留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同植物纤维的热解和燃烧特性研究

郑泉兴 刘秀彩 吴添文 陈辉 黄朝章 许寒春 蓝洪桥 马鹏飞 于德德 谢卫 伊晓东

郑泉兴, 刘秀彩, 吴添文, 陈辉, 黄朝章, 许寒春, 蓝洪桥, 马鹏飞, 于德德, 谢卫, 伊晓东. 不同植物纤维的热解和燃烧特性研究[J]. 燃料化学学报(中英文), 2022, 50(6): 747-756. doi: 10.19906/j.cnki.JFCT.2022003
引用本文: 郑泉兴, 刘秀彩, 吴添文, 陈辉, 黄朝章, 许寒春, 蓝洪桥, 马鹏飞, 于德德, 谢卫, 伊晓东. 不同植物纤维的热解和燃烧特性研究[J]. 燃料化学学报(中英文), 2022, 50(6): 747-756. doi: 10.19906/j.cnki.JFCT.2022003
ZHENG Quan-xing, LIU Xiu-cai, WU Tian-wen, CHEN Hui, HUANG Chao-zhang, XU Han-chun, LAN Hong-qiao, MA Peng-fei, YU De-de, XIE Wei, YI Xiao-dong. Study on pyrolysis and combustion characteristics of different plant fibers[J]. Journal of Fuel Chemistry and Technology, 2022, 50(6): 747-756. doi: 10.19906/j.cnki.JFCT.2022003
Citation: ZHENG Quan-xing, LIU Xiu-cai, WU Tian-wen, CHEN Hui, HUANG Chao-zhang, XU Han-chun, LAN Hong-qiao, MA Peng-fei, YU De-de, XIE Wei, YI Xiao-dong. Study on pyrolysis and combustion characteristics of different plant fibers[J]. Journal of Fuel Chemistry and Technology, 2022, 50(6): 747-756. doi: 10.19906/j.cnki.JFCT.2022003

不同植物纤维的热解和燃烧特性研究

doi: 10.19906/j.cnki.JFCT.2022003
基金项目: 福建中烟工业有限责任公司科技项目(JSZXKJJH2020001)资助
详细信息
    通讯作者:

    E-mail: xw10481@fjtic.cn

    xdyi@xmu.edu.cn

  • 中图分类号: TK6

Study on pyrolysis and combustion characteristics of different plant fibers

Funds: The project was supported by China Tobacco Fujian Industrial Co., Ltd (JSZXKJJH2020001).
  • 摘要: 本研究采用不等温热重法研究六种纤维(针叶、阔叶、竹、亚麻、草和棉)在N2和空气气氛下的热解和燃烧特性,并采用Friedman法对其进行动力学分析。结果表明,纤维不同的热解和燃烧特性参数与其自身结构组成有关。纤维在热解和燃烧过程中,其挥发分析出温度Ts、终止温度Th、DTG峰温Tmax、固定碳燃烧峰温、最大质量损失速率、热解指数P和燃烧指数S均随着升温速率的增加而增加;在N2气氛下,亚麻纤维Tmax最大,竹纤维Tmax最小,棉纤维的Ts最大,草纤维的最大热解质量损失速率−(dm/dt)max、热解指数P和燃烧指数S均最小;在转化率为0.05−0.85条件下,阔叶纤维平均表观活化能最小(173.3 kJ/mol),竹纤的最大(201.10 kJ/mol)。在空气气氛下,所有纤维的热解过程的Tmax均低于N2条件下,在转化率为0.05−0.65时,纤维在空气中热解的表观活化能Eα低于其在N2条件下的表观活化能。
  • FIG. 1595.  FIG. 1595.

    FIG. 1595.  FIG. 1595.

