留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柠檬酸量对水热合成CuO/Ce0.8Zr0.2O2催化水气变换制氢性能的影响

王丽宝 王宏浩 张磊 庆绍军 刘冬梅 高志贤 张海娟 官国清

王丽宝, 王宏浩, 张磊, 庆绍军, 刘冬梅, 高志贤, 张海娟, 官国清. 柠檬酸量对水热合成CuO/Ce0.8Zr0.2O2催化水气变换制氢性能的影响[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2021078
引用本文: 王丽宝, 王宏浩, 张磊, 庆绍军, 刘冬梅, 高志贤, 张海娟, 官国清. 柠檬酸量对水热合成CuO/Ce0.8Zr0.2O2催化水气变换制氢性能的影响[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2021078
WANG Li-bao, WANG Hong-hao, ZHANG Lei, QING Shao-jun, LIU Dong-mei, GAO Zhi-xian, ZHANG Hai-juan, GUAN Guo-qing. Effect of citric acid content on the hydrothermal synthesis of CuO/Ce0.8Zr0.2O2 catalytic water gas shift hydrogen production performance[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2021078
Citation: WANG Li-bao, WANG Hong-hao, ZHANG Lei, QING Shao-jun, LIU Dong-mei, GAO Zhi-xian, ZHANG Hai-juan, GUAN Guo-qing. Effect of citric acid content on the hydrothermal synthesis of CuO/Ce0.8Zr0.2O2 catalytic water gas shift hydrogen production performance[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2021078

柠檬酸量对水热合成CuO/Ce0.8Zr0.2O2催化水气变换制氢性能的影响

doi: 10.19906/j.cnki.JFCT.2021078
基金项目: 国家自然科学基金(21673270);辽宁省教育厅科学研究经费项目(L2019038);辽宁省自然科学基金面上项目(2019-MS-221)
详细信息
    作者简介:

    王丽宝:1731811874@qq.com

    通讯作者:

    E-mail:lnpuzhanglei@163.com

    gaozx@sxicc.ac.cn

  • 中图分类号: O643

Effect of citric acid content on the hydrothermal synthesis of CuO/Ce0.8Zr0.2O2 catalytic water gas shift hydrogen production performance

Funds: The project was supported by the National Natural Science Foundation of China (21673270); Scientific Research Funds Project of Liaoning Education Department (L2019038); The Project of the Natural Science Fund in Liaoning Province(2019-MS-221)
  • 摘要: 采用水热法合成了Ce0.8Zr0.2O2固溶体,再经浸渍法负载活性组分制备了CuO/Ce0.8Zr0.2O2催化剂,考察了柠檬酸量对CuO/Ce0.8Zr0.2O2催化剂结构、性质及其催化水气变换反应制氢性能的影响。结果表明,不同柠檬酸量制备的CuO/Ce0.8Zr0.2O2催化剂的催化活性主要与Cu比表面积、还原性能及Ce0.8Zr0.2O2固溶体与CuO之间的相互作用有关。其中,柠檬酸浓度为0.04 mol/L所制备的催化剂具有较大的Cu比表面积,较低的CuO还原温度和较强的Ce0.8Zr0.2O2固溶体与CuO之间的相互作用,在水气变换制氢过程中具有较高的CO转化率,表现出了较好的催化活性。在反应温度为320 ℃,水气摩尔比n(H2O)/n(CO) = 2,总气体体积空速GHSV = 6600 h-1时,CO转化率接近热力学平衡值,为96.9%。
  • 图  1  Ce0.8Zr0.2O2-CA4前驱体的热重曲线

    Figure  1  Thermogravimetric curve of Ce0.8Zr0.2O2-CA4 precursor

    图  2  Ce0.8Zr0.2O2固溶体的XRD谱图

    Figure  2  XRD spectrum of Ce0.8Zr0.2O2 solid solution

    a:CeO2; b:Ce0.8Zr0.2O2-CA2; c:Ce0.8Zr0.2O2-CA4; d:Ce0.8Zr0.2O2-CA6; e:Ce0.8Zr0.2O2-CA8

    图  3  CuO/Ce0.8Zr0.2O2催化剂的XRD谱图

    Figure  3  XRD spectra of CuO/Ce0.8Zr0.2O2 catalysts

    a:CuO/CeO2; b:CuO/Ce0.8Zr0.2O2-CA2; c:CuO/Ce0.8Zr0.2O2-CA4; d:CuO/Ce0.8Zr0.2O2-CA6; e:CuO/Ce0.8Zr0.2O2-CA8

