留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气流床煤气化细渣结构、性质与其粒度分布关系研究

吴昊东 邵丰华 吕鹏 白永辉 宋旭东 王焦飞 郭庆华 王学斌 于广锁

吴昊东, 邵丰华, 吕鹏, 白永辉, 宋旭东, 王焦飞, 郭庆华, 王学斌, 于广锁. 气流床煤气化细渣结构、性质与其粒度分布关系研究[J]. 燃料化学学报(中英文), 2022, 50(5): 513-522. doi: 10.19906/j.cnki.JFCT.2021089
引用本文: 吴昊东, 邵丰华, 吕鹏, 白永辉, 宋旭东, 王焦飞, 郭庆华, 王学斌, 于广锁. 气流床煤气化细渣结构、性质与其粒度分布关系研究[J]. 燃料化学学报(中英文), 2022, 50(5): 513-522. doi: 10.19906/j.cnki.JFCT.2021089
WU Hao-dong, SHAO Feng-hua, LÜ Peng, BAI Yong-hui, SONG Xu-dong, WANG Jiao-fei, GUO Qing-hua, WANG Xue-bin, YU Guang-suo. Study on the relationship between structure, properties and size distribution of fine slag from entrained flow gasification[J]. Journal of Fuel Chemistry and Technology, 2022, 50(5): 513-522. doi: 10.19906/j.cnki.JFCT.2021089
Citation: WU Hao-dong, SHAO Feng-hua, LÜ Peng, BAI Yong-hui, SONG Xu-dong, WANG Jiao-fei, GUO Qing-hua, WANG Xue-bin, YU Guang-suo. Study on the relationship between structure, properties and size distribution of fine slag from entrained flow gasification[J]. Journal of Fuel Chemistry and Technology, 2022, 50(5): 513-522. doi: 10.19906/j.cnki.JFCT.2021089

气流床煤气化细渣结构、性质与其粒度分布关系研究

doi: 10.19906/j.cnki.JFCT.2021089
基金项目: 宁夏回族自治区重点研发计划东西部合作项目(2021BEE03011)资助
详细信息
    通讯作者:

    Tel: 0951-2062008, E-mail: yhbai@nxu.edu.cn

  • #共同第一作者
  • 中图分类号: TQ536.4

Study on the relationship between structure, properties and size distribution of fine slag from entrained flow gasification

Funds: The project was supported by the Project of the Key Research Plan of Ningxia (2021BEE03011)
  • 摘要: 气化过程中,不同粒度颗粒的受热破裂方式、挥发分脱除行为、焦-熔渣相互作用等具有显著差异,导致所产生的不同尺寸的煤气化细渣具有不同的结构特征和反应特性,通过研究气流床煤气化细渣结构、性质与其粒度分布的关系可为溯源气化炉内细渣形成机制及入炉煤粒度优化提供重要依据。为此,本研究选用宁夏宁东典型GSP煤气化工艺细渣为原料,通过烘干、破碎、筛分处理,获取了粒度分别为<0.125、0.125–0.250、>0.250 mm的三种样品,分别称为小、中、大粒级样品,借助氮气吸附-脱附法、XRD、Raman光谱、TGA等表征分析手段对其理化结构及燃烧活性进行了研究。结果表明,不同粒级气化细渣在组成、结构及反应活性方面有显著差异,三种粒级样品在渣中所占比例分别22%、46%、32%,均含有大量的球状颗粒与不规则颗粒。其中,中粒级气化细渣气化程度最小,残炭含量最高,达19%,石墨化程度最低,仅为30%,比表面积最大,达87.8 m2/g,在不同的升温速率下综合燃烧特性指数最优,大粒级气化细渣以上性质则与其完全相反。显然,气化较充分的煤粉趋向于形成大粒级的气化细渣,气化程度较低的煤粉更易形成中粒级气化细渣,这为煤气化过程的研究提供了一定的依据。中粒级气化细渣在细渣中含量最多,且气化程度低、含碳量高,比表面积和孔隙率大,所以仍具有一定潜在的利用价值,这也为气化细渣的处理与处置提供了思路。
    1)  #共同第一作者
  • FIG. 1520.  FIG. 1520.

