留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同晶面Co基催化剂上CO活化行为研究

卢文丽 王俊刚 孙德魁 马中义 陈从标 侯博 王宝俊 李德宝

卢文丽, 王俊刚, 孙德魁, 马中义, 陈从标, 侯博, 王宝俊, 李德宝. 不同晶面Co基催化剂上CO活化行为研究[J]. 燃料化学学报(中英文), 2022, 50(5): 583-590. doi: 10.19906/j.cnki.JFCT.2021094
引用本文: 卢文丽, 王俊刚, 孙德魁, 马中义, 陈从标, 侯博, 王宝俊, 李德宝. 不同晶面Co基催化剂上CO活化行为研究[J]. 燃料化学学报(中英文), 2022, 50(5): 583-590. doi: 10.19906/j.cnki.JFCT.2021094
LU Wen-li, WANG Jun-gang, SUN De-kui, MA Zhong-yi, CHEN Cong-biao, HOU Bo, WANG Bao-jun, LI De-bao. CO dissociation over cobalt-based catalysts with different crystal facets[J]. Journal of Fuel Chemistry and Technology, 2022, 50(5): 583-590. doi: 10.19906/j.cnki.JFCT.2021094
Citation: LU Wen-li, WANG Jun-gang, SUN De-kui, MA Zhong-yi, CHEN Cong-biao, HOU Bo, WANG Bao-jun, LI De-bao. CO dissociation over cobalt-based catalysts with different crystal facets[J]. Journal of Fuel Chemistry and Technology, 2022, 50(5): 583-590. doi: 10.19906/j.cnki.JFCT.2021094

不同晶面Co基催化剂上CO活化行为研究

doi: 10.19906/j.cnki.JFCT.2021094
基金项目: 国家自然科学基金(21736007, 21872162, 21902170)和山西省重点研发计划(201903D121039, 202103021224444)资助
详细信息
    通讯作者:

    E-mail: wangjg@sxicc.ac.cn

    houbo@sxicc.ac.cn

  • 中图分类号: O643.36

CO dissociation over cobalt-based catalysts with different crystal facets

Funds: The project was supported by the National Natural Science Foundation of China (21736007, 21872162, 21902170) and the Key Research Project of Shanxi Province (201903D121039, 202103021224444) .
  • 摘要: 本研究用溶剂热法合成了三种暴露不同晶面的Co基催化剂,排除载体、助剂、晶粒尺寸等参数的影响,通过程序升温脱附、原位拉曼光谱、原位漫反射红外光谱等表征手段和化学瞬变反应技术,对不同晶面Co催化剂在费托反应过程中CO活化行为进行了研究。结果表明,CO的活化在不同晶面的Co基催化剂上具有结构敏感性。Co(10-11)晶面上CO以直接解离的方式进行活化,且CO解离生成的碳物种部分形成积炭,其余碳物种加氢生成CHx;Co(0001)晶面上CO以氢助解离的方式活化,大量解离为积炭,少量碳物种氢化为CHx;Co(11-20)晶面上CO直接解离,该催化剂上CO弱解离得到微量的积炭,其余碳物种在氢的存在下生成微量的CHx中间体。
  • FIG. 1526.  FIG. 1526.

    FIG. 1526.  FIG. 1526.

    图  1  p-Co-R催化剂的CO/(H2+CO)-TPD谱图

    Figure  1  CO/(H2+CO)-TPD profiles of p-Co-R catalyst

    图  2  s-Co-R催化剂的CO/(H2+CO)-TPD曲线

    Figure  2  CO/(H2+CO)-TPD profiles of s-Co-R catalyst

    图  3  c-Co-R催化剂的CO/(H2+CO)-TPD曲线

    Figure  3  CO/(H2+CO)-TPD profiles of c-Co-R catalyst

    图  4  正向瞬变实验示意图

    Figure  4  Schematic diagram of gas switching behavior that takes place during a build-up CTK experiment