    图  4  不同柠檬酸量制备的CuO/Ce0.8Zr0.2O2催化剂的H2-TPR

    Figure  4  H2-TPR of CuO/Ce0.8Zr0.2O2 catalysts prepared with different citric acid content

    a:CuO/Ce0.8Zr0.2O2-CA2; b:CuO/Ce0.8Zr0.2O2-CA4; c:CuO/Ce0.8Zr0.2O2-CA6; d:CuO/Ce0.8Zr0.2O2-CA8

    图  5  不同柠檬酸量制备的CuO/Ce0.8Zr0.2O2催化剂的Ce 3d XPS谱图

    Figure  5  Ce 3d XPS spectra of CuO/Ce0.8Zr0.2O2 catalysts prepared with different citric acid content

    a:CuO/CeO2; b:CuO/Ce0.8Zr0.2O2-CA2; c:CuO/Ce0.8Zr0.2O2-CA4; d:CuO/Ce0.8Zr0.2O2-CA6; e:CuO/Ce0.8Zr0.2O2-CA8

    图  6  不同柠檬酸量制备的CuO/Ce0.8Zr0.2O2催化剂的Cu 2p XPS谱图

    Figure  6  Cu 2p XPS spectra of CuO/Ce0.8Zr0.2O2 catalysts prepared with different citric acid content

    a:CuO/CeO2; b:CuO/Ce0.8Zr0.2O2-CA2; c:CuO/Ce0.8Zr0.2O2-CA4; d:CuO/Ce0.8Zr0.2O2-CA6; e:CuO/Ce0.8Zr0.2O2-CA8

    图  7  不同柠檬酸量制备的CuO/Ce0.8Zr0.2O2催化剂的Cu LMM XPS谱图

    Figure  7  Cu LMM XPS spectra of CuO/Ce0.8Zr0.2O2 catalysts prepared with different citric acid content

    a:CuO/CeO2; b:CuO/Ce0.8Zr0.2O2-CA2; c:CuO/Ce0.8Zr0.2O2-CA4; d:CuO/Ce0.8Zr0.2O2-CA6; e:CuO/Ce0.8Zr0.2O2-CA8

    图  8  不同柠檬酸量制备的CuO/Ce0.8Zr0.2O2催化剂的Zr 3d XPS谱图

    Figure  8  Zr 3d XPS spectra of CuO/Ce0.8Zr0.2O2 catalysts prepared with different citric acid content

    a:CuO/Ce0.8Zr0.2O2-CA2; b:CuO/Ce0.8Zr0.2O2-CA4; c:CuO/Ce0.8Zr0.2O2-CA6; d:CuO/Ce0.8Zr0.2O2-CA8

    图  9  不同柠檬酸量制备的CuO/Ce0.8Zr0.2O2催化剂的O 1s XPS谱图

    Figure  9  O 1s XPS spectra of CuO/Ce0.8Zr0.2O2 catalysts prepared with different citric acid addition

    a:CuO/CeO2; b:CuO/Ce0.8Zr0.2O2-CA2; c:CuO/Ce0.8Zr0.2O2-CA4; d:CuO/Ce0.8Zr0.2O2-CA6; e:CuO/Ce0.8Zr0.2O2-CA8

    图  10  反应温度对催化剂活性的影响

    Figure  10  Effect of reaction temperature on the catalyst activity

    (reaction conditions: atmospheric, GHSV = 6600 h−1, n(H2O)/n(CO) = 2∶1) a: CuO/CeO2; b:CuO/Ce0.8Zr0.2O2-CA2; c:CuO/Ce0.8Zr0.2O2-CA4; d:CuO/Ce0.8Zr0.2O2-CA6; e:CuO/Ce0.8Zr0.2O2-CA8; f:equil

    图  11  变换温度对产物中CO含量的影响

    Figure  11  Effect of shift temperature on CO content in the product

    (reaction conditions: atmospheric, GHSV = 6600 h−1, n(H2O)/n(CO) = 2∶1) a: CuO/CeO2; b:CuO/Ce0.8Zr0.2O2-CA2; c:CuO/Ce0.8Zr0.2O2-CA4; d:CuO/Ce0.8Zr0.2O2-CA6; e:CuO/Ce0.8Zr0.2O2-CA8; f:equil

