留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CO2/H2O气氛下红沙泉煤中碱(土)金属的分布及其气化反应特性

关昱 张彦迪 刘银河

关昱, 张彦迪, 刘银河. CO2/H2O气氛下红沙泉煤中碱(土)金属的分布及其气化反应特性[J]. 燃料化学学报(中英文), 2022, 50(6): 674-682. doi: 10.19906/j.cnki.JFCT.2021093
引用本文: 关昱, 张彦迪, 刘银河. CO2/H2O气氛下红沙泉煤中碱(土)金属的分布及其气化反应特性[J]. 燃料化学学报(中英文), 2022, 50(6): 674-682. doi: 10.19906/j.cnki.JFCT.2021093
GUAN Yu, ZHANG Yan-di, LIU Yin-he. Distribution of alkaline (earth) metals and gasification reaction characteristics of HSQ coal under CO2/H2O atmosphere[J]. Journal of Fuel Chemistry and Technology, 2022, 50(6): 674-682. doi: 10.19906/j.cnki.JFCT.2021093
Citation: GUAN Yu, ZHANG Yan-di, LIU Yin-he. Distribution of alkaline (earth) metals and gasification reaction characteristics of HSQ coal under CO2/H2O atmosphere[J]. Journal of Fuel Chemistry and Technology, 2022, 50(6): 674-682. doi: 10.19906/j.cnki.JFCT.2021093

CO2/H2O气氛下红沙泉煤中碱(土)金属的分布及其气化反应特性

doi: 10.19906/j.cnki.JFCT.2021093
基金项目: 陕西省重点研发计划(2021GXLH-Z-088)资助
详细信息
    通讯作者:

    Tel: +86-029-82664971, E-mail: yinheliu@mail.xjtu.edu.cn

  • 中图分类号: TQ536.4

Distribution of alkaline (earth) metals and gasification reaction characteristics of HSQ coal under CO2/H2O atmosphere

Funds: The project was supported by the Key Research and Development Plan of Shaanxi Province (2021GXLH-Z-088).
  • 摘要: 使用高温气化固定床实验系统开展了CO2/H2O气化条件下,红沙泉煤中碱(土)金属(AAEMs)的分布情况及其对煤焦气化反应活性的影响。结果表明,气化温度低于灰熔点温度时,Na元素在煤焦表面离散分布,不存在明显的团簇富集现象;气化温度高于灰熔点温度时,Na元素在煤焦表面表现出轻微的富集现象。气化过程中K元素离散分布在煤焦表面,Ca和Mg元素在煤焦表面的富集现象比较明显,含Ca、Mg类矿物迁移团簇在煤焦表面凹陷处,形成尺寸较大的灰球,Ca、Mg元素在分布上存在一定的依赖性。气化残余焦的表观活化能和指前因子随着碳转化率的增加而增加,煤焦的反应活性变低。
  • FIG. 1588.  FIG. 1588.

    FIG. 1588.  FIG. 1588.

    图  1  HSQ原煤的矿物元素分析

    Figure  1  Mineral elements analysis of HSQ coal

    图  2  高温气化实验系统

    Figure  2  Diagram of high temperature gasification experiment system

    图  3  红沙泉煤脱灰前后TG/DTG曲线

    Figure  3  TG/DTG curves of HSQ coal before and after deashing

    图  4  CO2/H2O气氛下不同温度30%碳转化率气化残余焦表面元素分布

    Figure  4  Distribution of surface elements on residual coke after gasification with 30% carbon conversion rate at different temperatures under CO2/H2O atmosphere

    图  5  CO2/H2O气氛下不同温度30%碳转化率气化残余焦表面元素含量

    Figure  5  Surface element content of residual coke after gasification with 30% carbon conversion rate at different temperatures under CO2/H2O atmosphere

    图  6  1300 ℃不同气氛下煤焦表面矿物元素分布

    Figure  6  Distribution of mineral elements on the surface of coal char under different atmospheres at 1300 ℃

    图  7  1300 ℃不同气氛下煤焦表面元素含量

    Figure  7  Surface element content of coal char under different atmospheres at 1300 ℃

    图  8  CO2/H2O气氛下不同碳转化率煤焦中元素含量

    Figure  8  Changes of element content in coal char with different carbon conversion rates under CO2/H2O atmosphere

    图  9  CO2/H2O复合气氛下气化残余焦活化能随碳转化率的变化

    Figure  9  Activation energy of gasification residual coke under CO2/H2O composite atmosphere varies with the carbon conversion rate

    图  10  CO2/H2O气氛下Na、K、Ca、Fe和Mg元素含量与煤焦气化反应性的关系

    Figure  10  Relationship between the content of Na, K, Ca, Fe and Mg elements and the reactivity of coal char gasification under CO2/H2O atmosphere

