留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

P改性β沸石的制备及其催化C9芳烃与丙烯的烷基化反应性能研究

陈强强 郭宇 吴红梅

陈强强, 郭宇, 吴红梅. P改性β沸石的制备及其催化C9芳烃与丙烯的烷基化反应性能研究[J]. 燃料化学学报(中英文), 2022, 50(1): 98-108. doi: 10.19906/j.cnki.JFCT.2021074
引用本文: 陈强强, 郭宇, 吴红梅. P改性β沸石的制备及其催化C9芳烃与丙烯的烷基化反应性能研究[J]. 燃料化学学报(中英文), 2022, 50(1): 98-108. doi: 10.19906/j.cnki.JFCT.2021074
CHEN Qiang-qiang, GUO Yu, WU Hong-mei. Preparation of modified β zeolite with phosphorus for catalytic alkylation of C9 aromatics with propylene[J]. Journal of Fuel Chemistry and Technology, 2022, 50(1): 98-108. doi: 10.19906/j.cnki.JFCT.2021074
Citation: CHEN Qiang-qiang, GUO Yu, WU Hong-mei. Preparation of modified β zeolite with phosphorus for catalytic alkylation of C9 aromatics with propylene[J]. Journal of Fuel Chemistry and Technology, 2022, 50(1): 98-108. doi: 10.19906/j.cnki.JFCT.2021074

P改性β沸石的制备及其催化C9芳烃与丙烯的烷基化反应性能研究

doi: 10.19906/j.cnki.JFCT.2021074
基金项目: 国家自然科学基金(21601075),辽宁省高校基本科研项目(JZL201715403),辽宁省“百千万人才工程”项目(辽人社函〔2020〕78号),辽宁省“兴辽英才计划”项目(XLYC2007171)资助
详细信息
    通讯作者:

    Tel: 13704168439, E-mail: guoyu@lnut.edu.cn

  • 中图分类号: TE624

Preparation of modified β zeolite with phosphorus for catalytic alkylation of C9 aromatics with propylene

Funds: The project was supported by the National Natural Science Foundation of China (21601075), the Fundamental Research Funds for the Universities of Liaoning Province (JZL201715403), the "Millions of Talents Project" of Liaoning Province ((2020) No. 78) and Liaoning Revitalization Talents Program (XLYC2007171)
  • 摘要: 利用浸渍法对β沸石进行磷改性,制备了不同磷负载量的改性β沸石催化剂。采用XRD、SEM、EDX、MAS NMR、Py-FTIR、N2吸附-脱附和NH3-TPD手段对催化剂样品进行了表征,并且研究了改性β沸石在催化C9芳烃与丙烯烷基化反应中的性能。结果表明,β沸石经磷改性后,其形貌和晶体结构没有发生明显变化。然而,随着磷添加量的增加,β沸石的比表面积和表面硅铝质量比逐渐减小;磷与β沸石相互作用,改变了催化剂酸强度分布。β沸石上磷的负载量显著影响C9芳烃烷基化反应结果。与未改性的β沸石相比,β-0.5P催化剂烷基化反应活性明显提高,烷基化反应产物中C12+重芳烃的比例达到17%,m1,3,5-TMB/mC9值增加了5.3%,连续反应10 h,活性稳定;然而,当磷负载量过高,催化剂烷基化活性降低,异构化和歧化反应性能增强。
  • FIG. 1242.  FIG. 1242.

    FIG. 1242.  FIG. 1242.

    图  1  C9芳烃与丙烯烷基化反应流程图

    Figure  1  Schematic diagram of experimental setup for alkylation of C9 aromatics with propylene

    图  2  β沸石改性前后的XRD谱图

    Figure  2  XRD patterns of β zeolites before and after modified by (NH4)2HPO4

    图  3  样品的SEM照片

    Figure  3  SEM images of (a) β, (b) β-0.5P, (c) β-1.0P and (d) β-2.0P

    图  4  样品的EDX面扫描图(a)–(d)和元素组成(e)

    Figure  4  EDX mapping analyses (a)–(d) and elemental distribution (e) of the samples

    图  5  样品的 27Al MAS NMR谱图(a)和31P MAS NMR谱图(b)

    Figure  5  27Al MAS NMR spectra (a) and 31P MAS NMR spectra (b) of the samples

    图  6  样品在400 ℃时的吡啶吸附红外光谱谱图

    Figure  6  Py-FTIR spectra of the samples at 400 ℃

    图  7  样品的N2吸附-脱附曲线(a)和孔径分布(b)

