留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物质替代石油原料合成高密度燃料的研究进展

刘宁 史成香 潘伦 张香文 邹吉军

刘宁, 史成香, 潘伦, 张香文, 邹吉军. 生物质替代石油原料合成高密度燃料的研究进展[J]. 燃料化学学报(中英文), 2021, 49(12): 1780-1790. doi: 10.19906/j.cnki.JFCT.2021076
引用本文: 刘宁, 史成香, 潘伦, 张香文, 邹吉军. 生物质替代石油原料合成高密度燃料的研究进展[J]. 燃料化学学报(中英文), 2021, 49(12): 1780-1790. doi: 10.19906/j.cnki.JFCT.2021076
LIU Ning, SHI Cheng-xiang, PAN Lun, ZHANG Xiang-wen, ZOU Ji-jun. Progress on using biomass derivatives to replace petroleum for synthesis of high-density fuels[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1780-1790. doi: 10.19906/j.cnki.JFCT.2021076
Citation: LIU Ning, SHI Cheng-xiang, PAN Lun, ZHANG Xiang-wen, ZOU Ji-jun. Progress on using biomass derivatives to replace petroleum for synthesis of high-density fuels[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1780-1790. doi: 10.19906/j.cnki.JFCT.2021076

生物质替代石油原料合成高密度燃料的研究进展

doi: 10.19906/j.cnki.JFCT.2021076
详细信息
    作者简介:

    刘宁:18222618746@163.com

    通讯作者:

    Tel: 022-27892340,E-mail: jj_zou@tju.edu.cn

  • 中图分类号: TQ203

Progress on using biomass derivatives to replace petroleum for synthesis of high-density fuels

More Information
  • 摘要: “碳达峰、碳中和”目标的提出,为中国能源结构转型提供了动力引擎。发展生物质基高密度燃料,既可以为传统石油基高密度燃料提供可再生的替代品,又符合中国可持续发展以及能源结构转型的要求。本文综述了RJ-4、JP-10等典型石油基高密度燃料的性质和用途,总结了由萜类以及木质纤维素平台化合物合成RJ-4、JP-10以及其他多环燃料的路线方法,展示了生物质转化制备高密度燃料的良好可行性,讨论了目前生物质基高密度燃料研究面临的瓶颈以及发展方向。
  • FIG. 1143.  FIG. 1143.

    FIG. 1143.  FIG. 1143.

    图  1  RJ-4(endo-THDMCPD与exo-THDMCPD)合成路线

    Figure  1  Synthesis route of RJ-4 (endo-THDMCPD and exo-THDMCPD)

    图  2  JP-10(exo-THDCPD)合成路线

    Figure  2  Synthesis route of JP-10 (exo-THDCPD)

    图  3  THTCPD合成路线

    Figure  3  Synthesis route of THTCPD

    图  4  RJ-5(四氢降冰片二烯二聚体)合成路线

    Figure  4  Synthesis route of RJ-5 (dihydrodinorbornadiene)

    图  5  单萜结构示意图

    Figure  5  Structural formula of monoterpene

    图  6  倍半萜结构式

    Figure  6  Structural formula of sesquiterpenes

    图  7  芳樟醇制备RJ-4(THDMCPD)路线图[57]

    Figure  7  Route for the synthesis of RJ-4 (THDMCPD) from linalool[57] (with permission from John Wiley and Sons)

    图  8  5-甲基糠醛制备RJ-4(THDMCPD)路线图[58]

    Figure  8  Route for the synthesis of RJ-4 (THDMCPD) from 5-methyl furfural[58] (with permission from Royal Society of Chemistry)

    图  9  纤维素制备2,5-己二酮[49]

    Figure  9  Reaction pathway for the hydrogenolysis of cellulose to 2,5-hexanedione[49] (with permission from Elsevier)

    图  10  纤维素制备RJ-4(THDMCPD)路线图[59-61]

    Figure  10  Route for the synthesis of RJ-4 (THDMCPD) from cellulose[59-61] (with permission from John Wiley and Sons, American Chemical Society, Springer Nature)