    FIG. 1520.  FIG. 1520.

    图  1  粒径差异对气化过程中煤粉热质传递及破碎行为的影响示意图

    Figure  1  Schematic diagram of influence of particle size difference on heat and mass transfer and crushing behavior of pulverized coal during gasification process

    图  2  GSPZ粒度分布特性

    Figure  2  Particle size distribution characteristic of GSPZ

    图  3  GSPZ的粒度分布

    Figure  3  Particle size distribution of GSPZ

    图  4  不同粒级GSPZ的SEM照片

    Figure  4  SEM images of size-segmented GSPZ

    图  5  不同粒级GSPZ的EDS分析

    Figure  5  EDS analysis results of size-segmented GSPZ

    图  6  不同粒级GSPZ的吸附-脱附曲线

    Figure  6  Adsorption/desorption isotherms of size-segmented GSPZ

    图  7  不同粒级GSPZ的XRD谱图

    Figure  7  XRD patterns of size-segmented GSPZ

    图  8  不同粒级GSPZ的拉曼光谱谱图及拟合峰

    Figure  8  Raman spectrum and fitting peak of size-segmented GSPZ

    图  9  不同粒级GSPZ的热重分析

    Figure  9  TGA analysis of size-segmented GSPZ

    表  1  样品的工业分析与元素分析

    Table  1  Proximate and ultimate analyses of the sample

    Proximate analysis wd/%Ultimate analysis wd/%
    VFCACHNSO*
    6.96 12.43 80.61 16.33 0.71 0.08 1.51 0.76
    note: V:volatile matter; FC:fixed carbon; d:dry basis;
    *:calculated by difference
    下载: 导出CSV

    表  2  样品的灰分组成

    Table  2  Ash composition of the sample

    Compositions w/%
    SiO2Al2O3Fe2O3CaONa2OK2OMgOothers
    59.04 16.95 7.60 6.02 2.06 2.49 3.48 2.36
    下载: 导出CSV

    表  3  样品的烧失量

    Table  3  Burn loss of samples LOI

    Size fraction/mmMass before combustion/gMass after combustion/gLOI/%
    <0.125 1.00024 0.84343 15.68
    0.125−0.250 1.00023 0.81071 18.95
    >0.250 1.00026 0.87678 12.34
    下载: 导出CSV

    表  4  不同粒级GSPZ的比表面积及孔径分析

    Table  4  BET test results of size-segmented GSPZ

    Size fraction/mmBET surface area/(m2·g−1Micropore area/(m2·g−1Mesoporous and macroporous area/(m2·g−1
    <0.125 81.085 11.046 70.039
    0.125−0.250 87.871 14.080 73.792
    >0.250 37.004 5.385 31.620
    下载: 导出CSV

    表  5  不同粒级GSPZ的微晶结构参数

    Table  5  Microcrystalline structure parameters of size-segmented GSPZ

    <0.125 mm0.125−0.250 mm>0.250 mm
    d002 3.411 3.414 3.395
    d100 2.074 2.048 2.052
    θ002/(°) 26.101 26.079 26.231
    θ100/(°) 43.609 44.194 44.091
    β002/(°) 0.175 0.107 0.22
    β100/(°) 0.107 0.394 0.232
    Lc(002)/Å 14.602 23.146 14.462
    La(100)/Å 28.452 7.359 12.291
    g/% 33.5 30.2 52.9
    下载: 导出CSV

    表  6  不同粒级GSPZ的拉曼光谱峰面积参数

    Table  6  Raman band area parameter of size-segmented GSPZ

    < 0.125 mm0.125−0.250 mm> 0.250 mm
    G15736.6514421.6428948.20
    D144241.2644921.9372385.62
    D26319.8011776.675241.44
    D34298.842697.585448.12
    D410792.4615172.9516018.01
    ID1/IG2.813.122.50
    IG/IAll0.190.160.23
    下载: 导出CSV

    表  7  不同升温速率下不同粒级GSPZ的燃烧特性参数

    Table  7  Characteristic parameters of combustion of size-segmented GSPZ at different heating rate