    Figure  7  N2 adsorption-desorption isotherms (a) and pore size distribution (b) of the samples

    图  8  不同磷含量的β沸石的NH3-TPD谱图

    Figure  8  NH3-TPD spectra of different β zeolite modified with phosphorus

    图  9  沸石B酸中心与(NH4)2HPO4反应过程

    Figure  9  Reaction of diammonium hydrogen phosphate and Brönsted acid site of zeolite

    图  10  样品在150 ℃(实线)和400 ℃(虚线)吡啶脱附的红外光谱谱图

    Figure  10  Py-FTIR spectra of the samples after desorption of pyridine at at 150 and 400 ℃

    图  11  β沸石磷负载量对烷基化产物中均三甲苯与C9质量比的影响

    reaction conditions: 3.5 MPa, 190 ℃, WSHVpropylene = 5 h−1, $n_{{\rm{C}}_{9}} $/npropylene = 0.8

    Figure  11  Value of m1,3,5-TMB/$m_{{\rm{C}}_{9}} $ in the reaction products obtained by different β catalysts

    图  12  不同磷负载量的β沸石上烷基化产物分布(a)和催化性能的对比(b)

    reaction conditions: 3.5 MPa, 190 ℃, WSHVpropylene = 5 h−1, nC9/npropylene = 0.8

    Figure  12  Distribution of alkylation products obtained by different β catalysts (a) and catalytic performance of different β catalysts (b)

    图  13  不同催化剂的稳定性

    reaction conditions: 3.5 MPa, 190 ℃, WSHVpropylene = 5 h−1, nC9/npropylene = 0.8

    Figure  13  Catalytic stability of different β catalysts: conversion of C9 aromatics (a) and conversion of o-MEB (b)

    表  1  C9芳烃组成

    Table  1  Composition of C9 aromatics

    ComponentNPBm, p-MEB1,3,5-TMBo-MEB1,2,4-TMB1,2,3-TMB
    w/%0.0510.6633.4155.140.720.02
    下载: 导出CSV

    表  2  不同磷负载量的β沸石的结构参数

    Table  2  Structure properties of differnet modified β zeolite samples

    SampleSurface area/(m2·g−1)Pore volume/(cm3·g−1
    SBETSMicroSMesovMicrovtota
    β431.1302.5128.60.160.41
    β-0.5P429.2301.8127.40.160.42
    β-1.0P422.4299.5122.90.160.42
    β-2.0P395.0283.1111.90.150.43
    下载: 导出CSV

    表  3  磷修饰的β沸石酸强度分布

    Table  3  Distribution of acidity amount of β zeolite modified with phosphorus

    SampleLT-peak/℃HT-peak/℃Total areaWeak acid areaStrong acid areaLT/HT*
    β210380377029258453.46
    β-0.5P210367376631306364.92
    β-1.0P212367374931496005.25
    β-2.0P200356287024534175.88
    * ratio of low temperature (LT) peak area to high temperature (HT) peak area
    下载: 导出CSV

    表  4  不同磷负载量的β沸石样品的吡啶红外数据

    Table  4  Py-FTIR data of β zeolite samples with different phosphorus loadings

    Sample150 ℃B/L400 ℃B/L
    B/(10−2 mmol·g−1)L/(10−2 mmol·g−1)B/(10−2 mmol·g−1)L/(10−2 mmol·g−1)
    β3.752.152.322.501.552.14
    β-0.5P2.871.842.081.901.421.78
    β-1.0P2.751.163.151.851.032.40
    β-2.0P2.350.644.891.730.593.94
    下载: 导出CSV
  • [1] 卢暄. 从催化重整副产C9芳烃分离制取偏三甲苯、均三甲苯技术[J]. 化学工业,2010,28(12):30−33. doi: 10.3969/j.issn.1673-9647.2010.12.007

    LU Xuan. Technological advance on comprehensive utilization of C9 heavy aromatics[J]. Chem Ind,2010,28(12):30−33. doi: 10.3969/j.issn.1673-9647.2010.12.007
    [2] 肖文, 周大军. 重整C9芳烃中提取高纯度均三甲苯的实验研究[J]. 石油学报(石油加工),2010,26(S1):93−97.