    图  11  糠醇合成JP-10(exo-THDCPD)路线图[62]

    Figure  11  Route for the synthesis of JP-10 (exo-THDCPD) from furfuryl alcohol[62] (with permission from John Wiley and Sons)

    表  1  典型石油基高密度燃料性质

    Table  1  Properties of typical fossil-based high-density fuels

    Fuel Density (20 ℃)/
    (g·mL−1)
    Freezing point/℃ Viscosity (−40 ℃)/
    (mm2·s−1)
    Heat value/ (MJ·L−1) Ref
    RJ-4 0.927 < −40 60 39.0 [5,7]
    RJ-4-I 0.911−0.918 < −65 28−32.4 38.5 [5,7,8]
    JP-10 0.94 −79 19 39.6 [6,8-10]
    RJ-7 1.01 > 400 42.1 [5]
    RJ-5 1.08 0 44.9 [10]
    下载: 导出CSV

    表  2  萜类化合物二聚燃料性质

    Table  2  Properties of terpene dimer fuels

    Monomer Heat value/
    (MJ·kg−1)
    Density/
    (g·mL−1)
    Viscosity(40 ℃)/
    (mm2·s−1)
    α-pinene 42.047 0.935 34.68
    β-pinene 42.118 0.938 35.05
    Limonene 41.906 0.914 25.86
    Camphene 40.063 0.941 34.96
    下载: 导出CSV

    表  3  联环燃料的结构及主要性质

    Table  3  Structure and properties of multi-cyclic fuels

    Feedstock Main component structure Density(20 ℃)/
    (g·mL−1)
    Freezing point/℃ Heat value/
    (MJ·kg−1)
    Viscosity/(mm2·s−1) Ref
    Isophorone 0.858 −51 [32]
    Cyclohexanone 0.887 1.2 42.97 3.72 (25°C),
    6.33 (5°C)
    [31]
    Cyclopentanone 0.867 −38 42.42 1.62 (25 ℃),
    4.68 (−35 ℃)
    [31]
    Cyclopentanone 0.91 4.774 (25 ℃) [33]
    Cyclopentanone 0.943 −39.5 [34]
    下载: 导出CSV

    表  4  螺环燃料的结构及主要性质

    Table  4  Structure and properties of spiro fuels

    Feedstock Main component structure Density (20 ℃)/
    (g·mL−1)
    Freezing point/℃ Heat value/
    (MJ·kg−1)
    Viscosity/
    (mm2·s−1)
    Ref
    Cyclopentanone 0.870 −76 42.72 2.12 (25 ℃),
    3.33 (0 ℃),
    19.8 (−60 ℃)
    [35]
    Cyclohexanone 0.893 −51 43.01 4.37 (25°C),
    8.59 (5°C),
    232.3 (−20 ℃)
    [35]
    Cyclohexanone, formaldehyde and cyclopentadiene 0.952 −53 42.21
    40.18
    5.9 (25 ℃)
    11.4 (0 ℃),
    61.9 (−40 ℃)
    [36]
    Isophorone and
    β-pinene
    0.911 −51 42.45
    38.67
    3 (20 ℃)
    15 (0 ℃),
    176 (−20 ℃)
    [37]
    下载: 导出CSV

    表  5  稠环燃料的结构及性质

    Table  5  Structure and properties of fused-ring fuels

    Feedstock Main component structure Density (20 ℃)/
    (g·mL−1)
    Freezing point/℃ Heat value/
    (MJ·L−1)
    Viscosity/
    (mm2·s−1)
    Ref
    Cyclopentanone ~0.87 −44 [39]
    Cyclohexanone ~0.88 (−51)− (−110) ~37 ~22 (−40 ℃) [41]
    Phenol, anisole or guaiacol and benzyl ether or benzyl alcohols 0.96 −15 40.1 1752 (20 ℃) [42]
    Cyclohexanone and 2-methyl benzaldehyde 0.99 −22 [44]
    Cyclohexanone and 4-methyl benzaldehyde 0.96 −3 [44]
    Acetone and 2-methyl benzaldehyde 0.91 −44 [46]
    Acetone and 4-methyl benzaldehyde 0.94 −41 [46]
    下载: 导出CSV
  • [1] 潘伦, 邓强, 鄂秀天凤, 聂根阔, 张香文, 邹吉军. 高密度航空航天燃料合成化学[J]. 化学进展,2015,27(11):1531−1541.