    图  12  CuO/Ce0.8Zr0.2O2-CA4催化剂稳定性图

    Figure  12  Diagram of stability on CuO/Ce0.8Zr0.2O2-CA4 catalyst

    (Reaction condition: n(H2O)/n(CO) = 2∶1; GHSV = 6600 h−1; T = 320 ℃)

    表  1  不同柠檬酸量制备催化剂的元素含量

    Table  1  Element content of catalysts prepared with different citric acid content

    CatalystsContent of element w/%Ce/Zr mol/%
    CuCeZrO
    CuO/Ce0.8Zr0.2O2-CA24.366.013.016.73.7
    CuO/Ce0.8Zr0.2O2-CA44.466.012.916.73.7
    CuO/Ce0.8Zr0.2O2-CA64.366.412.716.63.8
    CuO/Ce0.8Zr0.2O2-CA84.665.913.016.53.7
    下载: 导出CSV

    表  2  催化材料的物化性质

    Table  2  Physicochemical properties of catalytic materials

    CatalystsSurface area/(m2·g−1)Pore volume v/(cm3·g−1)Cu surface areaa A/(m2·g−1)H2 production rateb/(μmol·kg−1·s−1)
    CeO223.90.08----
    Ce0.8Zr0.2O2-CA255.80.09----
    Ce0.8Zr0.2O2-CA469.20.15----
    Ce0.8Zr0.2O2-CA679.80.10----
    Ce0.8Zr0.2O2-CA847.40.09----
    CuO/CeO221.20.071.52959.9
    CuO/ Ce0.8Zr0.2O2-CA237.40.072.43260.2
    CuO/ Ce0.8Zr0.2O2-CA458.80.145.53681.9
    CuO/ Ce0.8Zr0.2O2-CA673.10.094.83385.5
    CuO/ Ce0.8Zr0.2O2-CA840.50.091.22283.2
    a: determined by N2O experiments;
    b: H2 production was calculated when temperature is 320 ℃, n(H2O)/n(CO) = 2∶1, GHSV =
    6600 h−1.
    下载: 导出CSV

    表  3  CuO还原峰位置

    Table  3  Reduction peak positions of CuO

    CatalystsPeak position T/℃
    Peak αPeak β
    CuO/Ce0.8Zr0.2O2-CA2163193
    CuO/Ce0.8Zr0.2O2-CA4144171
    CuO/Ce0.8Zr0.2O2-CA6150181
    CuO/Ce0.8Zr0.2O2-CA8151189
    下载: 导出CSV

    表  4  催化剂Ce 3d的XPS曲线拟合结果

    Table  4  Fitting results of Ce 3d XPS curves of catalysts

    催化剂Ce3+/(Ce3+ + Ce4+)/%
    CuO/CeO224.2
    CuO/Ce0.8Zr0.2O2-CA225.8
    CuO/Ce0.8Zr0.2O2-CA428.6
    CuO/Ce0.8Zr0.2O2-CA626.8
    CuO/Ce0.8Zr0.2O2-CA823.9
    下载: 导出CSV
  • [1] RYAN J G, KHALID A A, WILLIAM H G. Thermochemical production of hydrogen from hydrogen sulfide with iodine thermochemical cycles[J]. Int J Hydrogen Energy,2018,43(29):12939−12947. doi: 10.1016/j.ijhydene.2018.04.217
    [2] JACOBSON M Z, COLELLA W, GOLDEN D. Cleaning the air and improving health with hydrogen fuel-cell vehicles[J]. Science,2005,308(5730):1901−1905. doi: 10.1126/science.1109157
    [3] MASCHARAK P K. Cobaloxime-based photocatalytic devices for hydrogen production[J]. Angew Chem Int Ed,2008,47(3):564−567. doi: 10.1002/anie.200702953
    [4] 张燕杰, 陈崇启, 詹瑛瑛, 叶远松, 娄本勇, 郑国才, 林棋. CuO/ZrO2催化水煤气变换反应制氢: ZrO2载体焙烧温度的影响[J]. 燃料化学学报,2019,47(4):91−100.

