留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mn掺杂VWTi催化剂宽温区脱硝实验研究

陈传敏 常昊 贾文波 刘松涛 曹悦 陈若希 乔钏熙

陈传敏, 常昊, 贾文波, 刘松涛, 曹悦, 陈若希, 乔钏熙. Mn掺杂VWTi催化剂宽温区脱硝实验研究[J]. 燃料化学学报(中英文), 2022, 50(3): 357-365. doi: 10.19906/j.cnki.JFCT.2021085
引用本文: 陈传敏, 常昊, 贾文波, 刘松涛, 曹悦, 陈若希, 乔钏熙. Mn掺杂VWTi催化剂宽温区脱硝实验研究[J]. 燃料化学学报(中英文), 2022, 50(3): 357-365. doi: 10.19906/j.cnki.JFCT.2021085
CHEN Chuan-min, CHANG Hao, JIA Wen-bo, LIU Song-tao, CAO Yue, CHEN Ruo-xi, QIAO Chuan-xi. Experimental study on Mn-doped VWTi catalyst for denitrification in wide temperature range[J]. Journal of Fuel Chemistry and Technology, 2022, 50(3): 357-365. doi: 10.19906/j.cnki.JFCT.2021085
Citation: CHEN Chuan-min, CHANG Hao, JIA Wen-bo, LIU Song-tao, CAO Yue, CHEN Ruo-xi, QIAO Chuan-xi. Experimental study on Mn-doped VWTi catalyst for denitrification in wide temperature range[J]. Journal of Fuel Chemistry and Technology, 2022, 50(3): 357-365. doi: 10.19906/j.cnki.JFCT.2021085

Mn掺杂VWTi催化剂宽温区脱硝实验研究

doi: 10.19906/j.cnki.JFCT.2021085
基金项目: 国家自然科学基金(51976060),河北省自然科学基金(E2021502029)和中央高校基本科研业务费专项资金(2021MS101)资助
详细信息
    通讯作者:

    E-mail: hdccm@126.com

  • 中图分类号: X511

Experimental study on Mn-doped VWTi catalyst for denitrification in wide temperature range

Funds: The project was supported by the National Natural Science Foundation of China (51976060) and the Natural Science Foundation of Hebei Province (E2021502029)and the Fundamental Research Funds for the Central Universities (2021MS101).
  • 摘要: 采用溶胶凝胶法制备了一系列锰掺杂VWTi催化剂,在固定床反应装置上测试了催化剂宽温区脱硝性能,同时考察了催化剂的制备工艺、烟气组分、反应温度、空速等因素对催化剂宽温区脱硝活性的影响,并借助BET、XRD、XPS、SEM和H2-TPR等手段对催化剂进行表征分析。结果表明,Mn掺杂显著提高了催化剂在200–300 ℃的脱硝效率,较低的干燥温度有利于提升催化剂的脱硝活性。催化剂的表征表明,随着干燥温度的上升,催化剂表面的TiO2由锐钛矿晶型向金红石晶型转变、催化剂表面的化学吸附氧占比明显减少、高价锰占比减少、催化剂表面活性组分锰元素和钒元素的占比明显减少、催化剂的低温还原峰逐渐消失,从而降低了催化剂的催化氧化活性。
  • FIG. 1390.  FIG. 1390.

    FIG. 1390.  FIG. 1390.

    图  1  脱硝性能测试平台示意图

    Figure  1  Schematic diagram of the denitrification performance test platform

    图  2  不同锰负载量VWTi催化剂的脱硝效率

    Figure  2  Denitrification efficiency of VWTi catalysts with different manganese loadings

    图  3  不同干燥温度VWTi3%Mn催化剂的脱硝效率

    Figure  3  Denitrification efficiency of VWTi3%Mn catalysts at different drying temperatures

    图  4  不同空速对VWTi3%Mn催化剂脱硝效率的影响

    Figure  4  Effect of different space velocity on the denitrification efficiency of VWTi3%Mn catalyst

    图  5  不同水蒸气含量对VWTi3%Mn催化剂脱硝效率的影响

    Figure  5  Effect of different water vapor content on the denitrification efficiency of VWTi3%Mn catalyst

    图  6  不同SO2含量对VWTi3%Mn催化剂脱硝效率的影响

    Figure  6  Effect of different SO2 content on the denitrification efficiency of VWTi3%Mn catalyst

    图  7  不同HCl含量对VWTi3%Mn催化剂脱硝效率的影响

    Figure  7  Effect of different HCl content on the denitrification efficiency of VWTi3%Mn catalyst

    图  8  不同SCR气氛下的脱硝效率

    Figure  8  Denitrification efficiency under different SCR atmosphere concentrations

