留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子液体催化热解纤维素制备左旋葡萄糖酮的研究

徐安邦 黄鑫 冉景煜 唐广川 杨仲卿 秦昌雷 曹景沛

徐安邦, 黄鑫, 冉景煜, 唐广川, 杨仲卿, 秦昌雷, 曹景沛. 离子液体催化热解纤维素制备左旋葡萄糖酮的研究[J]. 燃料化学学报(中英文), 2022, 50(6): 768-776. doi: 10.19906/j.cnki.JFCT.2022011
引用本文: 徐安邦, 黄鑫, 冉景煜, 唐广川, 杨仲卿, 秦昌雷, 曹景沛. 离子液体催化热解纤维素制备左旋葡萄糖酮的研究[J]. 燃料化学学报(中英文), 2022, 50(6): 768-776. doi: 10.19906/j.cnki.JFCT.2022011
XU An-bang, HUANG Xin, RAN Jing-yu, TANG Guang-chuan, YANG Zhong-qing, QIN Chang-lei, CAO Jing-pei. Levoglucosenone production by catalytic pyrolysis of cellulose using ionic liquid as catalyst[J]. Journal of Fuel Chemistry and Technology, 2022, 50(6): 768-776. doi: 10.19906/j.cnki.JFCT.2022011
Citation: XU An-bang, HUANG Xin, RAN Jing-yu, TANG Guang-chuan, YANG Zhong-qing, QIN Chang-lei, CAO Jing-pei. Levoglucosenone production by catalytic pyrolysis of cellulose using ionic liquid as catalyst[J]. Journal of Fuel Chemistry and Technology, 2022, 50(6): 768-776. doi: 10.19906/j.cnki.JFCT.2022011

离子液体催化热解纤维素制备左旋葡萄糖酮的研究

doi: 10.19906/j.cnki.JFCT.2022011
基金项目: 国家自然科学基金(52006019),中国博士后科学基金(2020M673132)和重庆市自然科学基金(cstc2020jcyj-bshX0099)资助
详细信息
    通讯作者:

    E-mail:xin_huang@cqu.edu.cn

  • 中图分类号: TQ028.8

Levoglucosenone production by catalytic pyrolysis of cellulose using ionic liquid as catalyst

Funds: The project was supported by the National Natural Science Foundation of China (52006019), China Postdoctoral Science Foundation (2020M673132) and Natural Science Foundation of Chongqing, China (cstc2020jcyj-bshX0099)
  • 摘要: 纤维素是世界上含量最丰富的可再生有机碳资源之一,左旋葡萄糖酮(LGO)是来源于纤维素热解的一种高附加值平台化合物。本研究考察了离子液体烷基侧链长度对纤维素催化热解制备LGO的影响规律。实验结果表明,最短侧链的1-丁基-2,3-二甲基三氟甲烷磺酸咪唑离子液体对LGO表现了最好的催化效果,其原因是侧链长度减少导致离子液体阴阳离子间相互作用减弱,使离子液体扩散增强。在300 ℃热解时 LGO产率达到15.6%-C,离子液体的回收率为95.9%,其重复利用三次后LGO的产率只有轻微下降。通过密度泛函理论得到了LGO的最佳生成路径,其最低反应活化能为176.2 kJ/mol。此外,本方法也可同时获得多孔性的焦炭,其最高比表面积和孔容分别为389.4 m2/g和0.689 cm3/g。
  • FIG. 1597.  FIG. 1597.

    FIG. 1597.  FIG. 1597.

