留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

费托合成钴基催化剂微观结构研究进展

卢文丽 王俊刚 孙德魁 马中义 陈从标 侯博 李德宝

卢文丽, 王俊刚, 孙德魁, 马中义, 陈从标, 侯博, 李德宝. 费托合成钴基催化剂微观结构研究进展[J]. 燃料化学学报(中英文), 2022, 50(4): 436-445. doi: 10.19906/j.cnki.JFCT.2021091
引用本文: 卢文丽, 王俊刚, 孙德魁, 马中义, 陈从标, 侯博, 李德宝. 费托合成钴基催化剂微观结构研究进展[J]. 燃料化学学报(中英文), 2022, 50(4): 436-445. doi: 10.19906/j.cnki.JFCT.2021091
LU Wen-li, WANG Jun-gang, SUN De-kui, MA Zhong-yi, CHEN Cong-biao, HOU Bo, LI De-bao. Research progress of microstructure for cobalt-based F-T catalysts[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 436-445. doi: 10.19906/j.cnki.JFCT.2021091
Citation: LU Wen-li, WANG Jun-gang, SUN De-kui, MA Zhong-yi, CHEN Cong-biao, HOU Bo, LI De-bao. Research progress of microstructure for cobalt-based F-T catalysts[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 436-445. doi: 10.19906/j.cnki.JFCT.2021091

费托合成钴基催化剂微观结构研究进展

doi: 10.19906/j.cnki.JFCT.2021091
基金项目: 国家自然科学基金(21872162, 21902170)和山西省重点研发计划(201903D121039)资助
详细信息
    通讯作者:

    E-mail: wangjg@sxicc.ac.cn

    houbo@sxicc.ac.cn

  • 中图分类号: O643.36

Research progress of microstructure for cobalt-based F-T catalysts

Funds: The project was supported by the National Natural Science Foundation of China (21872162, 21902170) and the Key Research Project of Shanxi Province (201903D121039) .
  • 摘要:

    费托合成可将煤、天然气及生物质等各种非石油含碳资源通过合成气转化为各种油品和精细化学品。钴基催化剂因其水煤气变换反应活性低、费托反应活性高、碳链增长能力高的优良特点,在工业应用和相关科学研究上备受关注。钴基催化剂微观活性位的结构和费托反应过程中催化剂的表面吸附物等都会对F-T合成反应的产物分布以及催化性能有影响。本文分析总结了钴基费托合成催化剂中尺寸效应、晶相、晶面效应以及微观活性位点的研究进展,重点介绍了微观活性位的类型和微观活性位的表征方法/表面吸附行为,最后展望了钴基催化剂的未来发展方向和应用前景。

  • FIG. 1465.  FIG. 1465.

    FIG. 1465.  FIG. 1465.

    图  1  钴颗粒尺寸对费托反应活性的影响[5]

    Figure  1  Influence of cobalt particle size on the TOF (220 ℃, H2/CO = 2, 0.1 MPa)[5]with permission from ACS Publications

    图  2  FCC Co和HCP Co表面上C=O键直接活化和氢助活化[3]

    Figure  2  Breaking the C=O bond via the direct route and the H-assisted route on the HCP Co facets and FCC Co facets[3]with permission from ACS Publications

    图  3  不同Co基催化剂上CO的TOF阿伦尼乌斯图

    Figure  3  Arrhenius plot of CO turnover frequency over different Co catalysts

    Conditions: H2/CO/N2 = 6∶3∶1 (mol ratio), GHSV = 2.0 L/(gcat·h), p = 1 MPa[17]with permission from ACS Publications

    图  4  HCP Co(a)和FCC Co(b)上低覆盖度下CO的解离速率[3]

    Figure  4  Calculated reaction rates r for CO dissociation on (a) HCP Co and (b) FCC Co at low coverage[3]with permission from ACS Publications