    图  9  不同干燥温度下催化剂的XRD谱图

    Figure  9  XRD patterns of catalysts at different drying temperatures

    图  10  不同干燥温度下催化剂的XPS谱图

    Figure  10  XPS spectra of catalysts at different drying temperatures

    图  11  不同干燥温度的VWTi3%Mn扫描电镜照片

    Figure  11  Scanning electron micrograph of VWTi3%Mn with different drying temperature

    (a): 80 ℃; (b): 20 ℃

    图  12  不同干燥温度的H2-TPR谱图

    Figure  12  H2-TPR analysis of different drying temperatures

    表  1  催化剂的比表面积及孔结构

    Table  1  Specific surface area and pore structure parameters of the catalyst

    SampleSpecific surface area $A/({{\rm{m}}}^{2}\cdot {{\rm{g}}}^{-1})$Average pore volume $v/({{\rm{cm}}}^{3}\cdot {{\rm{g}}}^{-1})$Average aperture $ d/{\rm{nm}} $
    VWTi(20 ℃ dry)53.8890.07535.5893
    VWTi3%Mn(20 ℃ dry)53.82080.075.2024
    VWTi3%Mn(50 ℃ dry)24.28630.04968.1692
    VWTi3%Mn(80 ℃ dry)94.16570.17367.3742
    下载: 导出CSV

    表  2  不同干燥温度下催化剂的表面锰原子物质的量分数

    Table  2  Fraction of manganese atomic species on the surface of the catalyst at different drying temperatures (%)

    SampleMn 2p
    Mn2+/MnTMn3+/MnTMn4+/MnT
    VWTi3%Mn(20 ℃ dry)47.7246.106.18
    VWTi3%Mn(40 ℃ dry)52.7729.9617.27
    VWTi3%Mn(80 ℃ dry)54.2625.6620.08
    下载: 导出CSV

    表  3  不同干燥温度下催化剂的表面氧原子物质的量

    Table  3  Amount and fraction of oxygen atoms on the surface of catalysts at different drying temperatures (%)

    SampleO 1s
    OH/OTO*/ OTOL/OT
    VWTi(20 ℃ dry)7.9617.1674.88
    VWTi3%Mn(20 ℃ dry)3.3034.6462.06
    VWTi3%Mn(50 ℃ dry)7.6719.9872.36
    VWTi3%Mn(80 ℃ dry)9.5218.9771.51
    下载: 导出CSV

    表  4  不同干燥温度下催化剂的表面元素的质量百分比和原子百分比

    Table  4  Weight percentage and atomic percentage of the surface elements of the catalyst at different drying temperatures (%)

    SampleMnVWTiO
    VWTi(20 ℃ dry) 0/0 0.67/0.34 5.39/0.75 47.78/25.45 46.16/73.46
    VWTi3%Mn(20 ℃ dry) 2.09/1.00 0.66/0.34 5.51/0.78 47.92/26.19 43.82/71.69
    VWTi3%Mn(40 ℃ dry) 1.66/0.80 0.45/0.23 5.74/0.83 49.37/27.30 42.78/70.84
    VWTi3%Mn(80 ℃ dry) 1.68/0.74 0.45/0.21 5.72/0.76 41.45/21.08 50.71/77.21
    下载: 导出CSV
  • [1] 胡鹏, 段钰锋, 陈亚南, 丁卫科, 李春峰, 李娜, 柳帅, 刘猛, 王双群. 煅烧温度对Mo-Mn/TiO2催化剂脱硝脱汞活性的影响[J]. 化工进展,2018,37(1):119−127.

    HU Peng, DUAN Yu-feng, CHEN Ya-nan, DING Wei-ke, LI Chun-feng, LI Na, LIU Shuai, LIU Meng, WANG Shuang-qun. Effect of calcination temperature on Mo-Mn/TiO2 catalyst denitrification and mercury removal activity[J]. Chem Ind Eng Prog,2018,37(1):119−127.
    [2] 刘恩丽, 张强, 陈伟堂. 我国燃煤电厂超低排放常见问题与建议[J]. 广东化工,2021,48(10):159−160. doi: 10.3969/j.issn.1007-1865.2021.10.059

    LIU En-li, ZHANG Qiang, CHEN Wei-tang. Frequently asked questions and suggestions on ultra-low emissions from coal-fired power plants in my country[J]. Guangdong Chem Ind,2021,48(10):159−160. doi: 10.3969/j.issn.1007-1865.2021.10.059
    [3] 王明洪, 王亮亮, 刘俊, 费兆阳, 陈献, 汤吉海, 崔咪芬, 乔旭. 过渡金属对选择性催化还原脱硝CeO2@TiO2催化剂低温活性的促进作用[J]. 燃料化学学报,2017,45(4):497−504.