    XIAO Wen, ZHOU Da-jun. Experimental study on manufacturing high purity mesitylene from C9 arene cut of reforming[J]. Acta Pet Sin (Pet Process Sect),2010,26(S1):93−97.
    [3] 刘杰, 刘岗. C9芳烃催化烷基化法生产高纯度均三甲苯过程与技术改造[J]. 化工技术与开发,2004,33(6):48−49+42. doi: 10.3969/j.issn.1671-9905.2004.06.015

    LIU Jie, LIU Gang. Manufacture of high purity mesitylene from C9 aromatics mixture[J]. Technol Dev Chem Ind,2004,33(6):48−49+42. doi: 10.3969/j.issn.1671-9905.2004.06.015
    [4] 刘键, 刘恒源, 谭斌, 李平, 徐建鸿. 芳烃长链烷基化催化工艺研究进展[J]. 化工进展,2020,39(5):1744−1755.

    LIU Jian, LIU Heng-yuan, TAN Bin, LI Ping, XU Jian-hong. Research progress in long chain catalytic alkylation of aromatic hydrocarbons[J]. Chem Ind Eng Prog (China),2020,39(5):1744−1755.
    [5] 郭文迪, 刘植昌, 黄崇品, 李强. 离子液体催化三甲苯烷基化反应提纯均三甲苯的研究[C]//第九届全国化学工艺学术年会论文集. 北京: 中国石化出版社, 2005: 1078–1083.

    GUO Wen-di, LIU Zhi-chang, HUANG Chong-pin, LI Qiang. Separation 1,3,5-trimethylbenzene through alkylation catalyzed by ionic liquid[C]//Proceedings of the 9th National Chemical Technology Annual Conference. Beijing: China Petrochemical Press, 2005: 1078–1083.
    [6] 陈伴生, 周钰明, 张一卫. 用于烷基化C9芳烃分离制备均三甲苯的磷钨酸/高岭土催化剂的研究[J]. 石油炼制与化工,2006,37(4):28−31. doi: 10.3969/j.issn.1005-2399.2006.04.007

    CHEN Ban-sheng, ZHOU Yu-ming, ZHANG Yi-wei. Study on kaolin supported phosphor-tungstic acid catalyst for mesitylene preparation by alkylation of C9 aromatics[J]. Pet Ref Chem Ind,2006,37(4):28−31. doi: 10.3969/j.issn.1005-2399.2006.04.007
    [7] 高滋, 何鸣元, 戴逸云. 沸石催化与分离技术[M]. 北京: 中国石化出版社, 1999: 295–306.

    GAO Zi, HE Ming-yuan, DAI Yi-yun. Catalytic Separation of Zeolite[M]. Beijing: China Petrochemical Press, 1999: 295–306.
    [8] 王闻年, 袁德林, 李浩, 任申勇, 郭巧霞, 申宝剑. β沸石结构及其催化性能的调控[J]. 化工学报,2016,67(8):3429−3435.

    WANG Wen-nian, YUAN De-lin, LI Hao, REN Shen-yong, GUO Qiao-xia, SHEN Bao-jian. Regulation of structure and catalytic performance of β-zeolite by post treatments[J]. CIESC J,2016,67(8):3429−3435.
    [9] BAI G, DOU H, QIU M, FAN X, FEI H, NIU L, MA Z. Friedel-Crafts hydroxyalkylation of anisole over oxalic acid modified Hβ zeolite[J]. Catal Lett,2010,138(3/4):187−192. doi: 10.1007/s10562-010-0387-z
    [10] BELLUSSI G, PAZZUEONI G, PEREGO C, GIROTTI G, TERZONI G. Liquid phase alkylation of benzene with light olefins catalyzed by β-zeolites[J]. J Catal,1995,157:227−234. doi: 10.1006/jcat.1995.1283
    [11] 陈强强, 李杰. β沸石在C9芳烃烷基化提取均三甲苯中的催化性能[J]. 精细石油化工,2010,27(1):12−16. doi: 10.3969/j.issn.1003-9384.2010.01.004

    CHEN Qiang-qiang, LI Jie. Catalytic performance of β zeolite on extraction of mesitylene from C9 aromatics alkylation[J]. Spec Petrochem,2010,27(1):12−16. doi: 10.3969/j.issn.1003-9384.2010.01.004
    [12] 杨平, 潘履让, 李赫咺. β沸石的酸性和苯-丙烯烷基化反应的研究[J]. 燃料化学学报,1990,18(1):16−23.