    图  1  针叶纤维薄片在N2下热解的TG和DTG曲线(升温速率β=10 K/min)

    Figure  1  TG and DTG curves of pyrolysis of coniferous fiber sheet under N2 atmosphere (heating rate β=10 K/min)

    图  2  在N2气氛、不同升温速率条件下针叶纤维薄片热解的转化率α和热解速率dα/dt曲线

    Figure  2  Conversion profiles and pyrolysis rate profiles of coniferous fiber sheet under N2 at different heating rates

    图  3  纤维在N2气氛下热解的Friedman图

    Figure  3  Friedman results of pyrolysis of different fiber sheets under N2 atmosphere

    (a): Coniferous fiber; (b): Broadleaf fiber; (c): Bamboo fiber; (d): Flax fiber; (e): Grass fiber; (f): Cotton fiber

    图  4  针叶纤维在空气气氛中燃烧反应的转化率和燃烧速率dα/dt的曲线

    Figure  4  Conversion profiles and combustion rate profiles of coniferous fiber sheet under air atmosphere at different heating rates

    表  1  纤维薄片热解特性参数*

    Table  1  Pyrolysis characteristic parameters of fiber sheets

    Sampleβ/(K·min−1)Ts/KTh/KTmax/K−(dm/dt)max/(%·min−1)T1/2/KP×10−6/(%·min−1·K−3)
    Coniferous fiber 5 602.8 637.1 624.6 12.5 25.3 1.31
    10 612.0 649.3 635.4 22.9 27.9 2.11
    15 617.4 657.3 641.6 32.1 30.5 2.65
    Broadleaf fiber 5 597.8 634.0 621.4 11.9 26.2 1.22
    10 608.9 648.1 634.1 22.2 29.1 1.98
    15 613.5 655.5 640.1 31.0 31.7 2.49
    Bamboo fiber 5 595.2 633.3 619.2 11.0 27.7 1.08
    10 604.6 646.2 631.2 20.3 30.7 1.74
    15 609.3 652.4 636.5 29.1 32.6 2.30
    Flax fiber 5 607.6 645.2 630.8 11.5 29.3 1.03
    10 618.3 658.3 643.2 21.8 31.7 1.73
    15 625.0 666.0 649.1 31.6 27.7 2.81
    Grass fiber 5 591.7 637.8 619.8 9.0 33.0 0.74
    10 601.2 651.1 631.9 16.9 36.1 1.23
    15 607.4 659.8 639.7 24.1 39.0 1.59
    Cotton fiber 5 610.0 643.4 629.8 13.2 27.1 1.27
    10 620.6 656.4 640.8 24.8 29.9 2.09
    15 627.1 664.0 648.1 35.2 31.4 2.76
    *β—heating rate;Ts—initial decomposition temperature;Th—terminal decomposition temperature;Tmax—peak temperature;−(dm/dt)max—maximum mass loss rate;△T1/2—peak width at half-height; P—pyrolysis index
    下载: 导出CSV

    表  2  纤维的组成信息

    Table  2  Information of fiber composition (%)

    SampleCelluloseHemicelluloseLignin
    Coniferous fiber74.56 ± 0.2313.23 ± 0.439.32 ± 1.61
    Broadleaf fiber75.8 ± 0.3115.07 ± 0.555.55 ± 1.21
    Bamboo fiber74.05 ± 0.5218.28 ± 0.465.86 ± 0.71
    Flax fiber92.19 ± 0.344.32 ± 0.162.33 ± 0.51
    Grass fiber71.9 ± 0.1717.59 ± 0.554.28 ± 0.50
    Cotton fiber95.84 ± 0.970.23 ± 0.011.17 ± 0.01
    下载: 导出CSV

    表  3  Friedman法得到纤维在N2气氛下热解的表观活化能Eα(kJ/mol)和相关系数R2

    Table  3  Apparent activation energy Eα(kJ/mol) of different fibers pyrolysis under N2 atmosphere obtained by Friedman method and correlation coefficient R2