    图  5  p-Co-R催化剂上CO加氢过程中的正向CTK响应曲线

    Figure  5  CTK build-up for the CO hydrogenation over p-Co-R catalyst at 250 °Cthe inset provides enlargement of the difference between COtheor and CO

    图  6  s-Co-R催化剂上CO加氢过程中的正向CTK响应曲线

    Figure  6  CTK build-up for the CO hydrogenation over s-Co-R catalyst at 250 °Cthe inset provide enlargement of the difference between COtheor and CO

    图  7  c-Co-R催化剂上CO加氢过程中的正向CTK响应曲线

    Figure  7  CTK build-up for the CO hydrogenation over c-Co-R catalyst at 250 °Cthe inset provide enlargement of the difference between COtheor and CO

    图  8  p-Co-R、s-Co-R和c-Co-R正向CTK过程中CO信号值比较

    Figure  8  Comparison of CO signal during forward CTK over p-Co-R, s-Co-R and c-Co-R catalysts

    图  9  p-Co-R、s-Co-R和c-Co-R催化剂费托反应条件下的原位拉曼光谱谱图

    Figure  9  In-situ Raman spectra of the catalysts during the F-T reaction

    图  10  三种催化剂的原位漫反射红外光谱谱图

    Figure  10  In-situ DRIFTS for CO hydrogenation over three catalysts

    图  11  不同晶面Co催化剂上CO解离路径

    Figure  11  Proposed elementary steps for FTS on Co catalysts

  • [1] JAHANGIRI H, BENNETT J, MAHJOUBI P, WILSON K, GU S. A review of advanced catalyst development for Fischer-Tropsch synthesis of hydrocarbons from biomass derived syngas[J]. Catal Sci Technol,2014,4(8):2210−2229. doi: 10.1039/C4CY00327F
    [2] BEZEMER G L, BITTER J H, KUIPERS H, OOSTERBEEK H, HOLEWIJN J E, XU X D, KAPTEIJN F, VAN DILLEN A J, DE JONG K P. Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts[J]. J Am Chem Soc,2006,128(12):3956−3964. doi: 10.1021/ja058282w
    [3] DEN BREEJEN J P, RADSTAKE P B, BEZEMER G L, BITTER J H, HOLMEN A, DE JONG K P. On the origin of the cobalt particle size effects in Fischer-Tropsch catalysis[J]. J Am Chem Soc,2009,131(20):7197−7203. doi: 10.1021/ja901006x
    [4] YANG J, TVETEN E Z, CHEN D, HOLMEN A. Understanding the effect of cobalt particle size on Fischer-Tropsch synthesis: Surface species and mechanistic studies by SSITKA and Kinetic Isotope Effect[J]. Langmuir,2010,26(21):16558−16567. doi: 10.1021/la101555u
    [5] SAVOST’YANOV A P, YAKOVENKO R E, NAROCHNYI G B, BAKUN V G, SULIMA S L, YAKUBA E S, MITCHENKO S A. Industrial catalyst for the selective Fischer-Tropsch synthesis of long-chain hydrocarbons[J]. Kinet Catal,2017,58(1):81−91. doi: 10.1134/S0023158417010062
    [6] CIOBICA I M, KRAMER G J, GE Q, NEUROCK M, VAN SANTEN R A. Mechanisms for chain growth in Fischer-Tropsch synthesis over Ru(0001)[J]. J Catal,2002,212(2):136−144. doi: 10.1006/jcat.2002.3742
    [7] Liu J X, Su H Y, Sun D P, Zhang B Y, Li W X. Crystallographic dependence of CO activation on cobalt catalysts: HCP versus FCC[J]. J Am Chem Soc,2013,135(44):16284−16287. doi: 10.1021/ja408521w
    [8] SHETTY S, VAN SANTEN R A. Hydrogen induced CO activation on open Ru and Co surfaces[J]. Phys Chem Chem Phys,2010,12(24):6330−6332. doi: 10.1039/b926731j