    表  1  红沙泉原煤的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of HSQ coal

    Proximate analysis wad / % Ultimate analysis wad / %
    MAVFCFuel ratioQnet, ad /(kJ·kg−1CHONSt,
    14.63 7.52 32.82 45.03 1.37 21358.40 61.52 3.59 11.48 0.84 0.42
    Notes: M, A, V and FC are the moisture mass fraction, the ash mass fraction, the volatile matter mass fraction and the fixed carbon mass fraction of sample, respectively; ad is air dry basis
    下载: 导出CSV

    表  2  CO2/H2O复合气氛下气化残余焦的动力学参数

    Table  2  Kinetic parameters of gasification residual coke under CO2/H2O composite atmosphere

    t /℃x /%E /(kJ·mol−1A / ×1011 min−1R2
    100030291.622.330.993
    50316.8825.820.995
    70328.73654.950.988
    110030306.036.450.991
    50322.5119.880.993
    70350.88329.460.994
    120030359.51969.170.993
    50376.554656.280.993
    70387.0415062.50.992
    130030380.212672.680.992
    50385.834999.620.988
    70392.505658.30.984
    下载: 导出CSV
  • [1] 刘敬, 王智化, 项飞鹏, 黄镇宇, 刘建忠, 周俊虎, 岑可法. 准东煤中碱金属的赋存形式及其在燃烧过程中的迁移规律实验研究[J]. 燃料化学学报,2014,42(3):316−322.

    LIU Jing, WANG Zhi-hua, XIANG Fei-peng, HUANG Zhen-yu, LIU Jian-zhong, ZHOU Jun-hu, CENG Ke-fa. Modes of occurrence and transformation of alkali metals in Zhundong coal during combustion[J]. J Fuel Chem Technol,2014,42(3):316−322.
    [2] 段晓丽, 张彦迪, 朱晨钊, 杨浩, 张旭, 王长安, 赵磊, 韩涛, 刘银河. 五彩湾煤在O2/CO2燃烧条件下的积灰特性[J]. 洁净煤技术,2019,25(2):53−61.

    DUAN Xiao-li, ZHANG Yan-di, ZHU Cheng-zhao, YANG Hao, ZHANG Xu, WANG Chang-an, ZHAO Lei, HAN Tao, LIU Yin-he. Ash deposition characteristics of Wucaiwan coal under the combustion condition of O2/CO2[J]. Clean Coal Technol,2019,25(2):53−61.
    [3] 资静斌, 刘洪升, 王学斌, 廖胜明. 循环流化床锅炉纯烧准东煤吹灰器选型及应用研究[J]. 热能动力工程,2020,35(5):268−273.

    ZI Jing-bin, LIU Hong-sheng, WANG Xue-bin, LIAO Sheng-ming. Study on type selection and application of sootblower for CFB boiler burning pure Zhundong coal[J]. J Eng Therm Energy Power,2020,35(5):268−273.
    [4] LIU Y H, GUAN Y, ZHANG Y D, XIONG Y. Effects of atmosphere on mineral transformation of Zhundong coal during gasification in CO2/H2O conditions[J]. Fuel,2021,310:122428.
    [5] TANNER J, BHATTACHARYA S. Kinetics of CO2 and steam gasification of Victorian brown coal chars[J]. Chem Eng J,2016,285:331−340. doi: 10.1016/j.cej.2015.09.106
    [6] GAO M Q, YANG Z R, WANG Y L, BAI Y H, LI F, XIE K C. Impact of calcium on the synergistic effect for the reactivity of coal char gasification in H2O/CO2 mixtures[J]. Fuel,2017,189:312−321.
    [7] BAI Y H, LV P, LI F, SONG X D, SU W G, YU G S. Investigation into Ca/Na compounds catalyzed coal pyrolysis and char gasification with steam[J]. Energ Convers Manage,2019,184:172−179. doi: 10.1016/j.enconman.2019.01.063
    [8] TAY H L, KAJITANI S, ZHANG S, LI C Z. Effects of gasifying agent on the evolution of char structure during the gasification of Victorian brown coal[J]. Fuel,2013,103:22−28. doi: 10.1016/j.fuel.2011.02.044
    [9] 罗康. AAEMs在煤焦与H2O/CO2气化过程中的迁移规律及其对气化反应性的影响[D]. 太原: 太原理工大学, 2016.

    (LUO Kang. Transformation of AAEMS and its influence on reactivity during char gasification with H2O/CO2[D]. Taiyuan: Taiyuan University of Technology, 2016.
    [10] 赵海波, 宋蔷, 吴兴远, 姚强. 稻秆焦炭热解和CO2气化过程中碱金属和碱土金属的迁移[J]. 燃料化学学报,2018,46(1):27−33.

    ZHAO Hai-bo, SONG Qiang, WU Xing-yuan, YAO Qiang. Transformation of alkali and alkaline earth metallic species during pyrolysis and CO2 gasification of rice straw char[J]. J Fuel Chem Technol,2018,46(1):27−33.
    [11] TSHOFFOR P A, DAVIDSSON K O, THUNMAN H. Effects of steam on the release of potassium, chlorine, and sulfur during char conversion, Investigated under dual-fluidized-bed gasification conditions[J]. Energy Fuels,2014,28:6953−6965.
    [12] 段晓丽. 煤焦结构演化及碳基体与矿物质的相互作用实验研究[D]. 西安: 西安交通大学, 2019.