    ConversionConiferousBroadleafBambooFlaxGrassCotton
    EαR2EαR2EαR2EαR2EαR2EαR2
    0.05 224.16 0.9962 185.76 0.9769 214.39 0.9837 182.96 0.9952 183.16 0.9989 206.94 0.9994
    0.1 228.85 0.9992 196.07 0.9927 227.60 0.9968 193.57 0.9997 209.72 0.9971 186.28 1.0000
    0.15 211.04 1.0000 188.48 0.9910 216.08 0.9949 184.16 1.0000 203.67 0.9985 189.93 0.9998
    0.2 210.38 0.9999 188.72 0.9954 218.02 0.9962 188.78 1.0000 184.92 0.9998 188.52 0.9996
    0.25 203.58 0.9998 185.37 0.9963 213.00 0.9967 187.00 0.9999 186.89 0.9992 186.82 0.9995
    0.3 197.55 0.9995 181.42 0.9972 205.12 0.9976 186.65 1.0000 182.30 0.9993 185.16 0.9998
    0.35 193.79 0.9994 178.06 0.9980 201.10 0.9963 184.48 0.9999 176.78 0.9992 189.52 1.0000
    0.4 190.80 0.9998 173.30 0.9980 198.15 0.9974 184.77 1.0000 173.92 0.9986 191.19 0.9990
    0.45 188.00 0.9994 171.94 0.9983 193.86 0.9962 186.93 0.9999 170.33 0.9987 187.55 0.9994
    0.5 186.02 0.9995 169.93 0.9986 193.62 0.9974 187.58 0.9996 168.08 0.9989 181.27 1.0000
    0.55 184.37 0.9996 168.42 0.9977 192.50 0.9968 185.69 1.0000 168.19 0.9988 177.59 0.9999
    0.6 179.99 0.9987 167.40 0.9982 191.93 0.9979 182.11 1.0000 167.02 0.9986 176.19 1.0000
    0.65 177.07 0.9978 165.31 0.9989 191.79 0.9975 179.71 0.9996 167.47 0.9988 176.97 0.9999
    0.7 174.73 0.9953 161.26 0.9995 192.96 0.9972 178.66 0.9991 170.44 0.9986 177.59 1.0000
    0.75 175.14 0.9898 160.78 1.0000 196.99 0.9981 177.87 0.9987 173.45 0.9983 178.37 1.0000
    0.8 177.50 0.9845 162.33 1.0000 205.95 0.9992 180.06 0.9975 179.63 0.9982 184.03 0.9999
    0.85 194.01 0.9744 178.59 0.9994 245.74 1.0000 188.62 0.9935 194.08 0.9976 199.28 0.9998
    0.9 422.16 0.9265 334.18 1.0000 1227.04 0.8234 261.73 0.9700 287.75 0.9931 267.37 0.9945
    0.95 −378.69 0.8906 −396.67 0.5410 −400.47 0.9187 −227.41 0.6301 259.91 0.7083 −232.31 0.8507
    E
    (α: 0.05−0.85)
    193.79 173.30 201.10 184.77 176.78 186.28
    下载: 导出CSV

    表  4  纤维在空气气氛、不同升温速率条件下的燃烧特性参数*

    Table  4  Combustion characteristic parameters of different fiber sheets under airatmosphere at different heating rates

