留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反应条件对哈密煤温和液化沥青质结构和热反应性的影响

张宴龙 白宗庆 冯智皓 侯冉冉 贾宇星 张婷婷 侯郁洁 孔令学 郭振兴 白进 李文

张宴龙, 白宗庆, 冯智皓, 侯冉冉, 贾宇星, 张婷婷, 侯郁洁, 孔令学, 郭振兴, 白进, 李文. 反应条件对哈密煤温和液化沥青质结构和热反应性的影响[J]. 燃料化学学报(中英文), 2022, 50(9): 1105-1115. doi: 10.19906/j.cnki.JFCT.2022020
引用本文: 张宴龙, 白宗庆, 冯智皓, 侯冉冉, 贾宇星, 张婷婷, 侯郁洁, 孔令学, 郭振兴, 白进, 李文. 反应条件对哈密煤温和液化沥青质结构和热反应性的影响[J]. 燃料化学学报(中英文), 2022, 50(9): 1105-1115. doi: 10.19906/j.cnki.JFCT.2022020
ZHANG Yan-long, BAI Zong-qing, FENG Zhi-hao, HOU Ran-ran, JIA Yu-xing, ZHANG Ting-ting, HOU Yu-jie, KONG Ling-xue, GUO Zhen-xing, BAI Jin, LI Wen. Effect of reaction conditions on structure and thermal reactivity of asphaltenes from mild liquefaction of Hami coal[J]. Journal of Fuel Chemistry and Technology, 2022, 50(9): 1105-1115. doi: 10.19906/j.cnki.JFCT.2022020
Citation: ZHANG Yan-long, BAI Zong-qing, FENG Zhi-hao, HOU Ran-ran, JIA Yu-xing, ZHANG Ting-ting, HOU Yu-jie, KONG Ling-xue, GUO Zhen-xing, BAI Jin, LI Wen. Effect of reaction conditions on structure and thermal reactivity of asphaltenes from mild liquefaction of Hami coal[J]. Journal of Fuel Chemistry and Technology, 2022, 50(9): 1105-1115. doi: 10.19906/j.cnki.JFCT.2022020

反应条件对哈密煤温和液化沥青质结构和热反应性的影响

doi: 10.19906/j.cnki.JFCT.2022020
基金项目: 国家自然科学基金(22178371, 22078353),山西省自然科学基金重点项目(201901D111002(ZD))和中国科学院战略性先导科技专项(XDA21020100)资助
详细信息
    通讯作者:

    Tel: 0351-4040289, E-mail: baizq@ sxicc.ac.cn

  • 中图分类号: TQ530.2

Effect of reaction conditions on structure and thermal reactivity of asphaltenes from mild liquefaction of Hami coal

Funds: The project was supported by National Natural Science Foundation of China (22178371, 22078353), Natural Science Foundation Project of Shanxi Province (201901D111002(ZD)) and Strategic Priority Research Program of the Chinese Academy of Sciences (XDA21020100)
  • 摘要: 沥青质(包括沥青烯和前沥青烯,PAA)作为煤液化的重要产物,其结构和性质对煤的高效液化及其后续利用至关重要。沥青质的结构和性质与液化反应条件密切相关,因此,本研究以四氢萘为溶剂,考察了反应温度、停留时间、反应压力、溶煤比等条件对哈密煤温和液化沥青质(HMPAA)结构和性质的影响。利用元素分析、红外光谱、固体 13C-NMR等分析了不同温和液化反应条件下所得HMPAA的结构特征;利用TG-MS考察了HMPAA的热解反应性和热解过程中的气体逸出规律。结果表明,HMPAA的收率随反应温度降低、压力升高、停留时间缩短及溶煤比增加而升高。在温度为340 ℃、停留时间为1 h、压力为3 MPa、溶煤比为2∶1的条件下,HMPAA收率最高,达到35.0%。HMPAA碳结构由脂肪碳和芳香碳组成,其中,芳香碳占80%左右。升高温度有利于哈密煤液化反应向生成芳香化程度更高的HMPAA组分的方向进行;延长停留时间,HMPAA的芳环缩合程度增大;增大溶煤比,HMPAA芳香度和芳环缩合程度均减小;在本研究考察的范围内改变压力对HMPAA结构性质影响不大。HMPAA在250 ℃左右开始发生热解反应,最大失重峰温为400−500 ℃,最终失重率基本达40%以上。HMPAA热反应性随反应温度降低、溶煤比增加而增大,改变压力对HMPAA热反应性影响较小。
  • FIG. 1872.  FIG. 1872.

    FIG. 1872.  FIG. 1872.