    YANG Ping, PAN Lu-rang, LI He-xuan. Study of the acidity of β zeolite and the alkylation of benzene with propene[J]. J Fuel Chem Technol,1990,18(1):16−23.
    [13] WANG H L, XIN W Y. Surface acidity of H-beta and its catalytic activity for alkylation of benzene with propylene[J]. Catal Lett,2001,76(3):225−229.
    [14] RÖGER H P, MÖLLER K P, O'CONNOR C T. The transformation of 1,2,4-trimethylbenzene A probe reaction to monitor external surface modifications of HZSM-5?[J]. Microporous Mater,1997,8(3/4):151−157.
    [15] 谢在库, 陈庆龄, 张成芳, 刘红星, 陆贤. Hβ沸石上甲苯歧化和C9芳烃烷基转移反应[J]. 华东理工大学学报,2000,21(1):47−51.

    XIE Zai-ku, CHEN Qing-ling, ZHANG Cheng-fang, LIU Hong-xing, LU Xian. Disproportionation of Toluene and Transalkylation of C9 Aromatics over Hβ Zeolite[J]. J East China Univ Sci Technol,2000,21(1):47−51.
    [16] ČEJKA J, KOTRLA J, KREJČÍ A. Disproportionation of trimethyl benzenes over large pore zeolites: Catalytic and adsorption study[J]. Appl Catal A: Gen,2004,277(1):191−199.
    [17] 刘海燕, 施维, 任冬梅, 李平, 孙闻东. β沸石分子筛固体酸的制备及其在异丁烷和丁烯烷基化反应中的应用[J]. 分子科学学报,2005,21(3):29−35. doi: 10.3969/j.issn.1000-9035.2005.03.007

    LIU Hai-yan, SHI Wei, REN Dong-mei, LI Ping, SUN Wen-dong. Hydrothermal synthesis of zeolite and its application in isobutane/butene alkylation[J]. J Mol Sci,2005,21(3):29−35. doi: 10.3969/j.issn.1000-9035.2005.03.007
    [18] 宋祥梅, 李英霞, 陈标华, 李成岳. 磷改性β分子筛的酸性及其苯与丙烯烷基化催化性能[J]. 石油化工高等学校学报,2004,17(4):34−37. doi: 10.3969/j.issn.1006-396X.2004.04.010

    SONG Xiang-mei, LI Ying-xia, CHEN Biao-hua, LI Cheng-yue. Acidity and catalytic properties for benzene alkylation with propylene of β zeolite modified with phosphorus[J]. J Petrochem Univ,2004,17(4):34−37. doi: 10.3969/j.issn.1006-396X.2004.04.010
    [19] 晁会霞, 罗祥生, 张凤美. 高低温磷改性β分子筛及其烷基化反应性能研究[J]. 石油炼制与化工,2017,48(4):83−86. doi: 10.3969/j.issn.1005-2399.2017.04.018

    CHAO Hui-xia, LUO Xiang-sheng, ZHANG Feng-mei. Alkylation of benzene with ethylene catalyzed by zeolite beta modified by phosphorus at normal and high temperature[J]. Pet Ref Chem Ind,2017,48(4):83−86. doi: 10.3969/j.issn.1005-2399.2017.04.018
    [20] 王园园, 宋华, 孙兴龙, 苑丹丹, 王雪芹. Hβ分子筛的磷改性及其催化甲苯和叔丁醇烷基化反应性能[J]. 东北石油大学学报,2020,44(4):85−90. doi: 10.3969/j.issn.2095-4107.2020.04.012

    WANG Yuan-yuan, SONG Hua, SUN Xing-long, YUAN Dan-dan, WANG Xue-qin. Phosphprus modified Hβ zeolites and the catalytic perpormance for alkylation of toluene with tert-butyl alcohol[J]. J Northeast Pet Univ,2020,44(4):85−90. doi: 10.3969/j.issn.2095-4107.2020.04.012
    [21] TREACY M M J, HIGGINS J B. Collection of Simulated XRD Powder Patterns for Zeolites[M]. 5nd ed. Oxford, UK: Elsevier Science, 2007: 82–83.
    [22] XIONG Y, CHEN W, ZENG A. Optimization for catalytic performances of Hβ zeolite in the acylation of 2-methylfuran by surface modification and solvents effect[J]. Res Chem Intermed,2017,43(3):1557−1574. doi: 10.1007/s11164-016-2715-4
    [23] 赵培侠, 刘靖, 张春勇. 铵盐改性对β分子筛的酸性及其催化二异丙苯异构化反应性能的影响[J]. 石油化工,2005,34(6):527−531. doi: 10.3321/j.issn:1000-8144.2005.06.005