    Sampleβ/(K·min−1)Pyrolysis stageCombustion stage−(dm/dt)mean /(%·min−1)S×10−8/(%2·
    min−2·K−3)
    Ts,1/KTh,1 /KTmax,1/K−(dm/dt)max1 /(%·min−1)Ts,2/KTh,2/KTmax,2/K−(dm/dt)max2 /(%·min−1)
    Coniferous fiber 5 585.7 606.2 597.7 17.47 724.1 743.0 736.3 3.05 1.09 7.49
    10 598.9 619.4 611.1 38.05 737.8 752.8 746.6 8.1 2.08 29.31
    15 608.9 631.4 623.0 53.61 745.5 761.9 752.9 10.40 3.02 57.40
    Broadleaf fiber 5 582.4 604.0 595.9 17.68 716.1 725.5 723.5 6.21 1.12 8.02
    10 596.2 618.7 609.6 34.65 719.7 734.4 729.2 8.64 2.16 28.65
    15 605.1 627.9 617.5 52.19 726.8 744.8 734.9 11.13 3.13 59.91
    Bamboo fiber 5 580.4 605.3 595.1 14.13 712.0 721.0 718.4 6.99 1.11 6.49
    10 595.7 620.0 611.0 30.85 719.4 739.4 727.7 7.44 2.18 25.59
    15 602.5 628.7 618.6 44.25 726.2 746.8 734.1 10.74 3.13 51.08
    Flax fiber 5 587.4 609.7 600.6 16.44 707.0 753.6 737.0 1.60 1.05 6.67
    10 601.8 625.0 615.2 32.73 724.1 770.5 752.7 2.97 2.03 23.82
    15 609.6 634.7 626.0 47.97 731.3 780.3 758.9 3.99 2.97 49.14
    Grass fiber 5 574.4 605.8 592.7 11.28 680.8 717.3 696.9 2.15 1.10 5.26
    10 588.5 619.9 607.8 23.36 697.2 715.4 704.2 7.19 2.16 20.35
    15 596.3 628.1 615.8 35.98 696.7 721.9 705.9 9.28 3.15 44.12
    Cotton fiber 5 591.9 610.8 602.9 20.18 726.7 766.7 753.8 1.62 1.04 7.82
    10 606.7 626.9 618.7 39.25 743.9 783.5 771.3 3.06 2.02 27.48
    15 615.3 636.4 628.1 58.5 754.6 793.9 783.2 4.24 2.98 58.10
    *β—heating rate;Ts—initial decomposition temperature;Th—terminal decomposition temperature;Tmax—peak temperature;−(dm/dt)max—maximum mass loss rate;−(dm/dt)mean—average mass loss rate; S—combustion index
    下载: 导出CSV

    表  5  Friedman法得到纤维在空气气氛下燃烧的表观活化能Eα(kJ/mol)和相关系数R2

    Table  5  Apparent activation energy Eα(kJ/mol) of different fibers pyrolysis under air atmosphere obtained by Friedman method and the relative correlation coefficient R2

    αConiferous fiberBroadleaf fiberBamboo fiberFlax fiberGrass fiberCotton fiber
    EαR2EαR2EαR2EαR2EαR2EαR2
    0.05165.80.9704169.820.9997162.90.9968140.650.9973175.090.9861124.090.9967
    0.1131.330.9902137.011.0000141.920.9934127.150.9973157.470.9998116.350.9996
    0.15126.120.9892132.080.9995127.990.9999127.80.9998139.10.9985118.751.0000
    0.2137.410.9988129.790.9998130.310.9970128.121.0000139.091.0000124.620.9996
    0.25128.740.99411260.9991130.190.9962139.410.9980143.090.9982136.990.9987
    0.3130.920.9999125.180.9760144.950.9845143.590.9997141.190.9841132.650.9990
    0.35135.640.9958137.720.9960147.870.9891134.990.9936160.180.9918128.320.9990
    0.4138.640.9659150.250.9996151.230.9989130.720.9899131.630.9987133.580.9999
    0.45146.930.9777148.610.9998165.880.9998144.260.9989152.30.9996143.650.9999
    0.5157.980.9718154.040.9999176.130.9995157.971.0000187.550.9868157.260.9998
    0.55146.280.9775165.250.9822179.750.9997168.620.9993177.20.9999169.860.9993
    0.6165.470.9748183.670.9985175.760.9999175.520.9975184.030.9999186.150.9985
    0.65233.980.9846207.040.9978255.590.9895210.390.9975202.510.9965221.750.9976
    0.7413.40.9493326.30.9966484.120.9163410.940.9949305.770.9972369.80.9988
    0.75769.220.5416519.190.9999253.90.08631233.160.8073422.580.99971075.390.9484
    0.8−631.820.99562480.048456.530.0199−184.380.2396388.450.9101−317.510.8451
    0.85326.480.9175259.240.9843242.620.9477213.680.9199263.180.993079.590.0708
    0.9188.040.9989244.680.8630205.250.9859192.750.9856398.790.9999176.180.9989
    0.95239.060.9869243.560.8928−110.480.5280180.260.9991379.870.9482170.410.9971
    下载: 导出CSV
  • [1] 周顺, 徐迎波, 王程辉, 田振峰, 徐志强, 何庆. 比较研究纤维素、果胶和淀粉的燃烧行为和机理[J]. 中国烟草学报,2011,17(5):1−9. doi: 10.3969/j.issn.1004-5708.2011.05.001