    Size fraction /mmHeating rate /(℃·min−1ti/℃th /℃Wmax/(%·min−1Wmean/(%·min−1Ai/%Ah/%S/(%2·min −2·℃−3
    <0.12510539.45785.74−0.13−0.46298.5487.172.62×10−10
    0.125−0.25010544.40790.47−0.14−0.53998.5585.023.28×10−10
    > 0.25010549.13793.70−0.10−0.45098.3787.211.90×10−10
    <0.12515562.47786.38−0.11−0.70598.7488.043.16×10−10
    0.125−0.25015557.41814.79−0.15−0.88498.3982.865.36×10−10
    >0.25015564.83817.79−0.08−0.57599.0089.161.79×10−10
    <0.12520559.88794.53−0.10−0.81098.0887.603.55×10−10
    0.125−0.25020561.17855.00−0.13−0.90198.0283.814.71×10−10
    >0.25020563.54814.13−0.07−0.64298.3089.871.81×10−10
    下载: 导出CSV

    表  8  不同升温速率下不同粒级GSPZ的动力学参数

    Table  8  Combustion kinetic parameters of size-segmented GSPZ at different heating rate

    Size fraction /mmHeating rate /(℃·min−1E/(kJ·mol−1A/ s−1R2
    <0.1251039.245.1940.92
    0.125−0.2501037.916.7670.92
    >0.2501039.442.0470.99
    <0.1251540.674.9010.93
    0.125−0.2501539.236.8050.93
    >0.2501550.040.8730.99
    <0.1252039.019.6760.97
    0.125−0.2502037.5210.9170.94
    >0.2502040.794.2460.98
    下载: 导出CSV
  • [1] 朱子祺. 煤制油选煤厂煤显微组分迁移规律[J]. 洁净煤技术,2020,26(6):89−95.

    ZHU Zi-qi. Migration rule of coal macerals in coal-to-oil preparation plant[J]. Clean Coal Technol,2020,26(6):89−95.
    [2] ZHANG Y X, WU J J, WANG Y, MIAO Z Y, SI C D, SHANG X L, ZHANG N. Effect of hydrothermal dewatering on the physico-chemical structure and surface properties of Shengli lignite[J]. Fuel,2016,164:128−133.
    [3] 王学斌, 于伟, 张韬, 白永辉, 刘莉君, 史兆臣, 殷瑞, 谭厚章. 基于粒度分级的煤气化细渣特性分析及利用研究[J]. 洁净煤技术,2021,27(3):61−69.

    WANG Xue-bin, YU Wei, ZHANG Tao, BAI Yong-hui, LIU Li-jun, SHI Zhao-chen, YIN Rui, TAN Hou-zhang. Characteristic analysis and utilization of coal gasification fine slag based on particle size classification[J]. Clean Coal Technol,2021,27(3):61−69.
    [4] ZHAO D Y, LUN W J, WEI J J. Discussion on wastewater treatment process of coal chemical industry[J]. Iop Conference,2017,100:012067.
    [5] KATO K, MATSUEDA K. Leading edge of coal utilization technologies for gasification and cokemaking[J]. Kona Powder Part J,2017,2018:112−121.
    [6] WU S Y, HUANG S, JI L Y, WU Y Q, GAO J S. Structure characteristics and gasification activity of residual carbon from entrained-flow coal gasification slag[J]. Fuel,2014,122:67−75. doi: 10.1016/j.fuel.2014.01.011
    [7] 刘冬雪, 胡俊阳, 冯启明, 黄阳, 徐中慧. 煤气化炉渣浮选及其精炭制备活性炭的研究[J]. 煤炭转化,2018,(5):73−80. doi: 10.3969/j.issn.1004-4248.2018.05.012

    LIU Dong-xue, HU Jun-yang, FENG Qi-ming, HUANG Yang, XU Zhong-hui. Study on flotation of coal gasification slag and preparation of activated carbon from carbon concentrate[J]. Coal Convers,2018,(5):73−80. doi: 10.3969/j.issn.1004-4248.2018.05.012
    [8] 陈清如. 21世纪的洁净煤炭能源[C]//发展洁净煤技术, 提高煤炭企业竞争力学术研讨会论文集. 北京: 中国煤炭学会, 2001: 5.