    WANG Ming-hong, WANG Liang-liang, LIU Jun, FEI Zhao-yang, CHEN Xian, TANG Ji-hai, CUI Mi-fen, QIAO Xu. Promotion of transition metals on low-temperature activity of CeO2@TiO2 catalysts for selective catalytic reduction and denitrification[J]. J Fuel Chem Technol,2017,45(4):497−504.
    [4] 赵栗. 宽温域改性钒钛系中温SCR脱硝催化剂制备及硫中毒再生实验研究[D]. 南京: 东南大学, 2017.

    ZHAO Li. Experimental study on preparation of modified vanadium-titanium-based mid-temperature SCR denitrification catalyst in wide temperature range and sulfur poisoning regeneration[D]. Nanjing: Southeast University, 2017.
    [5] ZHANG S, ZHAO Y, WANG Z, ZHANG J, WANG L, ZHENG C. Integrated removal of NO and mercury from coal combustion flue gas using manganese oxides supported on TiO2[J]. J Environ Sci,2017,53:141−150. doi: 10.1016/j.jes.2015.10.038
    [6] 董璐, 黄亚继, 丁守一, 程好强, 王圣, 段钰锋. Ti-Al复合载体载锰催化剂同时脱硝脱汞实验[J]. 化工进展,2021,40(1):234−241.

    DONG Lu, HUANG Ya-ji, DING Shou-yi, CHENG Hao-qiang, WANG Sheng, DUAN Yu-feng. Simultaneous denitrification and mercury removal experiment on Ti-Al composite carrier supported manganese catalyst[J]. Chem Ind Eng Prog,2021,40(1):234−241.
    [7] 张涛, 孙超, 陈晓利, 袁冬冬. 锰系低温脱硝催化剂失活与再生研究进展[J]. 工业催化,2021,29(7):22−27. doi: 10.3969/j.issn.1008-1143.2021.07.003

    ZHANG T, SUN C, CHEN X, YUAN D. Research progress on deactivation and regeneration of manganese-based low-temperature denitrification catalysts[J]. Ind Catal,2021,29(7):22−27. doi: 10.3969/j.issn.1008-1143.2021.07.003
    [8] 李海龙. 新型SCR催化剂对汞的催化氧化机制研究[D]. 武汉: 华中科技大学, 2011.

    LI Hai-long. Study on the catalytic oxidation mechanism of new SCR catalysts for mercury[D]. Wuhan: Huazhong University of Science and Technology, 2011.
    [9] ZHANG S, ZHAO Y, YANG J, ZHANG J, ZHENG C. Fe-modified MnOx/TiO2 as the SCR catalyst for simultaneous removal of NO and mercury from coal combustion flue gas[J]. Chem Eng J,2018,348:618−629.
    [10] QI W, LEI D, HE K, LI J. Removal of gaseous elemental mercury over a CeO2-WO3/TiO2 nanocomposite in simulated coal-fired flue gas[J]. Chem Eng J,2011,170(2/3):512−517. doi: 10.1016/j.cej.2010.11.060
    [11] 王鹏鹰, 苏胜, 向军, 曹蕃, 尤默. 低温SCR催化剂脱硝脱汞实验研究[J]. 燃烧科学与技术,2014,20(5):423−427.