    [9] CHENG J, HU P, ELLIS P, FRENCH S, KELLY G, LOK C M. First-principles study of oxygenates on Co surfaces in Fischer-Tropsch synthesis[J]. J Phys Chem C,2008,112(25):9464−9473. doi: 10.1021/jp802242t
    [10] INDERWILDI O R, JENKINS S J, KING D A. Fischer-Tropsch mechanism revisited:   Alternative pathways for the production of higher hydrocarbons from synthesis gas[J]. J Phys Chem C,2008,112(5):1305−1307. doi: 10.1021/jp710674q
    [11] WAGNER C, HAUFFE Z. Untersuchungen ber den stationären zustand von katalysatoren bei heterogenen reaktionen. II.[J]. Zeitchrift fur elektrochemie und angewandte physikalische chemie,1939,45:409−426.
    [12] TAMARU K. Adsorption measurements during surface catalysis[J]. Bull Chem Soc Jpn,1958,31(5):666−667. doi: 10.1246/bcsj.31.666
    [13] ATHARIBOROUJENY M, RAUB A, IABLOKOV V, CHENAKIN S, KOVARIK L, KRUSE N. Competing mechanisms in CO hydrogenation over Co-MnOx catalysts[J]. ACS Catal,2019,9(6):5603−5612. doi: 10.1021/acscatal.9b00967
    [14] CHEN W, PESTMAN R, ZIJLSTRA B, FILOT I A W, HENSEN E J M. Mechanism of cobalt-catalyzed CO hydrogenation: 1. Methanation[J]. ACS Catal,2017,7(12):8050−8060. doi: 10.1021/acscatal.7b02757
    [15] SHETTY S, VAN SANTEN R A. CO dissociation on Ru and Co surfaces: The initial step in the Fischer-Tropsch synthesis[J]. Catal Today,2011,171(1):168−173. doi: 10.1016/j.cattod.2011.04.006
    [16] QIN C, HOU B, WANG J, WANG Q, WANG G, YU M, CHEN C, JIA L, LI D. Crystal-plane-dependent Fischer-Tropsch performance of cobalt catalysts[J]. ACS Catal,2018,8(10):9447−9455. doi: 10.1021/acscatal.8b01333
    [17] SCHWEICHER J, BUNDHOO A, FRENNET A, KRUSE N, DALY H, MEUNIER F C. DRIFTS/MS studies during chemical transients and SSITKA of the CO/H2 reaction over Co-MgO catalysts[J]. J Phys Chem C,2010,114(5):2248−2255. doi: 10.1021/jp909754w
    [18] KRUSE N, SCHWEICHER J, BUNDHOO A, FRENNET A, DE BOCARME T V. Catalytic CO hydrogenation: Mechanism and kinetics from chemical transients at low and atmospheric pressures[J]. Top Catal,2008,48(1/4):145−152. doi: 10.1007/s11244-008-9045-8
    [19] SCHWEICHER J, BUNDHOO A, KRUSE N. Hydrocarbon chain lengthening in catalytic CO hydrogenation: Evidence for a CO-Insertion Mechanism[J]. ACS Catal,2012,134(39):16135−16138.
    [20] RAUB A, KARROUM H, ATHARIBOROUJENY M, KRUSE N. Chemical transient kinetics in studies of the Fischer-Tropsch reaction and beyond[J]. Catal Lett, 2021, 151: 613−626 .
    [21] WANG T, DING Y, XIONG J, YAN L, ZHU H, LU Y, LIN L. Effect of vanadium promotion on activated carbon-supported cobalt catalysts in Fischer-Tropsch synthesis[J]. Catal Lett,2006,107(1/2):47−52. doi: 10.1007/s10562-005-9730-1
    [22] FLOTO M E, CIUFO R A, HAN S, MULLINS C B. CO dissociation on model Co/SiO2 catalysts-effect of adsorbed hydrogen[J]. Surf Sci,2021,705:121783. doi: 10.1016/j.susc.2020.121783
