留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

α-Fe2O3模板制备三维煤沥青基多孔炭用于高性能电容器

庄奇琪 曹景沛 吴燕 韦宇檑 杨志慧 赵小燕

庄奇琪, 曹景沛, 吴燕, 韦宇檑, 杨志慧, 赵小燕. α-Fe2O3模板制备三维煤沥青基多孔炭用于高性能电容器[J]. 燃料化学学报(中英文), 2022, 50(4): 408-417. doi: 10.19906/j.cnki.JFCT.2021084
引用本文: 庄奇琪, 曹景沛, 吴燕, 韦宇檑, 杨志慧, 赵小燕. α-Fe2O3模板制备三维煤沥青基多孔炭用于高性能电容器[J]. 燃料化学学报(中英文), 2022, 50(4): 408-417. doi: 10.19906/j.cnki.JFCT.2021084
ZHUANG Qi-qi, CAO Jing-pei, WU Yan, WEI Yu-lei, YANG Zhi-hui, ZHAO Xiao-yan. Preparation of three-dimensional coal tar pitch based porous carbon by α-Fe2O3 template for high performance supercapacitor[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 408-417. doi: 10.19906/j.cnki.JFCT.2021084
Citation: ZHUANG Qi-qi, CAO Jing-pei, WU Yan, WEI Yu-lei, YANG Zhi-hui, ZHAO Xiao-yan. Preparation of three-dimensional coal tar pitch based porous carbon by α-Fe2O3 template for high performance supercapacitor[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 408-417. doi: 10.19906/j.cnki.JFCT.2021084

α-Fe2O3模板制备三维煤沥青基多孔炭用于高性能电容器

doi: 10.19906/j.cnki.JFCT.2021084
基金项目: 国家自然科学基金(21978317),江苏省自然科学基金杰出青年基金(BK20200028)和江苏省高校优势学科建设工程资助项目资助
详细信息
    作者简介:

    庄奇琪(1995-),女,博士研究生,zqqzqq1995@163.com

    通讯作者:

    E-mail:caojingpei@cumt.edu.cn

  • 中图分类号: TQ530

Preparation of three-dimensional coal tar pitch based porous carbon by α-Fe2O3 template for high performance supercapacitor

Funds: The project was supported by the National Natural Science Foundation of China (21978317), the National Natural Science Foundation of Jiangsu Province (BK20200028) and the Priority Academic Program Development of Jiangsu Higher Education Institutions
  • 摘要: 本研究以煤焦油沥青为原料,采用α-Fe2O3模板结合KOH活化法制备了三维结构分级多孔炭(HPCs),得到的HPC-3具有较高的比表面积(2003 m2/g),这是由于α-Fe2O3的占位(一定的中大孔)和KOH活化(丰富的微孔)协同作用导致的,其组装的双电层电容器在6 mol/L KOH电解液中具有最大的比电容(295 F/g)和优异的循环稳定性(10000次循环后,电容保持率高达97.8%)。同时,将其应用于EMIMBF4离子液体电解液,工作电压拓宽到3.6 V,能量密度高达60.0 (W·h)/kg。
  • FIG. 1462.  FIG. 1462.

    FIG. 1462.  FIG. 1462.

    图  1  CTP的TG-DTG曲线

    Figure  1  TG-DTG curves of CTP

    图  2  ((a)、(b))α-Fe2O3、((c)、(d))酸洗后焦炭和((e)、(f))HPC-3的扫描电子显微镜照片

    Figure  2  SEM images of α-Fe2O3 ((a), (b)), washed-char ((c), (d)) and HPC-3 ((e), (f))

    图  3  焦炭(a)和HPCs(b)的XRD谱图和HPCs的Raman谱图(c)

    Figure  3  XRD patterns of char (a) and HPCs (b) and Raman spectra of HPCs (c)

    图  4  HPCs的(a)氮气吸附-脱附等温线曲线和(b)孔径分布

    Figure  4  (a) Nitrogen adsorption-desorption isotherms and (b) pore size distribution of HPCs

    图  5  HPCs电极在6 mol/L KOH电解液中的电化学性能:(a)40 mA/g电流密度下的GCD曲线;(b)扫描速率为5 mV/s下的CV曲线;(c)不同电流密度对应的比电容图;(d)Nyquist图(插图为等效电路);(e)HPC-3电极的Ragone图和(f)HPC-3电极在2 A/g电流密度下的循环性能(插图为第一次和第10000次的GCD曲线)