    图  5  在500 K下计算低覆盖度下CO在HCP Co(蓝色)、FCC Co(绿色)和FCC Co缺陷位点(红色)的解离速率已按FCC CO(111)计算的CO解离速率归一化[19]

    Figure  5  Calculated low-coverage CO dissociation rates at 500 K (in site–1 ·s–1) on HCP Co facets (blue), FCC Co facets (green), and FCC Co defect sites (red)Rates have been normalized to the CO dissociation rate calculated for FCC Co(111)[19]with permission from ACS Publications

    图  6  Co(10-11)、 Co(0001)和 Co(11-20)表面的碳链增长能力示意图[24]

    Figure  6  Schematic diagram of the carbon chain growth ability for Co(10-11), Co(0001), and Co(11-20) surfaces[24]with permission from ACS Publications

    图  7  CN=10的 hcp 相和 fcc 相((a)和(c)),CN=11的HCP相和FCC相((b)和(d))[26]

    Figure  7  Distribution of CS for CN = 10 ((a) & (c)) & CN = 11 ((b) & (d)) Top panels are for hcp phase and bottom for fcc phase, Each plot has data corresponding to 2 sizes of nanoparticles as mentioned in the legend, Arrows indicate which distribution corresponds to what type of B5 sites [26]with permission from Elsevier

    图  8  Co-Co2C界面在合成气转化为含氧化物中的应用[37]

    Figure  8  Interface between the cobalt metal and its carbide phase metal for synthesizing oxygenates in syngas application[37]with permission from ACS Publications

  • [1] DEN BREEJEN J P, RADSTAKE P B, BEZEMER G L, BITTER J H, HOLMEN A, DE JONG K P. On the origin of the cobalt particle size effects in Fischer-Tropsch catalysis[J]. J Am Chem Soc,2009,131(20):7197−7203. doi: 10.1021/ja901006x
    [2] SAVOST’YANOV A P, YAKOVENKO R E, NAROCHNYI G B, BAKUN V G, SULIMA S I, YAKUBA E S, MIYCHENKO S A. Industrial catalyst for the selective Fischer-Tropsch synthesis of long-chain hydrocarbons[J]. Kinet Catal,2017,58(1):81−91. doi: 10.1134/S0023158417010062
    [3] LIU J X, SU H Y, SUN D P, ZHANG B Y, LI W X. Crystallographic dependence of CO activation on cobalt catalysts: HCP versus FCC[J]. J Am Chem Soc,2013,135(44):16284−16287. doi: 10.1021/ja408521w
    [4] IGLESIA E. Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts[J]. Appl Cata A: Gen,1997,161(1):59−78.
    [5] BEZEMER G L, BITTER J H, KUIPERS H, OOSTERBEEK H, HOLEWIJN J E, XU X D, KAPTEIJN F, VANDILLEN A J, DEJONG K P. Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts[J]. J Am Chem Soc,2006,128(12):3956−3964. doi: 10.1021/ja058282w
    [6] XIONG H, MOTCHELAHO M A M, MOYO M, JEWELL L L, COVILLE N J. Correlating the preparation and performance of cobalt catalysts supported on carbon nanotubes and carbon spheres in the Fischer-Tropsch synthesis[J]. J Catal,2011,278(1):26−40. doi: 10.1016/j.jcat.2010.11.010
    [7] 邱成武, 吴宝山, 孟劭聪, 李永旺. 费托合成Co/SiO2催化剂的粒子尺寸效应: TPD和DRIFTS的研究[J]. 化学学报,2015,73(7):690−698. doi: 10.6023/A15020133