    图  1  1-烷基-2,3-二甲基三氟甲烷磺酸咪唑

    Figure  1  1-Alkyl-2,3-dimethylimidazolium triflate

    图  2  离子液体的热重分析

    Figure  2  Thermogravimetric analysis of the ionic liquids

    图  3  热解产物产率分析

    Figure  3  Analysis of pyrolysis product yields

    图  4  气体产物组成分析

    Figure  4  Analysis of gas composition

    图  5  离子液体对LGA和LGO的产率影响

    Figure  5  Influence of the ionic liquids on the yields of LGA and LGO

    图  6  生物油的FT-IR谱图

    Figure  6  FT-IR analysis of the bio-oils

    图  7  生物油总离子流图

    Figure  7  Total ion chromatogram of the bio-oils

    图  8  N2吸附-脱附等温曲线

    Figure  8  N2 adsorption-desorption curves

    图  9  焦炭的SEM分析

    Figure  9  SEM analysis of the chars

    图  10  离子液体回收率

    Figure  10  Recovery rate of the ionic liquid

    图  11  离子液体回收利用对LGO产率的影响

    Figure  11  Effect of repeated use of the ionic liquid on LGO yield

    图  12  LGA转化为LGO的反应路径示意图

    Figure  12  Reaction paths of LGA conversion to LGO

    图  13  LGA转化为LGO的能垒示意图

    Figure  13  Energy barriers of LGA conversion to LGO

    表  1  GC/MS检测到的化合物的定量分析(mg/g-纤维素)

    Table  1  Quantitative analysis of compounds detected by GC/MS (mg/g-cellulose)

    PeakCompoundNone Butyl Octyl Dodecyl Cetyl
    300 ℃350 ℃ 300 ℃350 ℃ 300 ℃350 ℃ 300 ℃350 ℃ 300 ℃350 ℃
    1furfural0.91.013.82.96.73.34.45.65.93.1
    24-hydroxydihydro
    furan-2(3H)-one
    0.20.40.31.50.40.40.40.80.70.3
    32-hydroxycyclopent
    -2-enone
    0.40.60.60.81.10.52.90.50.8
    45-methylfurfural0.20.41.910.91.91.21.01.31.40.8
    53-methylcyclopent-2-enone0.30.41.31.02.81.82.90.61.7
    6methyl 2-furoate0.40.42.81.01.21.61.71.40.5
    7furaneol0.60.70.10.10.10.10.1
    8LGO6.01.4121.7107.896.580.896.778.291.985.1
    9LAC1.92.45.36.640.321.031.712.24.62.6
    10DGP7.65.719.856.517.39.213.811.713.49.1
    11HMF1.11.21.20.11.90.5
    12DH0.50.20.10.1
    13ADGH0.91.11.31.20.91.10.60.90.4
    14LGA21128411.18.99.919.551.518.534.510.4
    15AGF14.620.1
    (LAC) 1-hydroxy, (1R)-3,6-dioxabicyclo[3.2.1]octan-2-one, (DGP) 1,4:3,6-Dianhydro-α-D-glucopyranose, (HMF) 5-hydroxymethylfurfural, (DH) 6,8-dioxabicyclo[3.2.1]octane-2,4,4-triol, (ADGH) 1,5-anhydro-4-deoxy-D-glycero-hex-1-en-3-ulose, (AGF) 1,6-Anhydro-β-D-glucofuranose
    下载: 导出CSV

    表  2  焦炭的比表面积、孔容和平均直径

    Table  2  Analysis of the specific surface area, pore volume and average diameter of char

    Ionic
    liquids
    SBET/
    (m2·g−1)
    vtotal/
    (cm3·g−1)
    vmicro/
    (cm3·g−1)
    dave
    Butyl389.40.6890.0677.08
    Octyl281.20.4080.0455.80
    Dodecyl105.30.5219.91
    Cetyl58.10.34023.40
    vmicro was calculated based on t-plot method
    下载: 导出CSV
  • [1] BRUIJNINCX P C A, WECKHUYSEN B M. Lignin up for break-down[J]. Nat Chem,2014,6(12):1035−1036. doi: 10.1038/nchem.2120
    [2] HUANG X, REN J, RAN J Y, QIN C L, YANG Z Q, CAO J P. Recent advances in pyrolysis of cellulose to value-added chemicals[J]. Fuel Process Technol,2022,229:107175. doi: 10.1016/j.fuproc.2022.107175
    [3] 李承宇, 张军, 袁浩然, 王树荣, 陈勇. 纤维素热解转化研究进展[J]. 燃料化学学报.,2021,49(12):1733−1751. doi: 10.1016/S1872-5813(21)60134-2