    ZHAO Pei-xia, LIU Jing, ZANG Chun-yong. Effects of ammonium salts modification on acidity of β molecular sieve and its catalytic performances in diisopropylbenzene isomerization[J]. Chin Petrochem Technol,2005,34(6):527−531. doi: 10.3321/j.issn:1000-8144.2005.06.005
    [24] 杨春, 须沁华. β沸石中铝的状态及归属[J]. 物理化学学报,1998,14(2):169−173. doi: 10.3866/PKU.WHXB19980214

    YANG Chun, XU Qin-hua. States and assignment of aluminium in zeolite β[J]. Acta Phys-Chim Sin,1998,14(2):169−173. doi: 10.3866/PKU.WHXB19980214
    [25] 谢在库, 陈庆龄, 张成芳, 包佳青, 曹玉华, 杨一青. Hβ沸石表面酸性质的研究[J]. 催化学报,2000,21(1):47−51. doi: 10.3321/j.issn:0253-9837.2000.01.014

    XIE Zai-ku, CHEN Qing-ling, ZHANG Cheng-fang, BAO Jia-qing, CAO Yu-hua, YANG Yi-qing. Study on the surface acid properties of Hβ zeolite[J]. Chin J Catal,2000,21(1):47−51. doi: 10.3321/j.issn:0253-9837.2000.01.014
    [26] DING J, WANG M, PENG L, XUE N H, WANG Y M, HE M Y. Combined desilication and phosphorus modification for high-silica ZSM-5 zeolite with related study of hydrocarbon cracking performance[J]. Appl Catal A: Gen,2015,503:147−155. doi: 10.1016/j.apcata.2015.07.011
    [27] 宋守强, 李黎声, 李明罡, 张凤美, 舒兴田. H-SAPO-34分子筛磷改性机理及作用[J]. 石油学报(石油加工),2014,30(3):398−407.

    SONG Shou-qiang, LI Li-sheng, LI Ming-gang, ZHANG Feng-mei, SHU Xing-tian. Effect and mechanism of phosphorus modification on H-SAPO-34 molecular sieves[J]. Acta Pet Sin (Pet Process Sect),2014,30(3):398−407.
    [28] JANSSEN A H, KOSTER A J, DE JONG K P. Three-dimensional transmission electron microscopic observations of mesopores in dealuminated zeolite Y[J]. Angew Chem Int Ed,2001,40(6):1102−1104. doi: 10.1002/1521-3773(20010316)40:6<1102::AID-ANIE11020>3.0.CO;2-6
    [29] 王成强, 欧阳颖, 罗一斌. 脱除模板剂前后磷改性对β分子筛稳定性的影响[J]. 石油学报(石油加工),2018,34(6):1211−1216.

    WANG Cheng-qiang, OUYANG Ying, LUO Yi-bin. Effects of phosphorus modification on the stability of β zeolite with and without template removal[J]. Acta Pet Sin (Pet Process Sect),2018,34(6):1211−1216.
    [30] LIU J X, HE N, LIU C Y, WANG G R, XIN Q, GUO H C. Engineering the porosity and acidity of H-Beta zeolite by dealumination for the production of 2-ethylanthraquinone via 2-(4′-ethylbenzoyl)benzoic acid dehydration[J]. RSC Adv,2018,8(18):9731−9740. doi: 10.1039/C7RA13576A
    [31] 魏强, 周亚松, 黄梅梅, 张涛, 王燕. 磷改性Y型分子筛的合成与表征[J]. 石油学报(石油加工),2011,27(2):275−279.