    (QIU Cheng-wu, WU Bao-shan, MENG Shao-cong, LI Yong-wang. Effects of Co/SiO2 particle size on Fischer-Tropsch synthesis: Study by TPD and DRIFTS[J]. Acta Chim Sin,2015,73(7):690−698. doi: 10.6023/A15020133
    [8] QI Z, CHEN L, ZHANG S, SU J, SOMORJAI G A. A mini review of cobalt-based nanocatalyst in Fischer-Tropsch synthesis[J]. Appl Catal A: Gen,2020,602:117701. doi: 10.1016/j.apcata.2020.117701
    [9] RALSTON W T, MELAET G, SAEPHAN T, SOMORJAI G A. Evidence of structure sensitivity in the Fischer-Tropsch reaction on model cobalt nanoparticles by Time-Resolved Chemical Transient Kinetics[J]. Angew Chem Int Ed,2017,56(26):7415−7419. doi: 10.1002/anie.201701186
    [10] TUXEN A, CARENCO S, CHINTAPALLI M, ESCUDERO C, CHUANG C H, ESCUDERO C, PACH E, JIANG P, BORONIDCS F, BEBERWYCK B, ALIVISATOS A P, GUO J H, PEREZ R, BESENBACHER F, SALMERON M. Size-dependent dissociation of carbon monoxide on cobalt nanoparticles[J]. J Am Chem Soc,2013,135(6):2273−2278. doi: 10.1021/ja3105889
    [11] MITCHELL R W, LLOYD D C, VAN DE WATER L G A, ELLIS P R, METCALFE K A, SIBBALD C, DAVIES L H, ENACHE D I, KELLY G J, BOYES E D, GAI P L. Effect of pretreatment method on the nanostructure and performance of supported Co catalysts in Fischer-Tropsch synthesis[J]. ACS Catal,2018,8(9):8816−8829. doi: 10.1021/acscatal.8b02320
    [12] MARGOLIN H. Constitution of binary alloys[J]. J Am Chem Soc,1959,81(10):2600−2600.
    [13] KITAKAMI O, SATO H, SHIMADA Y, SATO F, TANAKA M. Size effect on the crystal phase of cobalt fine particles[J]. Phys Rev B,1997,56(21):13849−13854. doi: 10.1103/PhysRevB.56.13849
    [14] TSAKOUMIS N E, PATANOU E, LOGDBERG S, JOHNSEN R E, MYRATAD R, VAN BEEK W, RYTTER E, BLEKKAN E A. Structure-performance relationships on Co-based Fischer-Tropsch synthesis catalysts: The more defect-free, the better[J]. ACS Catal,2019,9(1):511−520. doi: 10.1021/acscatal.8b03549
    [15] GARCES L J, HINCAPIE B, ZERGER R, SUIB S L. The effect of temperature and support on the reduction of cobalt oxide: An in situ X-ray diffraction study[J]. J Phys Chem C,2015,119(10):5484−5490. doi: 10.1021/jp5124184
    [16] VAN SANTEN R A, MARKVOORT A J, FILOT I A W, GHOURI M M, HENSEN E J M. Mechanism and microkinetics of the Fischer-Tropsch reaction[J]. Phys Chem Chem Phys,2013,15(40):17038. doi: 10.1039/c3cp52506f
    [17] LYU S, WANG L, ZHANG J H, LIU C, SUN J M, PENG B, WANG Y, RAPPE KENNETH G, ZHANG Y H, LI J L, NIE L. Role of active phase in Fischer-Tropsch synthesis: Experimental evidence of CO activation over single-phase cobalt catalysts[J]. ACS Catal,2018,8(9):7787−7798. doi: 10.1021/acscatal.8b00834
    [18] ZIJLSTRA B, BROOS R J P, CHEN W, OOSTERBEEK H, FILOT I A W, HENSEN E J M. Coverage effects in CO dissociation on metallic cobalt nanoparticles[J]. ACS Catal,2019,9(8):7365−7372. doi: 10.1021/acscatal.9b01967
    [19] PETERSEN M A, VAN DEN BERG J A, VAN HELDEN P. Revisiting CO activation on Co catalysts: Impact of step and kink sites from DFT[J]. ACS Catal,2017,7(3):1984−1992. doi: 10.1021/acscatal.6b02843
    [20] ZHENG J, CAI J, JIANG F, XU Y, LIU X. Investigation of the highly tunable selectivity to linear alpha-olefins in Fischer-Tropsch synthesis over silica-supported Co and CoMn catalysts by carburization-reduction pretreatment[J]. Catal Sci Technol,2017,7(20):4736−4755. doi: 10.1039/C7CY01764B
    [21] ZHAO Y H, SUN K J, MA X F, LIU J X, SUN D P, SU H Y, LI W X. Carbon chain growth by formyl insertion on rhodium and cobalt catalysts in syngas conversion[J]. Angew Chem Int Ed,2011,50(23):5335−5338. doi: 10.1002/anie.201100735