    Figure  5  Electrochemical performance of HPCs in 6 mol/L KOH electrolyte: (a) GCD curves at 40 mA/g; (b) CV curves at the scan rate of 5 mV/s; (c) Specific capacitance at various current densities; (d) Nyquist plots (inset was the equivalent circuit model); (e) Ragone plot of HPC-3 and (f) cycle stability of HPC-3 electrodes at 2 A/g (inset was the first cycle and the last cycle)

    图  6  HPC-3电极在EMIMBF4离子液体电解液中的电化学性能:(a)扫描速率为10 mV/s不同电压窗口下的CV曲线;(b)不同扫描速率下的CV曲线;(c)不同电流密度下的GCD曲线和(d)Ragone图

    Figure  6  Electrochemical performance of HPCs in EMIMBF4 ionic liquid electrolyte: (a) CV curves with different operation voltages at the scan rate of 10 mV/s; (b) CV curves at different scan rate; (c) GCD curves at various current densities and (d) Ragone plot

    表  1  CTP的基本指标

    Table  1  Basic index of CTP

    Proximate analysis wad/%Ultimate analysis wdaf/%Softening poin t /℃
    MadAadVadFCad*CHNSO*110
    2.314.3944.1549.1582.665.492.082.257.52
    note: Mad: moisture of air drying basis; Aad: ash of air drying basis; Vad: volatile of air drying basis; FCad: fixed-carbon of air drying basis;
    *: by subtraction
    下载: 导出CSV

    表  2  HPCs的孔结构参数

    Table  2  Pore structure parameters of HPCs

    SampleSBET/(m2·g−1)Smicro/(m2·g−1)Smeco/(m2·g−1)vtotal/(cm3·g−1)vmicro/(cm3·g−1)dave/nm
    HPC-1 964 852 112 0.66 0.36 2.73
    HPC-2 1663 1554 109 1.13 0.65 2.72
    HPC-3 2003 1799 204 1.29 0.84 2.57
    HPC-4 1013 854 159 0.82 0.41 3.25
    note: SBET: specific surface area from multiple BET method; Smicro and vmicro: micropore specific surface area and volume calculated by t-plot method; Smeco: difference of SBET and Smicro; vtotal: total pore volume at p/p0 = 0.99; dave: average pore size
    下载: 导出CSV

    表  3  文献报道的CTP基多孔炭材料与本文工作的储能性能对比

    Table  3  Electrochemical performance comparison of CTP-based porous carbon materials with previous reported reference

    Raw materialSpecific capacitance / (F·g−1)Current densities / (A·g−1)ElectrolyteReference
    CTP220.60.56 mol/L KOH[15]
    CTP2210.56 mol/L KOH[29]
    CTP2740.056 mol/L KOH[30]
    CTP2720.056 mol/L KOH[31]
    CTP/PAN2190.16 mol/L KOH[32]
    CTP2100.16 mol/L KOH[19]
    CTP2950.046 mol/L KOHthis work
    CTP2400.56 mol/L KOHthis work
    下载: 导出CSV

    表  4  HPCs的RsRct拟合值

    Table  4  Fitting value of the Rs and Rct of HPCs

    SampleRs / ΩRct / Ω
    HPC-1 0.44 0.68
    HPC-2 0.67 0.76
    HPC-3 0.56 0.13
    HPC-4 0.33 0.27
    下载: 导出CSV
  • [1] 禹兴海, 罗齐良, 潘剑, 韩玉琦, 张奇峰. 一种生物炭基柔性固态超级电容器的制备及性能研究[J]. 化工学报,2019,70(9):3590−3600.