    WEI Qiang, ZHOU Ya-song, HUANG Mei-mei, ZHANG Tao, WANG Yan. Synthesis and characterization of phosphorous modified Y zeolite[J]. Acta Pet Sin (Pet Process Sect),2011,27(2):275−279.
    [32] 李曼尼, 吴瑞凤, 张景林. 磷改性斜发沸石的组成和结构表征[J]. 石油化工,2002,31(8):656−661. doi: 10.3321/j.issn:1000-8144.2002.08.015

    LI Man-ni, WU Rui-feng, ZHANG Jing-lin. Composition and structure characterization of phosphorus–modified clinoptilolite[J]. Chin Petrochem Technol,2002,31(8):656−661. doi: 10.3321/j.issn:1000-8144.2002.08.015
    [33] 邓德斌, 马丽景, 刘秀英, 李宣文. β沸石骨架铝化改性的红外光谱[J]. 物理化学学报,2000,16(2):162−165. doi: 10.3866/PKU.WHXB20000212

    DENG De-bin, MA Li-jing, LIU Xiu-ying, Li Xuan-wen. Study of the Realumination of H zeolite framework by infrared spectroscopy[J]. Acta Phys Chim Sin,2000,16(2):162−165. doi: 10.3866/PKU.WHXB20000212
    [34] 张建业, 李宣文, 刘兴云. β沸石骨架稳定性与表面酸性的红外光谱研究[J]. 物理化学学报,1999,15(12):37−42.

    ZHANG Jian-ye, LI Xuan-wen, LIU Xingyun. Study on the framework stability and surface acidity of Hβ zeolite by infrared spectroscopy[J]. Acta Phys Chim Sin,1999,15(12):37−42.
    [35] 惠宇, 刘金玲, 秦玉才, 孙兆林, 宋丽娟. 柠檬酸改性Hβ分子筛酸性中心的调变与解析[J]. 石油化工高等学校学报,2020,33(3):14−20. doi: 10.3969/j.issn.1006-396X.2020.03.003

    HUI Yu, LIU Jin-ling, QIN Yu-cai, SUN Zhao-lin, SONG Li-juan. Discrimination and regulation of the acidic sites of Hβ zeolite with citric acid treatment[J]. J Petrochem Univ,2020,33(3):14−20. doi: 10.3969/j.issn.1006-396X.2020.03.003
    [36] MITRAN G, CHEN S J, Dolge K L, HUANG W Y, SEO D K. Ketonic decarboxylation and esterification of propionic acid over beta zeolites[J]. Microporous Mesoporous Mater,2021,310.
    [37] SING K S W, EVERETT D H, HAUL R A W, MOSCOU L, PIEROTTI R A, ROUQUEROL J, SIEMIENIEWSKA T. Reporting physisorption data for gas/solid systems with special reference to determination of surface area and porosity[J]. Pure Appl Chem,1985,57(4):603−619. doi: 10.1351/pac198557040603
    [38] YANG L J, SONG Z Y, YU Y M, L J, XIA D H. Bimetallic bifunctional Pt-NiP/Hβ as a novel and highly efcient catalyst for n-hexane isomerization[J]. Catal Surv from Asia,2020,24(2):104−114. doi: 10.1007/s10563-020-09295-4
    [39] 孔德存, 施力, 王昕, 孟璇, 刘乃旺. 氟化铵改性USY分子筛及催化脱烯烃反应的研究[J]. 石油炼制与化工,2020,51(6):6−12. doi: 10.3969/j.issn.1005-2399.2020.06.002

    KONG De-cun, SHI Li, WANG Xin, MENG Xuan, LIU Nai-wang. Study of USY molecular sieve modified by ammonium fluoride and its catalytic deolefin performance[J]. Pet Ref Chem Ind,2020,51(6):6−12. doi: 10.3969/j.issn.1005-2399.2020.06.002
    [40] 苏炜, 韩娜, 陈政利, 沈健, 王雷, 刘姝, 杨丽娜. Hβ分子筛改性及其催化苯和氯化苄反应性能[J]. 石油学报(石油加工),2020,36(1):38−44.

    SU Wei, HAN Na, CHEN Zheng-li, SHEN Jian, WANG Lei, LIU Shu, YANG Li-na. Modification of Hβ molecular sieve and its catalytic performance in benzylation[J]. Acta Pet Sin (Pet Process Sect),2020,36(1):38−44.
    [41] 陈尚斌, 朱炎铭, 王红岩, 刘洪林, 魏伟, 方俊华. 川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J]. 煤炭学报,2012,37(3):438−444.