    图  1  不同反应条件下HM煤温和液化转化率及产物分布

    Figure  1  Conversion and product distribution of mild liquefaction of Hami coal under different conditions

    (a): reaction temperature; (b): reaction pressure; (c): residence time; (d): ratio of solvent to coal

    图  2  不同反应条件下HMPAA的红外光谱谱图

    Figure  2  Infrared spectrum of HMPAA obtained under different reaction conditions

    (a): reaction temperature; (b): residence time; (c): ratio of solvent to coal; (d): reaction pressure

    图  3  HMPAA固体核磁碳谱分峰拟合

    Figure  3  Curve-fitting of solid-state 13C-NMR spectra of HMPAA

    图  4  Ar气氛下HMPAA的热重分析曲线

    Figure  4  TG and DTG curves of HMPAA under Ar atmosphere

    (a): reaction temperature; (b): residence time; (c): ratio of solvent to coal; (d): reaction pressure

    图  5  不同温度条件下所得HMPAA热解过程中H2和CH4的逸出规律

    Figure  5  Evolution curves of H2 and CH4 during pyrolysis of HMPAA obtained at different temperatures

    表  1  新疆HM煤的煤质分析

    Table  1  Basic property analysis of HM coal

    Proximate analysis w/%Ultimate analysis wdaf/%St,d/%Atomic ratio
    MadAdVdafCHNO*H/CO/C
    7.469.9353.0174.365.460.9217.581.510.880.18
    ad: air dry basis; d: dry basis; daf: dry and ash-free basis; *: by difference
    下载: 导出CSV

    表  2  不同条件下HMPAA的元素分析

    Table  2  Ultimate analysis of HMPAA obtained under different conditions

    ConditionUitimate analysis w/%Atomic ratio
    CHO*NSH/CO/C
    340 ℃ 79.56 6.31 12.60 1.22 0.31 0.95 0.12
    360 ℃ 81.38 6.16 11.03 1.25 0.18 0.91 0.10
    380 ℃ 82.43 5.83 10.10 1.49 0.15 0.85 0.09
    400 ℃ 84.64 5.48 8.05 1.70 0.13 0.78 0.07
    420 ℃ 81.40 5.48 11.52 1.49 0.11 0.81 0.11
    2 MPa 78.92 5.35 14.13 1.47 0.13 0.81 0.13
    3 MPa 81.40 5.48 11.52 1.49 0.11 0.81 0.11
    4 MPa 86.20 5.28 6.81 1.63 0.08 0.74 0.06
    0.5 h 80.81 5.20 12.20 1.54 0.25 0.77 0.11
    1 h 81.40 5.48 11.52 1.49 0.11 0.81 0.11
    1.5 h 82.55 5.37 10.41 1.56 0.11 0.78 0.09
    1.5∶1 (S/C) 88.37 5.04 4.94 1.57 0.08 0.68 0.04
    2∶1 (S/C) 81.40 5.48 11.52 1.49 0.11 0.81 0.11
    3∶1 (S/C) 81.57 5.76 10.75 1.83 0.09 0.85 0.10
    *: by difference; S/C, ratio of solvent to coal.
    下载: 导出CSV

    表  3  不同反应条件下HMPAA的碳结构参数

    Table  3  Carbon structure parameters of HMPAA obtained under different reaction conditions

    ParameterCondition
    t/°Ct/hS/Cp/MPa
    3403603804004200.511.51.5∶12∶13∶1234
    fal /% 42.60 38.71 28.08 22.01 18.15 16.14 18.15 24.23 13.12 18.15 28.79 22.37 18.15 22.67
    fa /% 57.28 61.09 71.56 77.92 81.84 83.63 81.84 74.91 86.85 81.84 71.18 77.58 81.84 77.24
    faB /% 11.61 13.04 16.21 19.22 21.86 25.85 21.86 18.03 27.11 21.86 16.85 20.62 21.86 21.45
    χb 0.20 0.21 0.23 0.25 0.27 0.31 0.27 0.24 0.31 0.27 0.24 0.27 0.27 0.28
    T, temperature; t, time; S/C, ratio of solvent to coal; p, pressure; fal, fraction of alkyl carbon; fa, aromaticity; faB, fraction of bridgehead carbon; χb, size of aromatic cluster
    下载: 导出CSV
  • [1] 刘雅文. 《bp世界能源统计年鉴》2021年版发布: 能源市场遭受巨大冲击[J]. 中国石油和化工,2021,(8):32−33.

    LIU Ya-wen. bp Statistical Review of World Energy 2021 edition published: The energy market suffered a huge shock[J]. China Pet Chem Ind,2021,(8):32−33.
    [2] 李会玲. 煤制油技术发展现状及分析[J]. 山东化工,2017,46(10):59−61. doi: 10.3969/j.issn.1008-021X.2017.10.021

    LI Hui-ling. Research progress on coal liquefaction technology[J]. Shandong Chem Ind,2017,46(10):59−61. doi: 10.3969/j.issn.1008-021X.2017.10.021
    [3] 史士东. 煤加氢液化工程学基础 [M]. 北京: 化学工业出版社, 2012.