    YU Xing-hai, LUO Qi-liang, PAN Jian, HAN Yu-qi, ZHANG Qi-feng. Preparation and properties of flexible supercapacitor based on biochar and solid gel-electrolyte[J]. J Chem Ind Eng,2019,70(9):3590−3600.
    [2] GUAN T T, LI K X, ZHAO J H, ZHAO R J, ZHANG G L, ZHANG D D, WANG J L. Template-free preparation of layer-stacked hierarchical porous carbons from coal tar pitch for high performance all-solid-state supercapacitors[J]. J Mater Chem A,2017,5(30):15869−15878. doi: 10.1039/C7TA02966G
    [3] WU Y, CAO J P, ZHUANG Q Q, ZHAO X Y, ZHOU Z, WEI Y L, ZHAO M, BAI H C. Biomass-derived three-dimensional hierarchical porous carbon network for symmetric supercapacitors with ultra-high energy density in ionic liquid electrolyte[J]. Electrochim Acta,2021,371:137825. doi: 10.1016/j.electacta.2021.137825
    [4] GUO Y, SHI Z Q, CHEN M M, WANG C Y. Hierarchical porous carbon derived from sulfonated pitch for electrical double layer capacitors[J]. J Power Sources,2014,252:235−243. doi: 10.1016/j.jpowsour.2013.11.114
    [5] KAZAZI M. Effect of electrodeposition current density on the morphological and pseudocapacitance characteristics of porous nano-spherical MnO2 electrode[J]. Ceram Int,2018,44(9):10863−10870. doi: 10.1016/j.ceramint.2018.03.138
    [6] JAIDEV, RAMAPRABHU S. Poly(p-phenylenediamine)/graphene nanocomposites for supercapacitor applications[J]. J Mater Chem A,2012,22(36):18775−18783. doi: 10.1039/C2JM33627H
    [7] 陈中华, 曾明, 李亮, 杨煜培, 莫 钦, 张雅峰, 熊林颖, 胡章润, 彭 娅. 导电聚合物/聚氨酯复合材料的研究进展[J]. 现代化工,2020,40(5):73−81.

    CHEN Zhong-hua, ZENG Ming, LI Liang, YANG Yu-pei, MO Qin, ZHANG Ya-feng, XIONG Lin-ying, HU Zhang-run, PENG Ya. Research progress on conductive polymers /polyurethane composites[J]. Mod Chem Ind,2020,40(5):73−81.
    [8] ZHAO W D, ZHU Y, ZHANG L T, XIE Y L, YE X R. Facile synthesis of three-dimensional porous carbon for high-performance supercapacitors[J]. J Alloys Compd,2019,787:1−8. doi: 10.1016/j.jallcom.2019.02.025
    [9] WANG D, WANG Z Y, LI Y, DONG K Z, SHAO J H, LIU Y G, QI X W. In situ double-template fabrication of boron-doped 3D hierarchical porous carbon network as anode materials for Li- and Na-ion batteries[J]. Appl Surf Sci,2019,464:422−428. doi: 10.1016/j.apsusc.2018.09.035
    [10] HE X J, LI X J, MA H, HAN J F, ZHANG H, YU C, XIAO N, QIU J S. ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials[J]. J Power Sources,2017,340(1):183−191.
    [11] LU P, SUN Y, XIANG H F, LIANG X, YU Y. 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries[J]. Adv Energy Mater,2018,8(8):1702434. doi: 10.1002/aenm.201702434
    [12] XING B L, ZHANG C T, LIU Q R, ZHANG C X, HUANG G X, GUO H, CAO J L, CAO Y J, YU J L, CHEN Z F. Green synthesis of porous graphitic carbons from coal tar pitch templated by nano-CaCO3 for high-performance lithium-ion batteries[J]. J Alloys Compd,2019,795:91−102. doi: 10.1016/j.jallcom.2019.04.300
    [13] HE X J, ZHAO N, QIU J S, XIAO N, YU M X, YU C, ZHANG X Y, ZHENG M D. Synthesis of hierarchical porous carbons for supercapacitors from coal tar pitch with nano-Fe2O3 as template and activation agent coupled with KOH activation[J]. J Mater Chem A,2013,1(33):9440−9448. doi: 10.1039/c3ta10501f
    [14] SONG H J, SUN Y L, JIA X H. Hydrothermal synthesis, growth mechanism and gas sensing properties of Zn-doped α-Fe2O3 microcubes[J]. Ceram Int,2015,41(10):13224−13231. doi: 10.1016/j.ceramint.2015.07.100
    [15] 董莉莉, 任素霞, 石杰, 张修强, 张劲斌. KCl模板法制备煤沥青基活性炭及其电化学性能[J]. 炭素技术,2019,38(6):44−48.