    LI Cheng-yu, ZHANG Jun, YUAN Hao-ran, WANG Shu-rong, CHEN Yong. Advance on the pyrolytic transformation of cellulose[J]. J Fuel Chem Technol,2021,49(12):1733−1751. doi: 10.1016/S1872-5813(21)60134-2
    [4] 胡斌, 郭学文, 李洋, 程安帅, 刘吉, 陆强. 山梨醇快速热解特性与反应机理研究[J]. 燃料化学学报,2021,49(12):1821−1831. doi: 10.1016/S1872-5813(21)60150-0

    HU Bin, GUO Xue-wen, LI Yang, CHENG An-shuai, LIU Ji, LU Qiang. Reaction characteristics and mechanisms of sorbitol fast pyrolysis[J]. J Fuel Chem Technol,2021,49(12):1821−1831. doi: 10.1016/S1872-5813(21)60150-0
    [5] HUANG X, KUDO S, SPERRY J. HAYASHI, J. Clean synthesis of 5-hydroxymethylfurfural and levulinic acid by aqueous phase conversion of levoglucosenone over solid acid catalysts[J]. ACS Sustainable Chem Eng,2019,7(6):5892−5899. doi: 10.1021/acssuschemeng.8b05873
    [6] ZHONG D, ZENG K, LI J, QIU Y. FLAMANT G, NZIHOU A, VLADIMIROVICH V S, YANG H P, CHEN H P. Characteristics and evolution of heavy components in bio-oil from the pyrolysis of cellulose, hemicellulose and lignin[J]. Renewable Sustainable Energy Rev,2022,157:111989. doi: 10.1016/j.rser.2021.111989
    [7] 钱乐, 蒋立群, 岳元茂, 赵增立. 催化热解生物质生成左旋葡聚糖酮的研究进展[J]. 化工学报,2020,71(12):5376−5387.