    ZHANG Yan-jie, CHEN Chong-qi, ZHAN Ying-ying, YE Yuan-song, LOU Ben-yong, ZHENG Guo-cai, LIN Qi. CuO/ZrO2 catalysts for the production of H2 through the water-gas shift reaction: Effect of calcination temperature of ZrO2[J]. J Fuel Chem Technol,2019,47(4):91−100.
    [5] GOKHALE A A, DUMESIC J A, MAVRIKAKIS M. On the mechanism of low-temperature water gas shift reaction on copper[J]. J Am Chem Soc,2008,130(4):1402−1414. doi: 10.1021/ja0768237
    [6] WANG X Q, RODRIGUEZ J, HANSON J, GAMARRA D. In situ studies of the active sites for the water gas shift reaction over Cu-CeO2 catalysts: complex interaction between metallic copper and oxygen vacancies of ceria[J]. J Phys Chem B,2006,110(1):428−34. doi: 10.1021/jp055467g
    [7] MARONO M, SANCHEZ J M, RUIZ E. Hydrogen-rich gas production from oxygen pressurized gasification of biomass using a Fe-Cr water gas shift catalyst[J]. Int J Hydrogen Energy,2010,35(1):37−45. doi: 10.1016/j.ijhydene.2009.10.078
    [8] REDDY G K, KIM S J, DONG J H, SMIRNIOTIS P G. Long-term WGS stability of Fe/Ce and Fe/Ce/Cr catalysts at high and low steam to CO ratios-XPS and mssbauer spectroscopic study[J]. Appl Catal A-Gen,2012,415:101−110.
    [9] REDDY G K, SMIRNIOTIS P G. Effect of copper as a dopant on the water gas shift activity of Fe/Ce and Fe/Cr modified ferrites[J]. Catal Lett,2011,141(1):27−32. doi: 10.1007/s10562-010-0465-2
    [10] FU W, BAO Z H, DING W Z, CHOU K. The synergistic effect of the structural precursors of Cu/ZnO/Al2O3 catalysts for water-gas shift reaction[J]. Catal Commun,2011,12(6):505−509. doi: 10.1016/j.catcom.2010.11.017
    [11] KOWALIK P, PROCHNIAK W, BOROWIECKI T. The effect of alkali metals doping on properties of Cu/ZnO/Al2O3 catalyst for water gas shift[J]. Catal Today,2011,176(1):144−148. doi: 10.1016/j.cattod.2011.01.028
    [12] FIGUEIREDO R T, SANTOS M S, ANDRADE H M, FIERRO J. Effect of alkali cations on the Cu/ZnO/Al2O3 low temperature water gas-shift catalyst[J]. Catal Today,2011,172(1):166−170. doi: 10.1016/j.cattod.2011.03.073
    [13] OSA A R, LUCAS A D, ROMERO A, CASERO P. High pressure water gas shift performance over a commercial non-sulfide CoMo catalyst using industrial coal-derived syngas[J]. Fuel,2012,97(1):428−434.
    [14] MUDIYANSELAGE K, SENANAYAKE S D, RAMIREZ P J, KUNDU S. Intermediates arising from the water-gas shift reaction over Cu surfaces: from UHV to near atmospheric pressures[J]. Top Catal,2015,58(4):271−280.
    [15] JEONG D W, NA H S, SHIM J O, JANG W J. Hydrogen production from low temperature WGS reaction on co-precipitated Cu–CeO2 catalysts: An optimization of Cu loading[J]. Int J Hydrogen Energy,2014,39(17):9135−9142. doi: 10.1016/j.ijhydene.2014.04.005
    [16] WANG S P, WANG X Y, HUANG J, ZHANG S M. The catalytic activity for CO oxidation of CuO supported on Ce0.8Zr0.2O2 prepared via citrate method[J]. Catal Commun,2007,8(3):231−236. doi: 10.1016/j.catcom.2006.06.006
    [17] JIANG L, ZHU H W, RAZZAQ R, ZHU M L. Effect of zirconium addition on the structure and properties of CuO/CeO2 catalysts for high-temperature water-gas shift in an IGCC system[J]. Int J Hydrogen Energy,2012,21(21):15914−15924.
    [18] JEONG D W, NA H S, SHIM J O, JANG W J, ROH H S. A crucial role for the CeO2-ZrO2 support for the low temperature water gas shift reaction over Cu-CeO2-ZrO2 catalysts[J]. Catal Sci Technol,2015,5:3706−3713. doi: 10.1039/C5CY00499C
    [19] 郑云弟, 林性贻, 郑起, 詹瑛瑛, 李达林, 魏可镁. ZrO2对Cu/CeO2-ZrO2水煤气变换催化剂结构、性能的影响[J]. 中国稀土学报,2005,6(8):679−683.