    ZHOU Shun, XU Ying-bo, WANG Cheng-hui, TIAN Zhen-feng, XU Zhi-qiang, HE Qing. A comparative study of the combustion behavior and mechanism of cellulose, pectin and starch[J]. Acta Tab Sin,2011,17(5):1−9. doi: 10.3969/j.issn.1004-5708.2011.05.001
    [2] 吕当振, 姚洪, 王泉斌, 李志远, 彭钦春, 刘小伟, 徐明厚. 纤维素、木质素含量对生物质热解气化特性影响的实验研究[J]. 工程热物理学报,2008,29(10):1771−1774. doi: 10.3321/j.issn:0253-231X.2008.10.042

    LÜ Dang-zhen, YAO Hong, WANG Quan-bin, LI Zhi-Yuan, PENG Qin-Chun, LIU Xiao-wei, XU Ming-hou. Effect of cellulose and lignin content on pyrolysis and gasification characteristics for several types of biomass[J]. J Eng Therm,2008,29(10):1771−1774. doi: 10.3321/j.issn:0253-231X.2008.10.042
    [3] 赵坤, 肖军, 沈来宏, 瞿婷婷. 基于三组分的生物质快速热解实验研究[J]. 太阳能学报,2011,32(5):7710−717.

    ZHAO Shen, XIAO Jun, SHEN Lai-hong, QU Ting-ting. Experimental study of biomass rapid pyrolysis based on three components[J]. Acta Energ Sol Sin,2011,32(5):7710−717.
    [4] VYAZOVKIN S. Modification of the integral isoconversional method to account for variation in activation energy[J]. J Comput Chem,2001,22(2):178−183. doi: 10.1002/1096-987X(20010130)22:2<178::AID-JCC5>3.0.CO;2-#
    [5] MA Z, WANG J, YANG Y, ZHANG Y, ZHAO C, YU Y, WANG S. Comparison of the thermal degradation behaviors and kinetics of palm oil waste under nitrogen and air atmosphere in TGA-FTIR with a complementary use of model-free and model-fitting approaches[J]. J Anal Appl Pyrolysis,2018,134:12−24. doi: 10.1016/j.jaap.2018.04.002
    [6] DAMARTZIS T, VAMVUKA D, SFAKIOTAKIS S, ZABANIOTOU A. Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA)[J]. Bioresour Technol,2011,102(10):6230−6238. doi: 10.1016/j.biortech.2011.02.060
    [7] CHEN Y, DUAN J, LUO Y-H. Investigation of agricultural residues pyrolysis behavior under inert and oxidative conditions[J]. J Anal Appl Pyrolysis,2008,83:165−174. doi: 10.1016/j.jaap.2008.07.008
    [8] MIRANDA M I G, SAMIOS D, OLIVEIRA PI EIRO T, VAGHETTI J C P, PIATNICKI C M S. Kinetics of oxidation and decomposition of soybean biodiesel evaluated by the TTT superposition theory and the Freeman-Carroll method[J]. J Mol Liq,2017,245:121−128. doi: 10.1016/j.molliq.2017.07.073
    [9] DA ROZA M B, NICOLAU A, ANGELONI L M, SIDOU P N, SAMIOS D. Thermodynamic and kinetic evaluation of the polymerization process of epoxidized biodiesel with dicarboxylic anhydride[J]. Mol Phys,2012,110(11/12):1375−1381. doi: 10.1080/00268976.2011.647717
    [10] HU M, CHEN Z, WANG S, GUO D, MA C, ZHOU Y, CHEN J, LAGHARI M, FAZAL S, XIAO B, ZHANG B, MA S. Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser-Suzuki deconvolution, and iso-conversional method[J]. Energy Convers Manage,2016,118:1−11. doi: 10.1016/j.enconman.2016.03.058
    [11] SBIRRAZZUOLI N. Determination of pre-exponential factors and of the mathematical functions f(α) or G(α) that describe the reaction mechanism in a model-free way[J]. Thermochim Acta,2013,564:59−69. doi: 10.1016/j.tca.2013.04.015
    [12] MISHRA G, BHASKAR T. Non isothermal model free kinetics for pyrolysis of rice straw[J]. Bioresource Technol,2014,169:614−621. doi: 10.1016/j.biortech.2014.07.045
    [13] 赵增立, 李海滨, 吴创之, 陈勇. 蔗渣的热解与燃烧动力学特性研究[J]. 燃料化学学报,2005,33(3):314−319. doi: 10.3969/j.issn.0253-2409.2005.03.012