    CHEN Qing-ru, Clean coal energy in the 21st century[C]//Proceedings of the Symposium on developing clean coal technology and improving the competitiveness of coal enterprises. Beijing: CCS, 2001: 5.
    [9] GUO F H, MIAO Z K, GUO Z K, LI J, ZHANG Y X, WU J J. Properties of flotation residual carbon from gasification fine slag[J]. Fuel,2020,267:117043. doi: 10.1016/j.fuel.2020.117043
    [10] 汪伦, 李寒旭, 赵帅, 夏宝亮, 黄俊. 不同粒径气化细渣的残碳形态及燃烧特性[J/OL]. 煤炭转化: 1-10 1-08-05]. http://kns.cnki.net/kcms/detail/14.1163.TQ.20210517.1448.004.html.

    WANG Lun, LI Han-xu, ZHAO Shuai, XIA Bao-liang, HUANG Jun. Residual carbon forms and combustion characteristics of gasification fine slag with different particle sizes[J/OL]. Coal Conversion: 1-10[2021-08-05]. http://kns.cnki.net/kcms/detail/14.1163.TQ.20210517.1448.004.html.
    [11] 史兆臣, 戴高峰, 王学斌, 董永胜, 李攀, 于伟, 谭厚章. 煤气化细渣的资源化综合利用技术研究进展[J]. 华电技术,2020,42(7):63−73. doi: 10.3969/j.issn.1674-1951.2020.07.009

    SHI Zhao-chen, DAI Gao-feng, WANG Xue-bin, DONG Yong-sheng, LI Pan, YU Wei, TAN Hou-zhang. Review on the comprehensive resources utilization technology of coal gasification fine slag[J]. Huadian Technol,2020,42(7):63−73. doi: 10.3969/j.issn.1674-1951.2020.07.009
    [12] 张婷, 于露, 李宇, 高艳鹏, 孙丽娅, 刘乐, 易汉平, 张弦. 水煤浆气化炉渣的特性分析及应用探讨[J]. 当代化工研究,2020,(19):88−90. doi: 10.3969/j.issn.1672-8114.2020.19.039

    ZHANG Ting, YU Lu, LI Yu, GAO Yan-peng, LIU Le, YI Han-ping, ZHANG Xian. Characteristic analysis andapplication discussion of coal water slurry gasifier slag[J]. Mod Chem Res,2020,(19):88−90. doi: 10.3969/j.issn.1672-8114.2020.19.039
    [13] YANG L, ZHU Z, LI D L, YAN X K, ZHANG H J. Effects of particle size on the flotation behavior of coal fly ash[J]. Waste Manage,2019,85:490−497.
    [14] 吕登攀, 白永辉, 王焦飞, 宋旭东, 苏暐光, 于广锁, 祝贺, 唐广军. 气流床气化细渣中残炭的结构特征及燃烧特性研究[J]. 燃料化学学报,2021,49(2):129−136. doi: 10.1016/S1872-5813(21)60011-7