    QIAN Le, JIANG Li-qun, YUE Yuan-mao, ZHAO Li-zeng. Research progress of catalytic pyrolysis of biomass to yield levoglucosenone[J]. CIESC J,2020,71(12):5376−5387.
    [8] KAWAMOTO H, SAITO S, HATANAKA W, SAKA S. Catalytic pyrolysis of cellulose in sulfolane with some acidic catalysts[J]. J Wood Sci,2007,53(2):127−133. doi: 10.1007/s10086-006-0835-y
    [9] CAO F, SCHWARTZ T J, MCCLELLAND D J. KRISHNA S, DUMESIC J A, HUBER G W. Dehydration of cellulose to levoglucosenone using polar aprotic solvents[J]. Energy Environ Sci,2015,8:1808−1815. doi: 10.1039/C5EE00353A
    [10] OYOLA-RIVERA O, HE J, HUBER G W, DUMESIC J A, CARDONA-MARTÍNEZ N. Catalytic dehydration of levoglucosan to levoglucosenone using Brønsted solid acid catalysts in tetrahydrofuran[J]. Green Chem,2019,21(18):4988−4999. doi: 10.1039/C9GC01526D
    [11] COURT G R, LAWRENCE C H, RAVERTY W D, DUNCAN A J. Method for converting lignocellulosic materials into useful chemicals: U. S. Patent 9, 505, 985[P]. 2016–11–29.
    [12] DOBELE G, ROSSINSKAJA G, TELYSHEVA G, MEIER D, FAIX O. Cellulose dehydration and depolymerization reactions during pyrolysis in the presence of phosphoric acid[J]. J Anal Appl Pyrolysis,1999,49(1/2):307−317. doi: 10.1016/S0165-2370(98)00126-0
    [13] DOBELE G, DIZHBITE T, ROSSINSKAJA G, TELYSHEVA G, MEIER D, RADTKE S, FAIX O. Pre-treatment of biomass with phosphoric acid prior to fast pyrolysis: a promising method for obtaining 1, 6-anhydrosaccharides in high yields[J]. J Anal Appl Pyrolysis,2003,68:197−211.
    [14] ZHANG H, MENG X, LIU C, WANG Y, XIAO R. Selective low-temperature pyrolysis of microcrystalline cellulose to produce levoglucosan and levoglucosenone in a fixed bed reactor[J]. Fuel Process Technol,2017,167:484−490. doi: 10.1016/j.fuproc.2017.08.007
    [15] YE X, LU Q, WANG X, GUO H Q, CUI M S, DONG C Q, YANG Y P. Catalytic fast pyrolysis of cellulose and biomass to selectively produce levoglucosenone using activated carbon catalyst[J]. ACS Sustainable Chem Eng,2017,5(11):10815−10825. doi: 10.1021/acssuschemeng.7b02762
    [16] FABBRI D, TORRI C, MANCINI I. Pyrolysis of cellulose catalysed by nanopowder metal oxides: Production and characterisation of a chiral hydroxylactone and its role as building block[J]. Green Chem,2007,9(12):1374−1379. doi: 10.1039/b707943e
    [17] WEI X, WANG Z, WU Y, YU Z, JIN J, WU K. Fast pyrolysis of cellulose with solid acid catalysts for levoglucosenone[J]. J Anal Appl Pyrolysis,2014,107:150−154. doi: 10.1016/j.jaap.2014.02.015
    [18] 卫新来, 隋先伟, 俞志敏, 金杰, 吴克, 王文奎. 生物质催化热解制备左旋葡萄糖酮的研究进展[J]. 化工进展,2014,33(4):873−877.

    WEI Xin-lai, SUI Xian-wei, YU Zhi-min, JIN Jie, WU ke, WANG Wen-kui. Progress in catalytic pyrolysis of biomass for levoglucosenone[J]. Chem Ind Eng Prog,2014,33(4):873−877.
    [19] WANG Z, LU Q, ZHU X F, ZHANG Y. Catalytic fast pyrolysis of cellulose to prepare levoglucosenone using sulfated zirconia[J]. ChemSusChem,2011,4(1):79−84. doi: 10.1002/cssc.201000210
    [20] 陆强, 朱锡锋. 利用固体超强酸催化热解纤维素制备左旋葡萄糖酮[J]. 燃料化学学报,2011,39(6):425−431.