    ZHAO Zeng-li, LI Hai-bin, WU Chuang-zhi, CHEN Yong. Study on the kinetic characteristics of bagasse pyrolysis and combustion[J]. J Fuel Chem Technol,2005,33(3):314−319. doi: 10.3969/j.issn.0253-2409.2005.03.012
    [14] DUAN L, CHEN J, JIANG Y, LI X, LONGHURST P, LEI M. Experimental and kinetic study of thermal decomposition behaviour of phytoremediation derived Pteris vittata[J]. J Therm Anal Calorim,2016,128(2):1207−1216.
    [15] COLLAZZO G C, BROETTO C C, PERONDI D, JUNGES J, DETTMER A, DORNELLES FILHO A A, FOLETTO E L, GODINHO M. A detailed non-isothermal kinetic study of elephant grass pyrolysis from different models[J]. Appl Therm Eng,2017,110:1200−1211. doi: 10.1016/j.applthermaleng.2016.09.012
    [16] GUO G, LIU C, WANG Y, XIE S, ZHANG K, CHEN L, ZHU W, DING M. Comparative investigation on thermal degradation of flue-cured tobacco with different particle sizes by a macro-thermogravimetric analyzer and their apparent kinetics based on distributed activation energy model[J]. J Therm Anal Calorim,2019,138(5):3375−3388. doi: 10.1007/s10973-019-08215-7
    [17] GUO G, ZHANG K, LIU C, XIE S, LI X, LI B, SHU J, NIU Y, ZHU H, DING M, ZHU W. Comparative investigation on thermal decomposition of powdered and pelletized biomasses: Thermal conversion characteristics and apparent kinetics[J]. Bioresour Technol,2020,301:1−9.
    [18] CHEN D, ZHENG Y, ZHU X. In-depth investigation on the pyrolysis kinetics of raw biomass. Part I: Kinetic analysis for the drying and devolatilization stages[J]. Bioresource Technol,2013,131:40−46. doi: 10.1016/j.biortech.2012.12.136
    [19] CAI J, WU W, LIU R, HUBER G W. A distributed activation energy model for the pyrolysis of lignocellulosic biomass[J]. Green Chem,2013,15:1331−1340. doi: 10.1039/c3gc36958g
    [20] SLUITER A, HAMES B, RUIZ R, SCARLATA C, SLUITER J, TEMPLETON D, CROCKER D, Determination of structural carbohydrates and lignin in biomass[Z]. Golden: National Renewable Energy Laboratory, 2008.
    [21] LIANG M, YANG T, ZHANG G, ZHANG K, WANG L, LI R, HE Y, WANG J, ZHANG J. Effects of hydrochloric acid washing on the structure and pyrolysis characteristics of tobacco stalk[J]. Biomass Convers Bior,2021,1−14.
    [22] MA B-G, LI X-G, XU L, WANG K, WANG X-G. Investigation on catalyzed combustion of high ash coal by thermogravimetric analysis[J]. Thermochim Acta,2006,445(1):19−22. doi: 10.1016/j.tca.2006.03.021
    [23] 秦国鑫, 李斌, 鲁端峰, 谢国勇, 银董红, 王兵. 烟草生物质燃烧特性与机理研究[J]. 烟草科技,2015,48(1):76−81.