    [22] SU H Y, ZHAO Y H, LIU J X, SUN K J, LI W X. First-principles study of structure sensitivity of chain growth and selectivity in Fischer-Tropsch synthesis using HCP cobalt catalysts[J]. Catal Sci Technol,2017,7(14):2967−2977. doi: 10.1039/C7CY00706J
    [23] ZHANG R G, KANG L, LIU H X, HE L L, WANG B J. Insight into the C-C chain growth in Fischer-Tropsch synthesis on HCP Co(10-10) surface: The effect of crystal facets on the preferred mechanism[J]. Comp Mater Sci,2018,145:263−279. doi: 10.1016/j.commatsci.2018.01.013
    [24] QIN C, HOU B, WANG J G, WANG Q, WANG G, YU M T, CHEN C B, JIA L T, LI D B. Crystal-plane-dependent Fischer-Tropsch performance of cobalt catalysts[J]. ACS Catal,2018,8(10):9447−9455. doi: 10.1021/acscatal.8b01333
    [25] VAN SANTEN R A. Complementary structure sensitive and insensitive catalytic relationships[J]. Accounts Chem Res,2009,42(1):57−66. doi: 10.1021/ar800022m
    [26] AGRAWAL R, PHATAK P, SPANU L. Effect of phase and size on surface sites in cobalt nanoparticles[J]. Catal Today,2018,312:174−180. doi: 10.1016/j.cattod.2018.03.064
    [27] BOELLER B, DURNER K M, WINTTERLIN J. The active sites of a working Fischer-Tropsch catalyst revealed by operando scanning tunnelling microscopy[J]. Nat Catal,2019,2(11):1027−1034. doi: 10.1038/s41929-019-0360-1
    [28] PESTAMAN R, CHEN W, HENSEN E. Insight into the rate-determining step and active sites in the Fischer-Tropsch reaction over cobalt catalysts[J]. ACS Catal,2019,9(5):4189−4195. doi: 10.1021/acscatal.9b00185
    [29] STUKOWSKI A. Structure identification methods for atomistic simulations of crystalline materials[J]. Model Simul Mater Sc, 2012, 20(4).
    [30] BANERJEE A, VAN BAVEL A P, KUIPERS H P C E, SAEYS M. Origin of the formation of nanoislands on cobalt catalysts during Fischer-Tropsch synthesis[J]. ACS Catal,2015,5(8):4756−4760. doi: 10.1021/acscatal.5b01169
    [31] WANG B J, LIANG D L, GUAN Z, LI D B, ZHANG D B, ZHANG R G. Understanding the key step of Co2C-catalyzed Fischer-Tropsch synthesis[J]. J Phys Chem C,2020,124(10):5749−5758. doi: 10.1021/acs.jpcc.0c00611
    [32] LIU B, LI W, XU Y, LIN Q, JIANG F, LIU X. Insight into the intrinsic active site for selective production of light olefins in cobalt-catalyzed Fischer-Tropsch synthesis[J]. ACS Catal,2019,9(8):7073−7089. doi: 10.1021/acscatal.9b00352
    [33] VAN HELDEN P, CIOBICA I M, COETZER I M, COETZER R L J. The size-dependent site composition of FCC cobalt nanocrystals[J]. Catal Today,2016,261:48−59. doi: 10.1016/j.cattod.2015.07.052
    [34] RANKIN R B. Similarities and differences for atomic and diatomic molecule adsorption on the B-5 type sites of the HCP(1016) surfaces of Co, Os, and Ru from DFT calculations[J]. Heliyon,2019,5(6):e01924−e01924. doi: 10.1016/j.heliyon.2019.e01924
    [35] PRIETO G, MARTINEZ A, CONCEPCION P, MORENO-TOST R. Cobalt particle size effects in Fischer-Tropsch synthesis: Structural and in situ spectroscopic characterisation on reverse micelle-synthesised Co/ITQ-2 model catalysts[J]. J Catal,2009,266(1):129−144. doi: 10.1016/j.jcat.2009.06.001
    [36] GNANAMANI M L, RIBEIRO M C, MA W, SHAFER W D, JACOBS G, GRAHAM U M, DAVIS B H. Fischer-Tropsch synthesis: Metal-support interfacial contact governs oxygenates selectivity over CeO2 supported Pt-Co catalysts[J]. Appl Catal A: Gen,2011,393(1/2):17−23. doi: 10.1016/j.apcata.2010.11.019
    [37] PEI Y P, LIU J X, ZHAO Y H, DING Y J, LIU T, DONG W D, ZHU H J, SU H Y, YAN Li, LI Jin-lin, LI Wei-xue. High alcohols synthesis via Fischer-Tropsch reaction at cobalt metal/carbide Interface[J]. ACS Catal,2015,5(6):3620−3624. doi: 10.1021/acscatal.5b00791
    [38] 杨霞珍, 刘化章, 唐浩东, 蔡丽萍, 吴再国. Fe、Co基费托合成催化剂助剂研究进展[J]. 化工进展,2006,25(8):867−870.