    LU Qiang ZHU Xi-Feng. Production of levoglucosenone from pyrolysis of cellulose catalyzed by solid superacids[J]. J Fuel Chem Technol,2011,39(6):425−431.
    [21] KUDO S, HUANG X, ASANO S, HAYASHI J. Catalytic strategies for levoglucosenone production by pyrolysis of cellulose and lignocellulosic biomass[J]. Energy Fuels,2021,35(12):9809−9824. doi: 10.1021/acs.energyfuels.1c01062
    [22] KUDO S, ZHOU Z, YAMASAKI K, NORINAGA K, HAYASHI J. Sulfonate ionic liquid as a stable and active catalyst for levoglucosenone production from saccharides via catalytic pyrolysis[J]. Catalysts,2013,3(4):757−773. doi: 10.3390/catal3040757
    [23] KUDO S, ZHOU Z, NORINAGA K, HAYASHI J. Efficient levoglucosenone production by catalytic pyrolysis of cellulose mixed with ionic liquid[J]. Green Chem,2011,13(11):3306−3311. doi: 10.1039/c1gc15975e
    [24] KUDO S, GOTO N, SPERRY J, NORINAGA K, HAYASHI J. Production of levoglucosenone and dihydrolevoglucosenone by catalytic reforming of volatiles from cellulose pyrolysis using supported ionic liquid phase[J]. ACS Sustainable Chem Eng,2017,5(1):1132−1140. doi: 10.1021/acssuschemeng.6b02463
    [25] SUN N, RODRIGUEZ H, RAHMAN M, ROGERS, R. D. Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass?[J]. Chem Commun,2011,47(5):1405−1421. doi: 10.1039/C0CC03990J
    [26] HUANG X, CAO J P, SHI P, ZHAO X Y, FENG X B, ZHAO Y P, FAN X, WEI X Y, TAKARADA T. Influences of pyrolysis conditions in the production and chemical composition of the bio-oils from fast pyrolysis of sewage sludge[J]. J Anal Appl Pyrolysis,2014,110:353−362. doi: 10.1016/j.jaap.2014.10.003
    [27] LU T, CHEN F. Revealing the nature of intermolecular interaction and configurational preference of the nonpolar molecular dimers (H2)2, (N2)2, and (H2)(N2)[J]. J Mol Model,2013,19(12):5387−5395. doi: 10.1007/s00894-013-2034-2
    [28] WITTE J, GOLDEY M, NEATON J B, HEAD-GORDON M. Beyond energies: Geometries of nonbonded molecular complexes as metrics for assessing electronic structure approaches[J]. J Chem Theory Comput,2015,11(4):1481−1492. doi: 10.1021/ct501050s
    [29] FENG S, VOTH G A. Molecular dynamics simulations of imidazolium-based ionic liquid/water mixtures: alkyl side chain length and anion effects[J]. Fluid Ph Equilibria,2010,294(1/2):148−156. doi: 10.1016/j.fluid.2010.02.034
    [30] WANG Y, VOTH G A. Tail aggregation and domain diffusion in ionic liquids[J]. J Phys Chem B,2006,110(37):18601−18608. doi: 10.1021/jp063199w
    [31] YANG X, ZHAO Y, LI R, WU Y, YANG M. A modified kinetic analysis method of cellulose pyrolysis based on TG-FTIR technique[J]. Thermochim Acta,2018,665:20−27. doi: 10.1016/j.tca.2018.05.008
    [32] ZHUO K, DU Q, BAI G, WANG C, CHEN Y, WANG J. Hydrolysis of cellulose catalyzed by novel acidic ionic liquids[J]. Carbohydr Polym,2015,115:49−53. doi: 10.1016/j.carbpol.2014.08.078
    [33] HUANG X, CAO J P, ZHAO X Y, WANG J X, FAN X, ZHAO Y P, WEI X Y. Pyrolysis kinetics of soybean straw using thermogravimetric analysis[J]. Fuel,2016,169:93−98. doi: 10.1016/j.fuel.2015.12.011
    [34] HSU T C, GUO G L, CHEN W H, HWANG W S. Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis[J]. Bioresour Technol,2010,101(13):4907−4913. doi: 10.1016/j.biortech.2009.10.009
    [35] KRISHNA S H, WALKER T W, DUMESIC J A, HUBER, G W. Kinetics of levoglucosenone isomerization[J]. ChemSusChem,2016,10(1):129−138.
    [36] HU B, LU Q, WU Y, XIE W L, CUI M S, LIU J, DONG C Q, YANG Y P. Insight into the formation mechanism of levoglucosenone in phosphoric acid-catalyzed fast pyrolysis of cellulose[J]. J Energy Chem,2020,43:78−89. doi: 10.1016/j.jechem.2019.08.001
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  367
  • HTML全文浏览量:  103
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-17
  • 修回日期:  2022-01-27
  • 录用日期:  2022-01-28
  • 网络出版日期:  2022-02-16
  • 刊出日期:  2022-06-25

目录

    /

    返回文章
    返回