    LU Deng-pan, BAI Yong-hui, WANG Jiao-fei, SONG Xu-dong, SU Wei-guang, YU Guang-suo, ZHU he, TANG Guang-jun. Structural features and combustion reactivity of residual carbon in fine slag from entrained-flow gasification[J]. J Fuel Chem Technol,2021,49(2):129−136. doi: 10.1016/S1872-5813(21)60011-7
    [15] TANG Y. Preparation of Sialon powder from coal gasification slag[J]. J Wuhan Univ Technol-Mat Sci Edit,2010,25(6):1044−1046.
    [16] LI S H, WHITTY K J. Physical phenomena of char-slag transition in pulverized coal gasification[J]. Fuel Process Technol,2012,95:127−136. doi: 10.1016/j.fuproc.2011.12.006
    [17] XU S Q, ZHOU Z J, GAO X X, YU G S, GONG X. The gasification reactivity of unburned carbon present in gasification slag from entrained-flow gasifier[J]. Fuel Process Technol,2009,90(9):1062−1070. doi: 10.1016/j.fuproc.2009.04.006
    [18] CANGIALOSI F, CANIO F D, INTINI G. Experimental and theoretical investigation on unburned coal char burnout in a pilot-scale rotary kiln[J]. Fuel,2006,85(16):2294−2300. doi: 10.1016/j.fuel.2006.01.031
    [19] SENNECA O, RUSSO P, SALATINO P, MASI S. The relevance of thermal annealing to the evolution of coal char gasification reactivity[J]. Carbon,1997,35(1):141−151. doi: 10.1016/S0008-6223(96)00134-0
    [20] WAGNER N J, MATJIE R H, SLAGHUIS J H, VAN HEERDEN J H P. Characterization of unburned carbon present in coarse gasification ash[J]. Fuel,2008,87(6):683−691. doi: 10.1016/j.fuel.2007.05.022
    [21] YANG Y B, CHU M, SHI X, LYU F Y, SUN X B, JIA C X. Grading characteristics of texaco gasification fine slag: Quality distinction and selective distribution of trace elements[J]. ACS Omega,2020,41(5):26883−26893. doi: 10.1021/acsomega.0c04126
    [22] PAN C C, LIANG Q F, GUO X L, DAI Z H, LIU H F, GONG X. Characteristics of different sized slag particles from entrained-flow coal gasification[J]. Energy Fuels,2016,30(2):1487−1495. doi: 10.1021/acs.energyfuels.5b01326
    [23] LIN Q, GUET J M. Characterization of coals and macerais by X-ray diffraction[J]. Fuel,1990,69(7):821−825. doi: 10.1016/0016-2361(90)90224-E
    [24] JAWHANi T, ROID A, CASADO J. Raman spectroscopic characterization of some commercially available carbon black materials[J]. Carbon,1995,33(11):1561−1565. doi: 10.1016/0008-6223(95)00117-V
    [25] DIPPEL B, JANDER H, HEINTZENBERG J. NIR FT Raman spectroscopic study of Name soot[J]. Phys Chem Chem Phys,1999,1:4707−4712. doi: 10.1039/a904529e
    [26] SFOMA M C, ZUILEN M V, PHILIPPOT P. Structural characterization by Raman hyperspectral mapping of organic carbon in the 3.46 billion-year-old Apex chert, Western Australia[J]. Geochim Cosmochim Acta,2014,124(1):18−33.
    [27] WU J Z, WANG B F, CHENG F Q. Thermal and kinetic characteristics of combustion of coal sludge[J]. J Therm Anal Calorim,2017,129(3):1899−1909. doi: 10.1007/s10973-017-6341-1
    [28] WANG X B, LI S S, ADEOSUN A, LI Y, VUJANOVIC, M;TAN H Z;DUIC, N. Effect of potassium-doping and oxygen concentration on soot oxidation in O2/CO2 atmosphere: A kinetics study by thermogravimetric analysis[J]. Energy Conv Manag,2017,149:686−697. doi: 10.1016/j.enconman.2017.01.003
    [29] 葛庆仁. 气固反应动力学[M]. 北京: 原子能出版社, 1991: 46−50.

    GE Qing-ren. Gas Solid Reaction Kinetics[M]. Beijing: Atomic Energy Press, 1991: 46−50.
    [30] 梁爱云, 惠世恩, 徐通模, 赵钦新, 周屈兰, 谭厚章, 孙鹏. 几种生物质的TG-DTG分析及其燃烧动力学特性研究[J]. 可再生能源,2008,26(4):56−61. doi: 10.3969/j.issn.1671-5292.2008.04.014

    LIANG Ai-yun, HUI Shi-en, XU Tong-mo, ZHAO Qin-xin, ZHOU Qu-lan, TAN Hou-zhang, SUN Peng. TG-DTG analysis and combustion kinetics characteristic study on several kinds of biomass[J]. Renewable Energy Resour,2008,26(4):56−61. doi: 10.3969/j.issn.1671-5292.2008.04.014
  • 加载中
图(10) / 表(8)
计量
  • 文章访问数:  540
  • HTML全文浏览量:  237
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-28
  • 修回日期:  2021-11-02
  • 录用日期:  2021-11-03
  • 网络出版日期:  2021-11-20
  • 刊出日期:  2022-05-24

目录

    /

    返回文章
    返回