剂用量对竹材中纤维素和半纤维素定向转化过程的影响

    Figure  1  Effect of catalyst amount on directional conversion of cellulose and hemicellulose in bamboo.

    图  2  不同反应时间对竹材中纤维素和半纤维素定向转化过程的影响

    Figure  2  Effect of reaction time on directional conversion of cellulose and hemicellulose in bamboo.

    图  3  不同反应温度对竹材中纤维素和半纤维素定向转化过程的影响

    Figure  3  Effect of reaction temperature on directional conversion of cellulose and hemicellulose in bamboo.

    图  4  不同复合溶剂配比对竹材中纤维素和半纤维素定向转化过程的影响

    Figure  4  Effect of composite solvent ratio on directional conversion of cellulose and hemicellulose in bamboo.

    表  1  3种生物质原料的元素和成分分析结果

    Table  1  Elemental and compositional properties of the waste lignocellulosic biomass

    原料Materials元素分析(wt%)Element analysis组分分析(wt%)Composition analysis

    C

    H

    O

    N

    S
    灰分
    Ash
    抽提物Extractives纤维素Cellulose木质素
    Lignin
    综纤维素Holocellulose戊聚糖Pentosan
    竹材Bamboo47.894.5547.210.070.281.083.4643.6923.6870.8326.45
    下载: 导出CSV

    表  2  不同溶剂对竹材生物质原料定向转化过程的影响

    Table  2  Effects of different solvents on directional conversion of cellulose and hemicellulose in bamboo

    试剂Solvent转化率(wt%) Conv.乙酰丙酸酯得率(wt%) Levulinates yield糠醛类得率(wt%) Furfurals yield糖苷类得率(wt%) Glycosides yield溶剂回收率(wt%) Recovery yield压力(MPa) Pressure
    甲醇Methanol60.727.4920.1913.6494.314.2
    二甲氧基甲烷Dimethoxymethane55.309.6635.747.9296.574.2
    二氧六环Dioxane66.830.040.547.1389.123.0
    二氯甲烷Dichloromethane80.254.4015.932.4995.784.5
    二氯乙烷Dichloroethane73.940.7726.525.8790.333.7
    二乙氧基甲烷Diethoxymethane59.935.6438.816.2091.242.8
    Reaction conditions: bamboo 2 g, methanol 10 g, reagent 10 g, Amberlyst 15 0.002 mol, sodium chloride 0.2 g, reaction temperature 200 ℃, reaction time 120 min
    下载: 导出CSV

    表  3  不同催化剂对竹材生物质原料定向转化过程的影响

    Table  3  Effects of different electrophiles on directional conversion of cellulose and hemicellulose in bamboo

    催化剂 Catalyst转化率(wt%) Conv.乙酰丙酸酯得率(wt%) Levulinates yield糠醛类得率(wt%) Furfurals yield糖苷类得率(wt%) Glycosides yield压力(MPa) Pressure
    盐酸 Hydrochloric acid41.316.16\15.734.0
    阳离子交换树脂 Amberlyst 1555.309.6635.747.924.5
    对甲苯磺酸 p-Toluenesulfonic acid69.042.3035.828.654.3
    硅钨酸 Silicotungstic acid60.9115.5823.1610.214.2
    氯化铝 Aluminum Chloride40.672.8124.935.784.2
    Reaction conditions: bamboo 2 g, methanol 10 g, catalyst 0.002 mol, dimethoxymethane 10 g, sodium chloride 0.2 g, reaction conditions 200 ℃, 120 min
    下载: 导出CSV

    表  4  不同低碳醇对竹材生物质原料定向转化过程的影响

    Table  4  Effects of different alcohol on directional conversion of cellulose and hemicellulose in bamboo

    低碳醇Alcohol转化率(wt%) Conv.乙酰丙酸酯得率(wt%) Levulinates yield糠醛类得率(wt%) Furfurals yield糖苷类得率(wt%) Glycosides yield溶剂回收率(wt%) Recovery yield压力(MPa) Pressure
    甲醇 Methanol60.9115.5823.1610.2195.304.2
    异丙醇 Isopropanol45.635.7932.596.8391.432.5
    乙醇 Ethanol54.3512.3231.759.6493.223.0
    正丁醇
    N-butanol
    54.282.2728.457.7592.042.0
    Reaction conditions: bamboo material 2 g, dimethoxymethane 10 g, lower alcohol 10 g, silicotungstic acid 0.002 mol, sodium chloride 0.2 g, 200 ℃, 120 min
    下载: 导出CSV