    DONG Li-li, REN Su-xia, SHI Jie, ZHANG Xiu-qiang, ZHANG Jin-bin. Preparation and electrochemical performance of activated carbon from coal pitch with KCl as template[J]. Carbon Tech,2019,38(6):44−48.
    [16] WU Y, CAO J P, ZHAO X Y, HAO Z Q, ZHUANG Q Q, ZHU J S, WANG X Y, WEI X Y. Preparation of porous carbons by hydrothermal carbonization and KOH activation of lignite and their performance for electric double layer capacitor[J]. Electrochim Acta,2017,252:397−407. doi: 10.1016/j.electacta.2017.08.176
    [17] MANGISETTI S R, KAMARAJ M, RAMAPRABHU S. N-doped 3D porous carbon-graphene/polyaniline hybrid and N-doped porous carbon coated gC3N4 nanosheets for excellent energy density asymmetric supercapacitors[J]. Electrochim Acta,2019,305:264−277. doi: 10.1016/j.electacta.2019.03.043
    [18] 徐晓倩, 程俊霞, 朱亚明, 高丽娟, 赖仕全, 赵雪飞. 针状焦基电容器碳质电极材料的制备及电化学性能研究[J]. 化工学报,2020,71(6):2830−2839.

    XU Xiao-qian, CHENG Jun-xia, ZHU Ya-ming, GAO Li-juan, LAI Shi-quan, ZHAO Xue-fei. Electrochemical properties of supercapacitor electrode materials made from needle coke[J]. J Chem Ind Eng,2020,71(6):2830−2839.
    [19] WANG D H, WANG Y Z, CHEN Y, LIU W, WANG H Q, ZHAO P H, LI Y, ZHANG J F, DONG Y G, HU S L, YANG J L. Coal tar pitch derived N-doped porous carbon nanosheets by the in-situ formed g-C3N4 as a template for supercapacitor electrodes[J]. Electrochim Acta,2018,283:132−140. doi: 10.1016/j.electacta.2018.06.151
    [20] HE X J, ZHANG H B, ZHANG H, LI X J, XIAO N, QIU J S. Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors[J]. J Mater Chem A,2014,2(46):19633−19640. doi: 10.1039/C4TA03323J
    [21] TSENG R L, TSENG S K, WU F C, HU C C, WANG C C. Effects of micropore development on the physicochemical properties of KOH-activated carbons[J]. J Chin Inst Chem Eng,2008,39(1):37−47. doi: 10.1016/j.jcice.2007.11.005
    [22] DING L L, ZOU B, LIU H Q, LI Y N, WANG Z C, SU Y, GUO Y P, WANG X F. A new route for conversion of corncob to porous carbon by hydrolysis and activation[J]. Chem Eng J,2013,225:300−305. doi: 10.1016/j.cej.2013.03.090
    [23] 吴燕, 曹景沛, 周志, 庄奇琪, 韦宇檑, 赵小燕. 高性能超级电容器用废液基多孔炭球的制备和性能研究[J]. 燃料化学学报,2021,49(4):537−545.

    WU Yan, CAO Jing-pei, ZHOU Zhi, ZHUANG Qi-qi, WEI Yu-lei, ZHAO Xiao-yan. High-performance supercapacitors of porous carbon spheres synthesis from waste liquid[J]. J Fuel Chem Technol,2021,49(4):537−545.
    [24] WANG H C, LIU X P, ZHANG B C, YANG J B, ZHANG Z J, YUE R R, WANG Z W. Highly compressible supercapacitor based on carbon nanotubes-reinforced sponge electrode[J]. J Alloys Compd,2019,786:995−1004. doi: 10.1016/j.jallcom.2019.01.303
    [25] 焦帅, 杨磊, 武婷婷, 李宏强, 吕辉鸿, 何孝军. 混合盐模板法制备超级电容器用氮掺杂分级多孔碳纳米片[J]. 化工学报,2020,72(5):9−25.

    JIAO Shuai, YANG Lei, WU Ting-ting, LI Hong-qiang, LV Hui-hong, HE Xiao-jun. Synthesis of nitrogen doped hierarchically porous carbon nanosheets for supercapacitor by mixed salt template[J]. J Chem Ind Eng,2020,72(5):9−25.
    [26] 钟存贵, 曹青, 解小玲, 巩士磊, 周春明, 王 颖. 碳酸钙模板法制备沥青基多孔炭材料及电化学性质研究[J]. 功能材料,2015,46(24):24077−24082.