    PAN Lun, DENG Qiang, E Xiu-tian-feng, NIE Gen-kuo, ZHANG Xiang-wen, ZOU Ji-jun. Synthesis chemistry of high-density fuels for aviation and aerospace propulsion[J]. Prog Chem,2015,27(11):1531−1541.
    [2] 邹吉军, 张香文, 王莅, 米镇涛. 高密度液体碳氢燃料合成及应用进展[J]. 含能材料,2007,15(4):411−415. doi: 10.3969/j.issn.1006-9941.2007.04.030

    (ZOU Ji-jun, ZHANG Xiang-wen, WANG Li, MI Zhen-tao. Progress in synthesis and application of high-density liquid hydrocarbon fuels[J]. Chin J Energy Mater,2007,15(4):411−415. doi: 10.3969/j.issn.1006-9941.2007.04.030
    [3] 邹吉军, 郭成, 张香文, 王莅, 米镇涛. 航天推进用高密度液体碳氢燃料: 合成与应用[J]. 推进技术,2014,35(10):1419−1425.

    ZOU Ji-jun, GUO Cheng, ZHANG Xiang-wen, WANG Li, MI Zhen-tao. High-density liquid hydrocarbon fuels for aerospace propulsion: synthesis and application[J]. J Propul Technol,2014,35(10):1419−1425.
    [4] ZHANG X W, PAN L, WANG L, ZOU J-J. Review on synthesis and properties of high-energy-density liquid fuels: Hydrocarbons, nanofluids and energetic ionic liquids[J]. Chem Eng Sci,2018,180:95−125. doi: 10.1016/j.ces.2017.11.044
    [5] CHUNG H S, CHEN C S H, KREMER R A, BOULTON J R, BURDETTE G W. Recent developments in high-energy density liquid hydrocarbon fuels[J]. Energy Fuels,1999,13(3):641−649. doi: 10.1021/ef980195k
    [6] EDWARDS T. Liquid fuels and propellants for aerospace propulsion: 1903−2003[J]. J Propul Power,2003,19(6):1089−1107. doi: 10.2514/2.6946
    [7] JANOSKI E J, SCHNEIDER A, WARE R E. Process for isomerization of tetrahydrodimethyldicyclopentadiene: US, 4288644A[P]. 1981-09-08.
    [8] JANOSKI E J, MITCHELL R E, SCHNEIDER A. Continuous process for conversion of dimethydicyclopentadiene to endo-dimethyldicyclopentadiene, a missile fuel: US, 4177217A[P]. 1979-12-04.
    [9] COHEN C A, MUESSIG C W. Jet and rocket fuel: US, 3381046A[P]. 1968-04-30.
    [10] 熊中强, 米镇涛, 张香文, 邢恩会. 合成高密度烃类燃料研究进展[J]. 化学进展,2005,17(2):359−367. doi: 10.3321/j.issn:1005-281X.2005.02.022

    XIONG Zhong-qiang, MI Zhen-tao, ZHANG Xiang-wen, XING En-hui. Development of synthesized high-density hydrocarbon fuels[J]. Prog Chem,2005,17(2):359−367. doi: 10.3321/j.issn:1005-281X.2005.02.022
    [11] GEORGE W, BURDETTE R, HALL L. Low viscosity air breathing missile fuel: US, 4427467A[P]. 1984-01-24.
    [12] SCHNEIDER A, WARE R, JANOSKI E J. Isomerization of endo-tetrahydrodicyclopentadiene to a missile fuel diluent: US, 4086284A[P]. 1978-04-25.
    [13] LI Y H, ZOU J-J, ZHANG X W, WANG L, MI Z T. Product distribution of tricyclopentadiene from cycloaddition of dicyclopentadiene and cyclopentadiene: A theoretical and experimental study[J]. Fuel,2010,89(9):2522−2527. doi: 10.1016/j.fuel.2009.11.020
    [14] BOULTON J R, KREMER R A. Oligomers of cyclopentadiene and process for making them: US, 5446222A[P]. 1995-8-29.
    [15] 谢嘉维, 张香文, 谢君健, 聂根阔, 潘伦, 邹吉军. 由生物质合成高密度喷气燃料[J]. 化学进展,2018,30(9):1424−1433.