    WANG Peng-ying, SU Sheng, XIANG Jun, CAO Fan, YOU Mo. Experimental study on low temperature SCR catalyst for denitrification and mercury removal[J]. J Combust Sci Technol,2014,20(5):423−427.
    [12] XU W, WANG H, XUAN Z, ZHU T. CuO/TiO2 catalysts for gas-phase Hg0 catalytic oxidation[J]. Chem Eng J,2014,243(1):380−385.
    [13] GAO W, LIU Q, WU C, LI H, LI Y, YANG J, WU G. Kinetics of mercury oxidation in the presence of hydrochloric acid and oxygen over a commercial SCR catalyst - ScienceDirect[J]. Chem Eng J,2013,220(11):53−60.
    [14] ZHANG B, LIU J, DAI G, CHANG M, ZHENG C. Insights into the mechanism of heterogeneous mercury oxidation by HCl over V2O5/TiO2 catalyst: Periodic density functional theory study[J]. Proc Combust Inst,2015,35(3):2855−2865.
    [15] WANG P, SHENG S, XIANG J, YOU H, FAN C, SUN L, SONG H, YUN Z. Catalytic oxidation of Hg0 by MnOx-CeO2/γ-Al2O3 catalyst at low temperatures[J]. Chemosphere,2014,101:49−54.
    [16] WU J, ZHAO Z, HUANG T, SHENG P, ZHANG J, TIAN H, ZHAO X, ZHAO L, HE P, REN J. Removal of elemental mercury by Ce-Mn co-modified activated carbon catalyst[J]. Catal Commun,2017,93(Complete):62−66.
    [17] XIANG G, YE J, YI Z, LUO Z, CEN K. The activity and characterization of CeO2-TiO2 catalysts prepared by the sol-gel method for selective catalytic reduction of NO with NH3[J]. J Hazard Mater,2010,174(1/3):734−739. doi: 10.1016/j.jhazmat.2009.09.112
    [18] JOSSEN R, HEINE M, PRATSINIS S, AUGUSTINE S, AKHTAR M. Thermal stability and catalytic activity of flame-made silica-vanadia-tungsten oxide-titania[J]. Appl Catal B: Environ,2007,69(3):181−188.
    [19] SHENG H, ZHOU J, ZHU Y, LUO Z, NI M, CEN K. Mercury oxidation over a vanadia-based selective catalytic reduction catalyst[J]. Energy Fuels,2009,23(1):253−259. doi: 10.1021/ef800730f
    [20] ZONG L, DONG F, ZHANG G, HAN W, TANG Z, ZHANG J. Highly efficient mesoporous V2O5/WO3-TiO2 catalyst for selective catalytic reduction of NOx: Effect of the valence of V on the catalytic performance[J]. Catal Surv Asia,2017,21(3):103−113. doi: 10.1007/s10563-017-9229-y
    [21] ZHI B, DING H, WANG D, CAO Y, ZHANG Y, WANG X, LIU Y, HUO Q. Ordered mesoporous MnO2 as a synergetic adsorbent for effective arsenic(III) removal[J]. J Mater Chem,2014,2(7):2374−2382. doi: 10.1039/c3ta13790b
    [22] 吴彦霞, 梁海龙, 陈鑫, 陈琛, 王献忠, 戴长友, 胡利明, 陈玉峰. 制备方法对V-Mo/TiO2催化剂脱硝性能的影响[J]. 燃料化学学报,2020,48(2):70−77.

    WU Yan-xia, LIANG Hai-long, CHEN Xin, CHEN Chen, WANG Xian-zhong, DAI Zhang-you, HU Li-ming, CHEN Yu-feng. Influence of preparation method on denitrification performance of V-Mo/TiO2 catalyst[J]. J Fuel Chem Technol,2020,48(2):70−77.
    [23] ZHANG S, ZHAO Y, WANG Z, ZHANG J, WANG L, ZHENG C. Integrated removal of NO and mercury from coal combustion flue gas using manganese oxides supported on TiO2[J]. J Environ Sci,2017,53(3):141−150.
    [24] XIE J, YAN N, YANG S, ZAN Q, CHEN W, ZHANG W, LI K, LIU P, JIA J. Synthesis and characterization of nano-sized Mn-TiO2 catalysts and their application to removal of gaseous elemental mercury[J]. Res Chem Intermediat,2012,38(9):2511−2522. doi: 10.1007/s11164-012-0568-z
    [25] YANG J, ZHANG M, LI H, QU W, ZHAO Y, ZHANG J. Simultaneous NO reduction and Hg0 oxidation over La0.8Ce0.2MnO3 perovskite catalysts at low temperature[J]. Ind Eng Chem Res,2018,57(29):9374−9385. doi: 10.1021/acs.iecr.8b01431
    [26] 王栋, 张信莉, 彭建升, 路春美, 韩奎华, 徐丽婷. 煅烧温度对γ-Fe2O3催化剂结构及其脱硝活性的影响[J]. 环境科学研究,2015,28(5):808−815.

    WANG Dong, ZHANG Xin-li, PENG Jian-sheng, LU Chun-mei, HAN Kui-hua, XU Li-ting. Effect of calcination temperature on the structure and denitrification activity of γ-Fe2O3 catalyst[J]. Res Environ Sci,2015,28(5):808−815.
    [27] WU P, ZHANG Y, ZHUANG K, SHEN K, WANG S, HUANG T. Promoting effect and mechanism of neodymium on low-temperature selective catalytic reduction with NH3 over Mn/TiO2 catalysts[J]. J Rare Earth,2019,38(11):10.
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  322
  • HTML全文浏览量:  144
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-20
  • 修回日期:  2021-09-22
  • 网络出版日期:  2021-11-10
  • 刊出日期:  2022-03-28

目录

    /

    返回文章
    返回