    YANG Xia-zhen, LIU Hua-zhang, TANG Hao-dong, CAI Li-ping, WU Zai-guo. Research progress of promoters for Fe, Co-based Fischer-Tropch synthesis catalysts[J]. Chem Ind Eng Prog, 2006,2006,25(8):867−870.
    [39] HADDAD G L, CHEN B, GOODWIN J J G. Effect of La3+ Promotion of Co/SiO2 on CO hydrogenation[J]. J Catal,1996,161(1):274−281. doi: 10.1006/jcat.1996.0185
    [40] JOHNSON G R, WERNER S, BELL A T. An investigation into the effects of Mn promotion on the activity and selectivity of Co/SiO2 for Fischer-Tropsch synthesis: Evidence for enhanced CO adsorption and dissociation[J]. ACS Catal,2015,5(10):5888−5903. doi: 10.1021/acscatal.5b01578
    [41] JOHNSON G R, BELL A T. Role of ZrO2 in promoting the activity and selectivity of Co-based Fischer-Tropsch synthesis catalysts[J]. ACS Catal,2015,6(1):100−114.
    [42] PIAO Y, JIANG Q, LI H, MATSUMOTO H, LIANG J S, LIU W, CUONG P H, LIU Y F, WANG F. Identify Zr promotion effects in atomic scale for Co-based catalysts in Fischer-Tropsch synthesis[J]. ACS Catal,2020,10(14):7894−7906. doi: 10.1021/acscatal.0c01874
    [43] LEWIS E A, LE D, JEWELL A D, MURPHY C J, RAHMAN T S, SYKES E C H. Segregation of Fischer-Tropsch reactants on cobalt nanoparticle surfaces[J]. Chem Commun,2014,50(49):6537−6539. doi: 10.1039/C4CC01680G
    [44] LEWIS E A, LE D, JEWELL A D, MURPHY C J, RAHMAN T S, SYKES E C H. Visualization of compression and spillover in a coadsorbed system: Syngas on cobalt nanoparticles[J]. ACS Nano,2013,7(5):4384−4392. doi: 10.1021/nn400919y
    [45] LIN T J, GONG K, WANG C Q, AN Y L, WANG X X, QI X Z, LI S G, LU Y W, ZHONG L S, SUN Y H. Fischer-Tropsch synthesis to olefins: Catalytic performance and structure evolution of Co2C-based catalysts under a CO2 environment[J]. ACS Catal,2019,9(10):9554−9567. doi: 10.1021/acscatal.9b02513
    [46] GUNASOORIYA G T K K, VAN BAVEL A P, KUIPERS H P C E, SAEYS M. CO adsorption on cobalt: Prediction of stable surface phases[J]. Surf Sci,2015,642:L6−L10. doi: 10.1016/j.susc.2015.06.024
    [47] PAREDES-NUNEZ A, LORITO D, GUILHAUME N, MIRODATOS C, SCHUURMAN Y, MEUNIER F C. Nature and reactivity of the surface species observed over a supported cobalt catalyst under CO/H2 mixtures[J]. Catal Today,2015,242:178−183. doi: 10.1016/j.cattod.2014.04.033