    表  5  氯化钠对竹材中纤维素和半纤维素定向转化过程的影响

    Table  5  NaCl amount on directional conversion of cellulose and hemicellulose in bamboo

    助剂Additives低碳醇Alcohol转化率(wt%) Conv.乙酰丙酸酯得率(wt%) Levulinates yield糠醛类得率(wt%)
    Furfurals yield
    糖苷类得率(wt%) Glycosides yield
    NaCl 0.2 g甲醇50.9115.5823.168.34
    乙醇54.5212.3231.756.20
    No NaCl甲醇61.7619.8013.4915.36
    乙醇64.0515.4011.1019.88
    Reaction conditions: bamboo 2 g, dimethoxymethane 10 g, alcohol 10 g, silicotungstic acid 0.002 mol, 200 ℃, 120 min
    下载: 导出CSV

    表  6  不同生物质碳水化合物的定向转化结果

    Table  6  Directional conversion results of different biomass carbohydrates

    原料温度(℃) Temp.转化率(wt%) Conv.乙酰丙酸甲酯得率(wt%) Levulinates yield糠醛类化合物得率(wt%) Furfurals yield糖苷类得率(wt%) Glycosides yield
    糠醛Furfural16084.7713.2016.29/
    18092.2754.478.56/
    5-羟甲基糠醛5-Hydroxymethyl furfural16093.6169.230.29/
    18078.9858.709.25/
    木糖Xylose16076.6432.2738.8123.35
    18083.5245.4714.6516.48
    葡萄糖Glucose16096.1046.850.793.90
    18088.8554.542.5411.15
    戊聚糖Pentosan18071.9524.9210.3729.84
    20084.1336.8133.0510.27
    微晶纤维
    Microcrystalline cellulose
    18071.8618.6325.2619.78
    20087.7225.5429.3925.61
    Reaction conditions: raw materials 2 g, methanol 10 g, dimethoxymethane 10 g, catalyst 0.002 mol, reaction time 120 min
    下载: 导出CSV
  • [1] ZHANG T. Taking on all of the biomass for conversion[J]. Science,2020,367:1305−1306. doi: 10.1126/science.abb1463
    [2] ZHANG Z, SONG J, HAN B. Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids[J]. Chem Rev,2017,117(10):6834−6880. doi: 10.1021/acs.chemrev.6b00457
    [3] ENNAERT T, VAN AELST J, DIJKMANS J, DE CLERCQ R, SCHUTYSER W, DUSSELIER M, SELS B. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass[J]. Chem Soc Rev,2016,45(3):584−611. doi: 10.1039/C5CS00859J
    [4] CHEN Y W, LEE H V. Recent progress in homogeneous Lewis acid catalysts for the transformation of hemicellulose and cellulose into valuable chemicals, fuels, and nanocellulose[J]. Rev Chem Eng,2020,36(2):215−235. doi: 10.1515/revce-2017-0071
    [5] HAN Y, YE L, GU X, ZHU P, LU X. Lignin-based solid acid catalyst for the conversion of cellulose to levulinic acid using γ-valerolactone as solvent[J]. Ind Crop Prod,2019,127:88−93. doi: 10.1016/j.indcrop.2018.10.058
    [6] 杨佳鑫, 司传领, 刘坤, 刘华玉, 李晓云, 梁敏. 木质纤维生物质制备乙酰丙酸及其应用综述[J]. 林业工程学报,2020,5(5):21−27.

    YANG Jia-xin, SI Chuan-ling, LIU Kun, LIU Hua-yu, LI Xiao-yun, LIANG Min. Production of levulinic acid from lignocellulosic biomass and application[J]. J Forestry Eng,2020,5(5):21−27.
    [7] FENG J, ZHANG L, JIANG J, HSE C, SHUPE T, PAN H. Directional synergistic conversion of lignocellulosic biomass with matching-solvents for added-value chemicals[J]. Green Chem,2019,21(18):4951−4957. doi: 10.1039/C9GC02365H
    [8] ZHU S, GUO J, WANG X, WANG J, FAN W. Alcoholysis: a promising technology for conversion of lignocellulose and platform chemicals[J]. ChemSusChem,2017,10(12):2547−2559. doi: 10.1002/cssc.201700597
    [9] MORAIS A, MATUCHAKI M, ANDREAUS J, BOGEL-LUKASIK R. A green and efficient approach to selective conversion of xylose and biomass hemicellulose into furfural in aqueous media using high-pressure CO2 as a sustainable catalyst[J]. Green Chem,2016,18(10):2985−2994. doi: 10.1039/C6GC00043F
    [10] 孙娇, 王娅莉, 解新安, 黎巍, 李璐, 李雁, 樊荻, 魏星. 纤维素在亚/超临界甲醇中液化条件对主要化合物产物的影响[J]. 燃料化学学报,2017,45:660−668. doi: 10.3969/j.issn.0253-2409.2017.06.003