    XIE Jia-wei, ZHANG Xiang-wen, XIE Jun-jian, NIE Gen-kuo, PAN Lun, ZOU Ji-jun. Synthesis of high-density jet fuels from biomass[J]. Prog Chem,2018,30(9):1424−1433.
    [16] ZOU J-J, ZHANG X W, PAN L. High-Energy-Density Fuels for Advanced Propulsion: Design and Synthesis[M]. New Jersey: Wiley, 2020: 241-289.
    [17] YANG X K, LI T, TANG K, ZHOU X P, LU M, OUNKHAM W L, SPAIN S M, FROST B J, LIN H F. Highly efficient conversion of terpenoid biomass to jet-fuel range cycloalkanes in a biphasic tandem catalytic process[J]. Green Chem,2017,19(15):3566−3573. doi: 10.1039/C7GC00710H
    [18] HARVEY B G, WRIGHT M E, QUINTANA R L. High-density renewable fuels based on the selective dimerization of pinenes[J]. Energy Fuels,2010,24(1):267−273. doi: 10.1021/ef900799c
    [19] XU J, ZHU P, LIU X Y, YANG X Q, SHAN S Y, MA Y, PAN D, DONG B B, GUO Z H. Preparation of high-density fuel through dimerization of β-pinene[J]. Chem Eng Technol,2020,43(11):2259−2265. doi: 10.1002/ceat.202000250
    [20] BELLER H R, LEE T S, KATZ L. Natural products as biofuels and bio-based chemicals: Fatty acids and isoprenoids[J]. Nat Prod Rep,2015,32(10):1508−1526. doi: 10.1039/C5NP00068H
    [21] YANG X K, UDDIN M H, ZHOU X P, NEUPANE B, MILLER G C, CORONELLA C J, POULSON S R, LIN H F. Production of high-density renewable aviation fuel from arid land crop[J]. ACS Sustainable Chem Eng,2018,6(8):10108−10119. doi: 10.1021/acssuschemeng.8b01433
    [22] 邹吉军, 张香文, 王莅, 王庆法. 一种含生物燃料的混合喷气燃料及其制备方法: 中国, 103013589A[P]. 2013-04-03.

    ZOU Ji-jun, ZHANG Xiang-wen, WANG Li, WANG Qing-fa. A mixed jet fuel containing biofuels and its preparation method: CN, 103013589A[P]. 2013-04-03.
    [23] ZOU J-J, CHANG N, ZHANG X W, WANG L. Isomerization and dimerization of pinene using Al-incorporated MCM-41 mesoporous materials[J]. ChemCatChem,2012,4(9):1289−1297. doi: 10.1002/cctc.201200106
    [24] MEYLEMANS H A, QUINTANA R L, HARVEY B G. Efficient conversion of pure and mixed terpene feedstocks to high density fuels[J]. Fuel,2012,97:560−568. doi: 10.1016/j.fuel.2012.01.062
    [25] HARVEY B G, MEYLEMANS H A, GOUGH R V, QUINTANA R L, GARRISON M D, BRUNO T J. High-density biosynthetic fuels: the intersection of heterogeneous catalysis and metabolic engineering[J]. Phys Chem Chem Phys,2014,16(20):9448−9457. doi: 10.1039/C3CP55349C
    [26] ISIKGOR F H, BECER C R. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers[J]. Polym Chem,2015,6(25):4497−4559. doi: 10.1039/C5PY00263J
    [27] ULONSKA K, VOLL A, MARQUARDT W. Screening pathways for the production of next generation biofuels[J]. Energy Fuels,2016,30(1):445−456. doi: 10.1021/acs.energyfuels.5b02460
    [28] MOTAGAMWALA A H, WON W, MARAVELIAS C T, DUMESIC J A. An engineered solvent system for sugar production from lignocellulosic biomass using biomass derived gamma-valerolactone[J]. Green Chem,2016,18(21):5756−5763. doi: 10.1039/C6GC02297A
    [29] 袁正求, 龙金星, 张兴华, 夏莹, 王铁军, 马隆龙. 木质纤维素催化转化制备能源平台化合物[J]. 化学进展,2016,28(1):103−110. doi: 10.7536/PC150744