    ZHONG Cun-gui, CAO Qing, XIE Xiao-ling, GONG Shi-lei, ZHOU Chun-ming, WANG Ying. Preparation of pitch-based carbon materials by pyrolytic calcium carbonate template for supercapacitors[J]. J Funct Mater,2015,46(24):24077−24082.
    [27] PENG H, MA G F, SUN K J, MU J J, ZHANG Z, LEI Z Q. Facile synthesis of poly(p-phenylenediamine)-derived three-dimensional porous nitrogen-doped carbon networks for high performance supercapacitors[J]. J Phys Chem C,2014,118(51):29507−29516. doi: 10.1021/jp508684t
    [28] GUAN L, PAN L, PENG T Y, CAO C, ZHAO W N, YANG Z X, HU H, WU M B. Synthesis of biomass-derived nitrogen-doped porous carbon nanosheests for high-performance supercapacitors[J]. ACS Sustainable Chem Eng,2019,7(9):8405−8412. doi: 10.1021/acssuschemeng.9b00050
    [29] HE X J, YU H H, FAN L W, YU M X, ZHENG M D. Honeycomb-like porous carbons synthesized by a soft template strategy for supercapacitors[J]. Mater Lett,2017,195:31−33. doi: 10.1016/j.matlet.2017.02.062
    [30] XIE X Y, HE X J, SHAO X L, DONG S, XIAO N, QIU J S. Synthesis of layered microporous carbons from coal tar by directing, space-confinement and self-sacrificed template strategy for supercapacitors[J]. Electrochim Acta,2017,246:634−642. doi: 10.1016/j.electacta.2017.06.092
    [31] WEI F, ZHANG H F, HE X J, MA H, DONG S A, XIE X Y. Synthesis of porous carbons from coal tar pitch for high-performance supercapacitors[J]. New Carbon Mater,2019,34(2):132−139. doi: 10.1016/S1872-5805(19)60006-5
    [32] 贺怡婷, 李肖, 杨桃, 田晓冬, 徐晓彤, 宋燕, 刘占军. 沥青/聚丙烯腈复合纳米炭纤维无纺布的制备及其电容性能[J]. 新型炭材料,2021,36(1):227−234.

    HE Yi-ting, LI Xiao, YANG Tao, TIAN Xiao-dong, XU Xiao-tong, SONG Yan, LIU Zhan-jun. Preparation of pitch/polyacrylonitrile carbon nanofiber non-woven fabrics as the electrode for supercapacitors[J]. New Carbon Mater,2021,36(1):227−234.
    [33] KARNAN M, SUBRAMANI K, SRIVIDHYA P K, SATHISH M. Electrochemical studies on corncob derived activated porous carbon for supercapacitors application in aqueous and non-aqueous electrolytes[J]. Electrochim Acta,2017,228:586−596. doi: 10.1016/j.electacta.2017.01.095
    [34] SUN X Z, ZHANG X, ZHANG H T, ZHANG D C, MA Y W. A comparative study of activated carbon-based symmetric supercapacitors in Li2SO4 and KOH aqueous electrolytes[J]. J Solid State Electr,2012,16(8):2597−2603. doi: 10.1007/s10008-012-1678-7
    [35] OYEDOTUN K O, MASIKHWA T M, LINDBERG S, MATIC A, JOHANSSON P, MANYALA N. Comparison of ionic liquid electrolyte to aqueous electrolytes on carbon nanofibres supercapacitor electrode derived from oxygen-functionalized graphene[J]. Chem Eng J,2019,375:121906. doi: 10.1016/j.cej.2019.121906
    [36] WANG D, WANG Y, LIU H, XU W, XU L. Unusual carbon nanomesh constructed by interconnected carbon nanocages for ionic liquid-based supercapacitor with superior rate capability[J]. Chem Eng J,2018,342:474−483. doi: 10.1016/j.cej.2018.02.085
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  2258
  • HTML全文浏览量:  149
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-10
  • 修回日期:  2021-09-19
  • 网络出版日期:  2022-01-07
  • 刊出日期:  2022-04-26

目录

    /

    返回文章
    返回