    SUN Jiao, WANG Ya-li, XIE Xin-an, LI Wei, LI Lu, LI Yan, FAN Di, WEI Xing. Effect of liquefaction parameters of cornstalk cellulose in sub-supercritical methanol on dominant chemical products[J]. J Fuel Chem Techno,2017,45:660−668. doi: 10.3969/j.issn.0253-2409.2017.06.003
    [11] 于杰, 王景芸, 王震, 周明东, 王海彦. 复合分子筛的合成及其在纤维素水解反应中的应用[J]. 燃料化学学报,2018,46(4):419−426. doi: 10.3969/j.issn.0253-2409.2018.04.007

    YU Jie, WANG Jing-yun, WANG Zhen, ZHOU Ming-dong, WANG Hai-yan. Synthesis of composite zeolites and their performance in hydrolysis of cellulose[J]. J Fuel Chem Techno,2018,46(4):419−426. doi: 10.3969/j.issn.0253-2409.2018.04.007
    [12] HEDA J, NPPHADKAR P, BOKADE V. Efficient synergetic combination of H-USY and SnO2 for direct conversion of glucose into ethyl levulinate (biofuel additive)[J]. Energ. Fuel.,2019,. doi: 10.1021/acs.energyfuels.8b04395
    [13] HUANGY B, YANG T, LIN Y T, PAN H. Facile and high-yield synthesis of methyl levulinate from cellulose[J]. Green Chem.,2018,20(6):1323−1334. doi: 10.1039/C7GC02883K
    [14] LAPPALAINEN K, DONG Y. Simultaneous production of furfural and levulinic acid from pine sawdust via acid-catalysed mechanical depolymerization and microwave irradiation[J]. Biomass Bioenerg,2019,123:159−165. doi: 10.1016/j.biombioe.2019.02.017
    [15] MIKA L, CSEFALVAY E, NEMETH A. Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability[J]. Chem Rev,2018,118(2):505−613. doi: 10.1021/acs.chemrev.7b00395
    [16] LI X, LU X, NIE S, LIANG M, YU Z, DUAN B, SI C Efficient catalytic production of biomass-derived levulinic acid over phosphotungstic acid in deep eutectic solvent[J]. Ind Crop Prod, 2020, 145, 112−154.
    [17] NEGAHDAR L, DELIDOVICH I, PALKOVITS R. Aqueous-phase hydrolysis of cellulose and hemicelluloses over molecular acidic catalysts: Insights into the kinetics and reaction mechanism[J]. Appl Catal B-Environ,2016,184:285−298. doi: 10.1016/j.apcatb.2015.11.039
    [18] FENG S, WEI R, LEITCH M, XU C. Comparative study on lignocellulose liquefaction in water, ethanol, and water/ethanol mixture: Roles of ethanol and water[J]. Energy,2018,155:234−241. doi: 10.1016/j.energy.2018.05.023
    [19] DU H, MA X, YAN P, JIANG M, ZHAO Z, ZHANG Z C. Catalytic furfural hydrogenation to furfuryl alcohol over Cu/SiO2 catalysts: A comparative study of the preparation methods[J]. Fuel Process Technol,2019,193:221−231. doi: 10.1016/j.fuproc.2019.05.003
    [20] SWEYGERS N, ALEWATERS N, DEWIL R, APPELS L. Microwave effects in the dilute acid hydrolysis of cellulose to 5-hydroxymethylfurfural[J]. Sci Rep-UK,2018,8(1):1−11.
    [21] FENG J, TONG L, ZHU Y, JIANG J, HSE C, PAN H. Efficient utilization and conversion of whole components in waste biomass with one-pot-oriented liquefaction[J]. ACS Sus Chem Eng.,2019,7:18142−18152. doi: 10.1021/acssuschemeng.9b05272
  • 加载中
图(4) / 表(6)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  10
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-13
  • 修回日期:  2021-06-10
  • 网络出版日期:  2021-08-10

目录

    /

    返回文章
    返回