    DUAN Xiao-li. Experimental study on structure evolution of coal char and interaction between carbon matrix and minerals[D]. Xi’an: Xi’an Jiaotong University, 2019.
    [13] 薛静, 安帅, 汪寅夫, 高慧莉, 史佳铭. 王水水浴消解-电感耦合等离子体质谱法测定土壤中的硒[J]. 岩矿测试,2020,39(5):720−725.

    XUE Jing, AN Shuai, WANG Yin-fu, GAO Hui-li, SHI Jia-ming. Determination of selenium in soil by inductively coupled plasma-mass spectrometry with aqua regia digestion in water bath[J]. Rock Mineral Anal,2020,39(5):720−725.
    [14] 邓剑, 罗永浩, 王清成. 无烟煤二氧化碳气化反应动力学研究[J]. 煤炭转化,2007,20(1):10−13+30. doi: 10.3969/j.issn.1004-4248.2007.01.003

    DENG Jian, LUO Yong-hao, WANG Qing-cheng. Study on gasification of anthracite with carbon dioxide by thermogravimetry[J]. Coal Convers,2007,20(1):10−13+30. doi: 10.3969/j.issn.1004-4248.2007.01.003
    [15] WEI J T, GUO Q H, DING L, GONG Y, YU J Q, YU G S. Understanding the effect of different biomass ash additions on pyrolysis product distribution, char physicochemical characteristics, and char gasification reactivity of bituminous coal[J]. Energy Fuels,2019,33:3068−3076. doi: 10.1021/acs.energyfuels.9b00064
    [16] XU S Q, ZHOU Z J, XIONG J, YU G S, WANG F C. Effects of alkaline metal on coal gasification at pyrolysis and gasification phases[J]. Fuel,2011,90:1723−1730.
    [17] HATTINGH B B, EVERSON R C, NENMAGUS H W P, BUNT J R. Assessing the catalytic effect of coal ash constituents on the CO2 gasification rate of high ash, South African coal[J]. Fuel Process Technol,2011,92:2048−2054. doi: 10.1016/j.fuproc.2011.06.003
    [18] WANG Y L, ZHU S H, GAO M Q, YANG Z R, YAN L J, BAI Y H, LI F. A study of char gasification in H2O and CO2 mixtures: Role of inherent minerals in the coal[J]. Fuel Process Technol,2016,141:9−15.
    [19] OBOIRIEN B O, ENGELBRECHT A D, NORTH B C, ERAMUS R M, FALCON R. Mineral-char interaction during gasification of high-Ash coals in fluidized-bed gasification[J]. Energy Fuels,2011,25:5189−5199.
    [20] LI C Z. Some recent advances in the understanding of the pyrolysis and gasification behaviour of Victorian brown coal[J]. Fuel,2007,86:1664−1683. doi: 10.1016/j.fuel.2007.01.008
    [21] 李明强, 樊俊杰, 张忠孝, 乌晓江. 液渣捕捉高碱煤中碱金属特性及机理[J]. 燃烧科学与技术,2017,23(5):429−435.

    LI Ming-qiang, FAN Jun-jie, ZHANG Zhong-xiao, WU Xiao-jiang. Mechanism study on liquid slag capture of alkali metal[J]. J Combust Sci Technol,2017,23(5):429−435.
    [22] WANG Y, DENG H X, REN Q Q. Fusion properties of gasified fine ash at high temperature under reducing atmosphere. Part 2: Influence of Fe2O3[J]. Energy Fuels,2019,33:747−755. doi: 10.1021/acs.energyfuels.8b03441
    [23] DU S L, YANG H P, QIAN K Z, WANG X H, CHENG H P. Fusion and transformation properties of the inorganic components in biomass ash[J]. Fuel,2014,117:1281−1287. doi: 10.1016/j.fuel.2013.07.085
    [24] ZHANG Y D, LIU Y H, DUAN X L, ZHOU Y, LIU X Q, XU S J. Effect of temperature on Lu’an bituminous char structure evolution in pyrolysis and combustion[J]. Front Energy,2020,15:14−25.
    [25] ZHANG X S, BAI Y H, WEI J T, SONG X D, WANG J F, YANG M, YU G S. Study on char-ash-slag-liquid transition and its effect on char reactivity[J]. Energy Fuels,2020,34:3941−3951. doi: 10.1021/acs.energyfuels.9b03155
    [26] BOURAOUI Z, DUPONT C, JEGUIRIM M, LIMOUSY L, GADIOU R. CO2 gasification of woody biomass chars: The influence of K and Si on char reactivity[J]. C R Chim,2016,19:457−465. doi: 10.1016/j.crci.2015.08.012
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  312
  • HTML全文浏览量:  185
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-14
  • 修回日期:  2021-11-30
  • 录用日期:  2021-12-01
  • 网络出版日期:  2021-12-18
  • 刊出日期:  2022-06-25

目录

    /

    返回文章
    返回