    CHEN Shang-bin, ZHU Yan-ming, WANG Hong-yan, LIU Hong-lin, WEI Wei, FANG Jun-hua. Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin[J]. J China Coal Soc,2012,37(3):438−444.
    [42] 赵尹, 王海彦, 魏民, 马骏. 磷改性β沸石催化剂上催化裂化轻汽油的醚化[J]. 燃料化学学报,2004,32(2):225−229. doi: 10.3969/j.issn.0253-2409.2004.02.020

    ZHAO Yin, WANG Hai-yan, WEI Min, MA Jun. Etherification of FCC light gasoline over P-loaded zeolite β catalyst[J]. J Fuel Chem Technol,2004,32(2):225−229. doi: 10.3969/j.issn.0253-2409.2004.02.020
    [43] 沈志虹, 潘惠芳, 徐春生, 赵业文, 邹晓风. 磷对烃类催化裂化催化剂表面酸性及抗碳性能的影响[J]. 石油大学学报(自然科学版),1994,18(2):86−89.

    SHEN Zhi-hong, PAN Hui-fang, XU Chun-sheng, ZHAO Ye-wen, ZOU Xiao-feng. Effect of phosphate on the acidity and coking of hydrocarbon catalyst[J]. J China Univ Pet: Nat Sci,1994,18(2):86−89.
    [44] WEI Z H, XIA T F, LIU M H, CAO Q S, XU Y R, ZHU K K, ZHU X D. Alkaline modification of ZSM-5 catalysts for methanol aromatization: The effect of the alkaline concentration[J]. Front Chem Sci Eng,2015,9(4):450−460. doi: 10.1007/s11705-015-1542-2
    [45] EMEIS C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J Catal,1993,141:347−354. doi: 10.1006/jcat.1993.1145
    [46] 程晓晶, 王祥生. C9芳烃在不同结构分子筛催化剂上的反应[J]. 石油化工,2013,42(1):24−29. doi: 10.3969/j.issn.1000-8144.2013.01.005

    CHENG Xiao-jing, WANG Xiang-sheng. Reactions of C9 aromatics over zeolite catalysts with different structures[J]. Chin Petrochem Technol,2013,42(1):24−29. doi: 10.3969/j.issn.1000-8144.2013.01.005
    [47] 刘红星, 谢在库, 张成芳, 陈庆龄. 甲苯歧化与三甲苯烷基转移反应体系的化学平衡[J]. 石油化工,2003,32(1):28−32. doi: 10.3321/j.issn:1000-8144.2003.01.008

    LIU Hong-xing, XIE Zai-ku, ZHANG Cheng-fang, CHEN Qing-ling. Chemical equilibrium of toluene disproportionation and trimethylbenzene transalkylatio[J]. Chin Petrochem Technol,2003,32(1):28−32. doi: 10.3321/j.issn:1000-8144.2003.01.008
    [48] 肖欢, 张维民, 马静红, 李瑞丰. 1,3,5-三甲苯在沸石催化剂上的催化转化[J]. 石油学报(石油加工),2019,35(2):369−375.

    XIAO Huan, ZHANG Wei-min, MA Jing-hong, LI Rui-feng. 1,3,5-trimethylbenzene transformation over zeolite catalyst[J]. Acta Pet Sin (Pet Process Sect),2019,35(2):369−375.
    [49] 李萌萌, 董秀芹, 张敏华. P改性ZSM-5分子筛的结构及酸性变化[J]. 计算机与应用化学,2012,29(2):245−248. doi: 10.3969/j.issn.1001-4160.2012.02.028

    LI Meng-meng, DONG Xiu-qin, ZHANG Min-hua. DFT study on the structural and acidity of P-ZSM-5[J]. Comput Appl Chem,2012,29(2):245−248. doi: 10.3969/j.issn.1001-4160.2012.02.028
    [50] 田玲, 李建伟, 李英霞, 陈标华. 磷改性MCM-22分子筛上苯与1-十二烯烷基化合成十二烷基苯[J]. 催化学报,2008,29(9):889−894. doi: 10.3321/j.issn:0253-9837.2008.09.012

    TIAN Ling, LI Jian-wei, LI Ying-xia, CHEN Biao-hua. Synthesis of dodecylbenzene with benzene and 1-dodecene over MCM-22 zeolite modified with phosphorus[J]. Chin J Catal,2008,29(9):889−894. doi: 10.3321/j.issn:0253-9837.2008.09.012
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  650
  • HTML全文浏览量:  342
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-08
  • 修回日期:  2021-07-16
  • 网络出版日期:  2021-08-13
  • 刊出日期:  2022-01-25

目录

    /

    返回文章
    返回