    YUAN Zheng-qiu, LONG Jin-xing, ZHANG Xing-hua, XIA Ying, WANG Tie-jun, MA Long-long. Catalytic conversion of lignocellulose into energy platform chemicals[J]. Prog Chem,2016,28(1):103−110. doi: 10.7536/PC150744
    [30] YANG J F, LI N, LI G Y, WANG W T, WANG A Q, WANG X D, CONG Y, ZHANG T. Synthesis of renewable high-density fuels using cyclopentanone derived from lignocellulose[J]. Chem Commun,2014,50(20):2572−2574. doi: 10.1039/c3cc46588h
    [31] DENG Q, NIE G K, PAN L, ZOU J-J, ZHANG X W, WANG L. Highly selective self-condensation of cyclic ketones using MOF-encapsulating phosphotungstic acid for renewable high-density fuel[J]. Green Chem,2015,17(8):4473−4481. doi: 10.1039/C5GC01287B
    [32] WANG W, LIU Y T, LI N, LI G Y, WANG W T, WANG A Q, WANG X D, ZHANG T. Synthesis of renewable high-density fuel with isophorone[J]. Sci Rep,2017,7:6111. doi: 10.1038/s41598-017-06556-7
    [33] SHENG X R, LI G Y, WANG W T, CONG Y, WANG X D, HUBER G W, LI N, WANG A Q, ZHANG T. Dual-bed catalyst system for the direct synthesis of high density aviation fuel with cyclopentanone from lignocellulose[J]. AIChE J,2016,62(8):2754−2761. doi: 10.1002/aic.15248
    [34] WANG W, LI N, LI G Y, LI S S, WANG W T, WANG A Q, CONG Y, WANG X D, ZHANG T. Synthesis of renewable high-density fuel with cyclopentanone derived from hemicellulose[J]. ACS Sustainable Chem Eng,2017,5(2):1812−1817. doi: 10.1021/acssuschemeng.6b02554
    [35] XIE J J, ZHANG X W, PAN L, NIE G K, E X T F, LIU Q, WANG P, LI Y F, ZOU J-J. Renewable high-density spiro-fuels from lignocellulose-derived cyclic ketones[J]. Chem Commun,2017,53(74):10303−10305. doi: 10.1039/C7CC05101H
    [36] PAN L, XIE J J, NIE G K, LI Z, ZHANG X W, ZOU J-J. Zeolite catalytic synthesis of high-performance jet-fuel-range spiro-fuel by one-pot Mannich-Diels-Alder reaction[J]. AIChE J,2019,66(1):e16789.
    [37] XIE J J, PAN L, NIE G K, XIE J W, LIU Y K, MA C, ZHANG X W, ZOU J-J. Photoinduced cycloaddition of biomass derivatives to obtain high-performance spiro-fuel[J]. Green Chem,2019,21(21):5886−5895. doi: 10.1039/C9GC02790D
    [38] ROAN M A, BOEHMAN A L. The effect of fuel composition and dissolved oxygen on deposit formation from potential JP-900 basestocks[J]. Energy Fuels,2004,18(3):835−843. doi: 10.1021/ef034050b
    [39] TANG H, CHEN F, LI G Y, YANG X F, HU Y C, WANG A Q, CONG Y, WANG X D, ZHANG T, LI N. Synthesis of jet fuel additive with cyclopentanone[J]. J Energy Chem,2019,29:23−30. doi: 10.1016/j.jechem.2018.01.017
    [40] WANG R, LI G Y, TANG H, WANG A Q, XU G L, CONG Y, WANG X D, ZHANG T, LI N. Synthesis of decaline-type thermal-stable jet fuel additives with cycloketones[J]. ACS Sustainable Chem Eng,2019,7(20):17354−17361. doi: 10.1021/acssuschemeng.9b04288