    ZHENG Yun-di, LIN Xing-yi, ZHENG Qi, ZHAN Ying-ying, LI Da-lin, WEI Ke-mei. Effects of ZrO2 content on structure and properties of Cu CeO2-ZrO2 catalysts for water-gas shift reaction[J]. J Chin Rare Earth Soc,2005,6(8):679−683.
    [20] GOMEZ I D, KOCEMBA I, RYNKOWSKI J M. Au/Ce1−xZrxO2 as effective catalysts for low-temperature CO oxidation[J]. App Catal B:Environ,2008,83:240−241. doi: 10.1016/j.apcatb.2008.02.012
    [21] VLAIC G, FORNASIERO P, GEREMIA S, KASPAR J. Relationship between the zirconia-promoted reduction in the Rh-loaded Ce0.5Zr0.5O2 mixed oxide and the Zr-O local structure[J]. J Catal,1997,168(2):386−392. doi: 10.1006/jcat.1997.1644
    [22] 张增庆, 樊君, 胡晓云, 刘恩周, 赵博, 康力敏. Ce0.5Zr0.5O2固溶体的制备、晶粒增长及应用研究[J]. 中国稀土学报,2013,31(2):217−221.

    ZHANG Zeng-qing, FAN Jun, HU Xiao-yun, LIU En-zhou, ZHAO Bo, KANG Li-min. Preparation, grain growth and application of Ce0.5Zr0.5O2[J]. J Chin Rare Earth Soc,2013,31(2):217−221.
    [23] YANG S Q, HE J P, ZHANG N, SUI X W, ZHANG L, YANG Z X. Effect of rare-earth element modification on the performance of Cu/ZnAl catalysts derived from hydrotalcite precursor in methanol steam reforming[J]. J Fuel Chem Technol,2018,46(2):179−188. doi: 10.1016/S1872-5813(18)30010-0
    [24] ZHANG Y J, CHEN C Q, ZHANG Y Y, LIN Q, LOU B Y, ZHENG G C, ZHENG Q. Highly active Y-promoted CuO/ZrO2 catalysts for the production of hydrogen through water-gas shift reaction[J]. J Fuel Chem Technol,2017,45(9):1137−1149.
    [25] JEONG D W, NA H S, SHIM J O, JANG W J, ROH H S, JUNG U H, WANG L Y. Hydrogen production from low temperature WGS reaction on co-precipitated Cu-CeO2 catalysts: An optimization of Cu loading[J]. Int J Hydrogen Energy,2014,39(17):9135−9142. doi: 10.1016/j.ijhydene.2014.04.005
    [26] 庆绍军, 侯晓宁, 刘雅杰, 王磊, 李林东, 高志贤. Cu-Ni-Al尖晶石催化甲醇水蒸气重整制氢性能的研究[J]. 燃料化学学报,2018,46(10):69−76.

    QING Shao-jun, HOU Xiao-ning, LIU Ya-jie, WANG Lei, LI Lin-dong, GAO Zhi-xian. Catalytic performance of Cu-Ni-Al spine l for methanol steam reforming to hydrogen[J]. J Fuel Chem Technol,2018,46(10):69−76.
    [27] SHE W, JI T Q, CUI M X, YAN P F, WENG N S, LI W, LI G M. Catalytic performance of CeO2-supported Ni catalyst for hydrogenation of nitroarenes fabricated via coordination-assisted strategy[J]. Acs App Mater Interfaces,2018,10(17):14698−14707. doi: 10.1021/acsami.8b01187
    [28] BENNICI S, GERVASINI A, RAVASIO N, ZACCHERIA F. Optimization of tailoring of CuOx species of silica alumina supported catalysts for the selective catalytic reduction of NOx[J]. J Phys Chem B,2003,107(22):5168−5176. doi: 10.1021/jp022064x
    [29] PENG X OMASTA T, ROLLER J, MUSTAIN W E. Highly active and durable Pd-Cu catalysts for oxygen reduction in alkaline exchange membrane fuel cells[J]. Front Energy,2017,11(3):299−309. doi: 10.1007/s11708-017-0495-1
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  7
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-06
  • 修回日期:  2021-08-10
  • 网络出版日期:  2021-09-07

目录

    /

    返回文章
    返回