    QIN Guo-xin, LI Bin, LU Duan-feng, XIE Guo-yong, YIN Dong-hong, WANG Bing. Combustion property and mechanism of tobacco biomass[J]. Tob Sci Technol,2015,48(1):76−81.
    [24] 谭洪, 王树荣, 骆仲泱, 岑可法. 生物质三组分热裂解行为的对比研究[J]. 燃料化学学报,2006,34(1):61−65. doi: 10.3969/j.issn.0253-2409.2006.01.013

    TAN Hong, WANG Shu-rong, LUO Zhong-yang, CEN Ke-fa. Pyrolysis behavior of cellulose, xylan and lignin[J]. JFuel Chem Technol,2006,34(1):61−65. doi: 10.3969/j.issn.0253-2409.2006.01.013
    [25] 胡睿, 万诗琪, 毛峰, 王杰. 农业废弃物水洗前后热解特性的变化[J]. 燃料化学学报,2021,49(9):1239−1249.

    HU Rui, WAN Shi-qi, MAO Feng, WANG Jie. Changes in pyrolysis characteristics of agricultural residues before and after water washing[J]. J Fuel ChemTechnol,2021,49(9):1239−1249.
    [26] 郑泉兴, 张建平, 李巧灵, 刘秀彩, 黄朝章, 蓝洪桥, 许寒春, 于德德, 刘雯, 叶仲力, 刘江生, 伊晓东, 李斌, 谢卫, 邓楠. 离子色谱-积分脉冲安培法在纸浆纤维单糖组成分析中的应用[J]. 中国造纸,2020,39(7):37−43. doi: 10.11980/j.issn.0254-508X.2020.07.006

    ZHENG Quan-xing, ZHANG Jian-ping, LI Qiao-ling, LIU Xiu-cai, HUANG Chao-zhang, LAN Hong-qiao, XU Han-chun, YU De-de, LIU Wen, YE Zhong-li, LIU Jiang-sheng, YI Xiao-dong, LI Bin, XIE Wei, DENG Nan. Application of ion chromatography-integrated pulsed amperometric method in the analysis of monosaccharide composition of pulp fiber[J]. China Pulp Paper,2020,39(7):37−43. doi: 10.11980/j.issn.0254-508X.2020.07.006
    [27] 龚德鸿, 许成, 顾红艳. 烟梗的热解特性分析[J]. 贵州大学学报(自然科学版),2011,28(4):33−36.

    GONG De-hong, XU Cheng, GU Hong-yan. Analysis on pyrolysis characteristics of tobacco stem[J]. J Guizhou Univ (Nat Sci),2011,28(4):33−36.
    [28] 于娟, 章明川, 沈轶, 范卫东, 周月桂. 生物质热解特性的热重分析[J]. 上海交通大学学报,2002,36(10):1475−1478. doi: 10.3321/j.issn:1006-2467.2002.10.022

    YU Juan, ZHANG Ming-chuan, SHEN Yi, FAN Wei-dong, ZHOU Yue-gui. Thermogravimetric analysis of pyrolysis characteristics of biomass[J]. J Shanghai Jiaotong Univ,2002,36(10):1475−1478. doi: 10.3321/j.issn:1006-2467.2002.10.022
    [29] DIBLASI C. Modeling chemical and physical processes of wood and biomass pyrolysis[J]. Prog Energ Combust,2008,34(1):47−90. doi: 10.1016/j.pecs.2006.12.001
    [30] VYAZOVKIN S, CHRISSAFIS K, LORENZO M L D, KOGA N, PIJOLAT M, RODUIT B, SBIRRAZZUOLI N, SU OL J J. ICTAC kinetics committee recommendations for collecting experimental thermal analysis data for kinetic computations[J]. Thermochim Acta,2014,590:1−23. doi: 10.1016/j.tca.2014.05.036
    [31] XIONG S, ZHANG S, WU Q, GUO X, DONG A, CHEN C. Investigation on cotton stalk and bamboo sawdust carbonization for barbecue charcoal preparation[J]. Bioresour Technol,2014,152:86−92. doi: 10.1016/j.biortech.2013.11.005
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  724
  • HTML全文浏览量:  672
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-24
  • 修回日期:  2021-12-29
  • 录用日期:  2022-01-11
  • 网络出版日期:  2022-01-22
  • 刊出日期:  2022-06-25

目录

    /

    返回文章
    返回