    [23] ZHANG R, LIU F, WNAG Q, WANG B, LI D. Insight into CHx formation in Fischer-Tropsch synthesis on the hexahedron Co catalyst: Effect of surface structure on the preferential mechanism and existence form[J]. Appl Catal A: Gen,2016,525:76−84. doi: 10.1016/j.apcata.2016.07.007
    [24] SU H Y, ZHAO Y H, LIU J X, SUN K J, LI W X. First-principles study of structure sensitivity of chain growth and selectivity in Fischer-Tropsch synthesis using HCP cobalt catalysts[J]. Catal Sci Technol,2017,7(14):2967−2977. doi: 10.1039/C7CY00706J
    [25] QI Y, YANG J, CHEN D, HOLMEN A. Recent progresses in understanding of Co-based Fischer-Tropsch catalysis by means of transient kinetic studies and theoretical analysis[J] Catal Lett, 2014, 145(1): 145-161.
    [26] OJEDA M, NABAR R, NILEKAR A U, ISHIKAWA A, MAVRIKAKIS M, IGLESIA E. CO activation pathways and the mechanism of Fischer-Tropsch synthesis[J]. J Catal,2010,272(2):287−297. doi: 10.1016/j.jcat.2010.04.012
    [27] RALSTON W T, MELAET G, SAEPHAN T, SOMORJAI G A. Evidence of structure sensitivity in the Fischer-Tropsch reaction on model cobalt nanoparticles by time-resolved chemical transient kinetics[J]. Angew Chem Int Ed,2017,56(26):7415−7419. doi: 10.1002/anie.201701186
    [28] CHEN W, FILOT I A W, PESTMAN R, HENSEN E J M. Mechanism of cobalt-catalyzed CO hydrogenation: 2. Fischer-Tropsch synthesis[J]. ACS Catal,2017,7(12):8061−8071. doi: 10.1021/acscatal.7b02758
    [29] ZHANG X, VAN SANTEN R A, HENSEN E J M. Carbon-induced surface transformations of cobalt[J]. ACS Catal,2015,5(2):596−601. doi: 10.1021/cs501484c
    [30] VAN SANTEN R A, MARKVOORT A J, FILOT I A W, GHOURI M M, HENSEN E J M. Mechanism and microkinetics of the Fischer-Tropsch reaction[J]. Phys Chem Chem Phys,2013,15(40):17038. doi: 10.1039/c3cp52506f
    [31] NI Z, KANG S, BAI J, LI Y, HUANG Y, WANG Z, QIN H, LI X. Uniformity dispersive, anti-coking core@double-shell-structured Co@SiO2@C: Effect of graphitic carbon modified interior pore-walls on C5+ selectivity in Fischer-Tropsch synthesis[J]. J Colloid Interf Sci,2017,505:325−331. doi: 10.1016/j.jcis.2017.05.096
    [32] GUAN H, WANG X, CHEN S, BANDO Y, GOLBERG D. Coaxial Cu-Si@C array electrodes for high-performance lithium ion batteries[J]. Chem Commun,2011,47(44):12098−12100. doi: 10.1039/c1cc15595d
    [33] PALOMINO R M, MAGEE J W, LLORCA J, SENANAYAKE S D, WHITE M G. The effect of Fe-Rh alloying on CO hydrogenation to C2+ oxygenates[J]. J Catal,2015,329:87−94. doi: 10.1016/j.jcat.2015.04.033
    [34] SU J, MAO W, XU X, YANG Z, LI H, XU J, HAN Y. Kinetic study of higher alcohol synthesis directly from syngas over CoCu/SiO2 catalysts[J]. AIChE J,2014,60(5):1797−1809. doi: 10.1002/aic.14354
  • 加载中
图(12)
计量
  • 文章访问数:  315
  • HTML全文浏览量:  139
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-28
  • 修回日期:  2021-11-19
  • 录用日期:  2021-11-24
  • 网络出版日期:  2021-12-18
  • 刊出日期:  2022-05-24

目录

    /

    返回文章
    返回