    [41] NIE G K, ZHANG X W, PAN L, WANG M, ZOU J-J. One-pot production of branched decalins as high-density jet fuel from monocyclic alkanes and alcohols[J]. Chem Eng Sci,2018,180:64−69. doi: 10.1016/j.ces.2018.01.024
    [42] NIE G K, ZHANG X W, HAN P J, XIE J J, PAN L, WANG L, ZOU J-J. Lignin-derived multi-cyclic high density biofuel by alkylation and hydrogenated intramolecular cyclization[J]. Chem Eng Sci,2017,158:64−69. doi: 10.1016/j.ces.2016.10.003
    [43] NIE G K, ZHANG X W, PAN L, HAN P J, XIE J J, LI Z, XIE J W, ZOU J-J. Hydrogenated intramolecular cyclization of diphenylmethane derivatives for synthesizing high-density biofuel[J]. Chem Eng Sci,2017,173:91−97. doi: 10.1016/j.ces.2017.07.034
    [44] XU J L, LI N, LI G Y, HAN F A, WANG A Q, CONG Y, WANG X D, ZHANG T. Synthesis of high-density aviation fuels with methyl benzaldehyde and cyclohexanone[J]. Green Chem,2018,20(16):3753−3760. doi: 10.1039/C8GC01628C
    [45] ZHANG X J, HAN F G, LIN S Z, CHEN F, SUN M J, LIU J J, LI G Y, TANG H, WANG A Q, CONG Y, LI N. Synthesis of branched octahydro-indene with methyl benzaldehyde and methyl isobutyl ketone[J]. ACS Sustainable Chem Eng,2019,7(14):12023−12031.
    [46] TIMOTHY A A, HAN F G, LI G Y, XU J L, WANG A Q, CONG Y, LI N. Synthesis of jet fuel range high-density dicycloalkanes with methyl benzaldehyde and acetone[J]. Sustainable Energy Fuels,2020,4(11):5560−5567. doi: 10.1039/D0SE01110J
    [47] JIA T H, ZHANG X W, LIU Y, GONG S, DENG C, PAN L, ZOU J-J. A comprehensive review of the thermal oxidation stability of jet fuels[J]. Chem Eng Sci,2021,229:116157. doi: 10.1016/j.ces.2020.116157
    [48] CHAMBON F, RATABOUL F, PINEL C, CABIAC A, GUILLON E, ESSAYEM N. Conversion of cellulose to 2,5-hexanedione using tungstated zirconia in hydrogen atmosphere[J]. Appl Catal A: Gen,2015,504:664−671. doi: 10.1016/j.apcata.2015.02.042
    [49] LIU Y T, LI G Y, HU Y C, WANG A Q, LU F, ZOU J-J, CONG Y, LI N, ZHANG T. Integrated conversion of cellulose to high-density aviation fuel[J]. Joule,2019,3(4):1028−1036. doi: 10.1016/j.joule.2019.02.005
    [50] LI S S, CHEN F, LI N, WANG W T, SHENG X R, WANG A Q, CONG Y, WANG X D, ZHANG T. Synthesis of renewable triketones, diketones, and jet-fuel range cycloalkanes with 5-hydroxymethylfurfural and ketones[J]. ChemSusChem,2016,10(4):711−719.
    [51] REN D Z, SONG Z Y, LI L, LIU Y J, JIN F M, HUO Z B. Production of 2,5-hexanedione and 3-methyl-2-cyclopenten-1-one from 5-hydroxymethylfurfural[J]. Green Chem,2016,18(10):3075−3081. doi: 10.1039/C5GC02493E
    [52] SACIA E R, DEANER M H, YING L L, BELL A T. Synthesis of biomass-derived methycyclopentane as a gasoline additive via aldol condensation/hydrodeoxygenation of 2, 5-hexanedione[J]. Green Chem,2015,17(4):2393−2397. doi: 10.1039/C4GC02292K