    [48] ZHANG R G, LIU F, WNAG Q, WANG B J, LI D B. Insight into CHx formation in Fischer-Tropsch synthesis on the hexahedron Co catalyst: Effect of surface structure on the preferential mechanism and existence form[J]. Appl Catal A: Gen,2016,525:76−84. doi: 10.1016/j.apcata.2016.07.007
    [49] ZHANG R G, KANG L, LIU H X, WANG B J, LI D B, FAN M H. Crystal facet dependence of carbon chain growth mechanism over the HCP and FCC Co catalysts in the Fischer-Tropsch synthesis[J]. Appl Catal B: Environ,2020,269:118847. doi: 10.1016/j.apcatb.2020.118847
    [50] FLOTO M E, CIUFO R A, HAN S, MULLINS C B. CO dissociation on model Co/SiO2 catalysts - effect of adsorbed hydrogen[J]. Surf Sci,2021,705.
    [51] SINGH J A, YANG N, LIU X Y, TSAI C, STONE K H, JOHNSON B, KOH A L, BENT S F. Understanding the active sites of CO hydrogenation on Pt-Co catalysts prepared using atomic layer deposition[J]. J Phys Chem C,2018,122(4):2184−2194. doi: 10.1021/acs.jpcc.7b10541
    [52] WANG H, ZHOU W, LIU J X, SI R, SUN G, ZHONG M Q, SU H Y, ZHAO H B, RODRIGUEZ J A, PENNYCOOK S J, IDROBO J C, LI W X, KOU Y, MA D. Platinum-modulated cobalt nanocatalysts for low-temperature aqueous-phase Fischer-Tropsch synthesis[J]. J Am Chem Soc,2013,135(10):4149−4158. doi: 10.1021/ja400771a
    [53] WESTAATE C J, VAN DE LOOSDRECHT J, NIEMANTSVERDRIET J W. Spectroscopic insights into cobalt-catalyzed Fischer-Tropsch synthesis: A review of the carbon monoxide interaction with single crystalline surfaces of cobalt[J]. J Catal,2016,342:1−16. doi: 10.1016/j.jcat.2016.07.010
    [54] MCNAB A I, MCCUE A J, DIONISI D, ANDERSON A. Quantification and qualification by in-situ FTIR of species formed on supported-cobalt catalysts during the Fischer-Tropsch reaction[J]. J Catal,2017,353:286−294. doi: 10.1016/j.jcat.2017.07.031
    [55] TESCHNER D, BORSODI J, WOOTSCH A, REVAY Z, HAEVECKER M, KNOP-GERICKE A, JACKSON S D, SCHLOEGL R. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation[J]. Sci,2008,320(5872):86−89. doi: 10.1126/science.1155200
  • 加载中
图(9)
计量
  • 文章访问数:  2166
  • HTML全文浏览量:  208
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-18
  • 修回日期:  2021-10-15
  • 录用日期:  2021-10-19
  • 网络出版日期:  2022-01-10
  • 刊出日期:  2022-04-26

目录

    /

    返回文章
    返回