    [53] NISHIMURA S, OHMATSU S, EBITANI K. Selective synthesis of 3-methyl-2-cyclopentenone via intramolecular aldol condensation of 2, 5-hexanedione with gamma-Al2O3/AlOOH nanocomposite catalyst[J]. Fuel Process Technol,2019,196:106185. doi: 10.1016/j.fuproc.2019.106185
    [54] MONICA N, GIOVANNI S, PAOLA C, MANUELA O, ANTONIO P. Eco-friendly stereoselective reduction of α, β-unsaturated carbonyl compounds by Er(OTf)3/NaBH4 in 2-MeTHF[J]. Tetrahedron,2015,71(7):1132−1135. doi: 10.1016/j.tet.2014.12.005
    [55] FORKEL N V, HENDERSON D A, FUCHTER M J. Lanthanide replacement in organic synthesis: Luche-type reduction of alpha, beta-unsaturated ketones in the presence of calcium triflate[J]. Green Chem,2012,14(8):2129−2132. doi: 10.1039/c2gc35619h
    [56] HOYE T R, ZHAO H. Some allylic substituent effects in ring-closing metathesis reactions: allylic alcohol activation[J]. Org Lett,1999,1(7):1123−1125. doi: 10.1021/ol990947+
    [57] MEYLEMANS H A, QUINTANA R L, GOLDSMITH B R, HARVEY B G. Solvent-free conversion of linalool to methylcyclopentadiene dimers: a route to renewable high-density fuels[J]. ChemSusChem,2011,4(4):465−469. doi: 10.1002/cssc.201100017
    [58] NIE G K, SHI C X, DAI Y Y, LIU Y N, LIU Y K, MA C, LIU Q, PAN L, ZHANG X W, ZOU J-J. Producing methylcyclopentadiene dimer and trimer based high-performance jet fuels using 5-methyl furfural[J]. Green Chem,2020,22(22):7765−7768. doi: 10.1039/D0GC02361B
    [59] WOODROFFE J D, HARVEY B G. Synthesis of bio-based methylcyclopentadiene from 2, 5-hexanedione: a sustainable route to high energy density jet fuels[J]. ChemSusChem,2020,14(1):339−343.
    [60] LIU Y T, WANG R, QI H F, LIU X Y, LI G Y, WANG A Q, WANG X D, CONG Y, ZHANG T, LI N. Synthesis of bio-based methylcyclopentadiene via direct hydrodeoxygenation of 3-methylcyclopent-2-enone derived from cellulose[J]. Nat Commun,2021,12(1):46. doi: 10.1038/s41467-020-20264-3
    [61] WANG R, LIU Y T, LI G Y, WANG A Q, WANG X D, CONG Y, ZHANG T, LI N. Direct synthesis of methylcyclopentadiene with 2,5-hexanedione over zinc molybdates[J]. ACS Catal,2021,11(8):4810−4820. doi: 10.1021/acscatal.1c00223
    [62] LI G Y, HOU B L, WANG A Q, XIN X L, CONG Y, WANG X D, LI N, ZHANG T. Making JP-10 superfuel affordable with a lignocellulosic platform compound[J]. Angew Chem Int Ed,2019,58(35):12154−12158. doi: 10.1002/anie.201906744
    [63] LI G Y, LI N, ZHENG M Y, LI S S, WANG A Q, CONG Y, WANG X D, ZHANG T. Industrially scalable and cost-effective synthesis of 1,3-cyclopentanediol with furfuryl alcohol from lignocellulose[J]. Green Chem,2016,18(12):3607−3613. doi: 10.1039/C6GC00341A
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  2603
  • HTML全文浏览量:  626
  • PDF下载量:  272
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-28
  • 修回日期:  2021-07-28
  • 网络出版日期:  2021-08-21
  • 刊出日期:  2021-12-29

目录

    /

    返回文章
    返回