    SHI Shi-dong. Fundamentals of Coal Hydrogenation and Liquefaction Engineering[M]. Beijing: Chemical Industry Press, 2012.
    [4] 胡发亭, 王学云, 毛学锋, 李军芳, 赵鹏. 煤直接液化制油技术研究现状及展望[J]. 洁净煤技术,2020,26(1):99−109.

    HU Fa-ting, WANG Xue-yun, MAO Xue-feng, LI Jun-fang, ZHAO Peng. Research progress and prospect of direct liquefaction technology from coal to oil[J]. Clean Coal Technol,2020,26(1):99−109.
    [5] 李文英, 李旺, 冯杰. 褐煤直接液化过程中存在的问题与思考[J]. 煤炭学报,2020,45(1):414−423.

    LI Wen-ying, LI Wang, FENG Jie. An overview on issues for lignite direct liquefaction[J]. J China Coal Soc,2020,45(1):414−423.
    [6] 胡发亭, 颜丙峰, 王光耀, 谷小会, 常秋连. 我国煤制燃料油技术进展及工业化现状[J]. 洁净煤技术,2019,25(1):57−63.

    HU Fa-ting, YAN Bing-feng, WANG Guang-yao, GU Xiao-hui, CHANG Qiu-lian. Technical progress and industrialization status of coal to fuel oil in China[J]. Clean Coal Technol,2019,25(1):57−63.
    [7] 山西煤炭化学研究所. “万吨级煤温和加氢热解(液化)中试”项目通过运行考核[EB/OL]. https://www.cas.cn/syky/201910/t20191031_4722049.shtml, 2019-11-04/2022-02-22.
    [8] 肖南, 邱介山. 煤沥青基功能碳材料的研究现状及前景[J]. 化工进展,2016,35(6):1804−1811.

    XIAO Nan, QIU Jie-shan. Progress in synthesis and applications of functional carbon materials from coal tar pitch[J]. Chem Ind Eng Prog,2016,35(6):1804−1811.
    [9] WANG X L, LI Y Z, YANG C, CAO Y L, SU X T, TAHIR M U. Self-template porous carbon by direct activation of high-ash coal liquefaction residue for high-rate supercapacitor electrodes[J]. Int J Energy Res,2021,45(3):4782−4792. doi: 10.1002/er.6096
    [10] LI X, TIAN X D, YANG T, HE Y T, LIU W H, SONG Y, LIU Z J. Coal liquefaction residues based carbon nanofibers film prepared by electrospinning: an effective approach to coal waste management[J]. ACS Sustainable Chem Eng,2019,7(6):5742−5750. doi: 10.1021/acssuschemeng.8b05210
    [11] LIU R F, LI Y L, WANG C L, XIAO N, HE L, GUO H Y, WAN P, ZHOU Y, QIU J S. Enhanced electrochemical performances of coal liquefaction residue derived hard carbon coated by graphene as anode materials for sodium-ion batteries[J]. Fuel Process Technol,2018,178:35−40. doi: 10.1016/j.fuproc.2018.04.033
    [12] 陈茺, 许学敏, 高晋生. 煤中前沥青烯与沥青烯性质的研究[J]. 华东理工大学学报,1998,24(1):31−34.

    CHEN Chong, XU Xue-min, GAO Jin-sheng. Nature of preasphaltene and asphaltene in coal[J]. J East Chin Univ Sci Technol,1998,24(1):31−34.
    [13] YAN J C, HE J, YANG Q T, BAI Z Q, LEI Z P, LI Z K, XUE C, WANG Z C, REN S B, KANG S G, SHUI H F. A study of gasification behavior of residues from mild coal hydro-liquefaction[J]. Fuel,2021,293(1):120456.
    [14] WANG Z C, HU J C, SHUI H F, REN S B, WEI C, PAN C X, LEI Z P, CUI X P. Study on the structure and association of asphaltene derived from liquefaction of lignite by fluorescence spectroscopy[J]. Fuel,2013,109:94−100. doi: 10.1016/j.fuel.2012.12.011
    [15] 王祖山. 煤直接液化重质中间产物结构与组成研究[D]. 马鞍山: 安徽工业大学, 2010.

    WANG Zu-shan. Study on the structure and composition of heavy intermediate products from the direct liquefaction of coal[D]. Maanshan: Anhui University of Technology, 2010.
    [16] 张媛媛, 周扬, 陈丽诗, 宁奕飞, 方正美, 潘铁英, 张德祥. 淖毛湖煤直接液化中沥青质反应性与油产率[J]. 化学工程,2021,49(5):69−73+78. doi: 10.3969/j.issn.1005-9954.2021.05.014

    ZHANG Yuan-yuan, ZHOU Yang, CHEN Li-shi, NING Yi-fei, FANG Zheng-mei, PAN Tie-ying, ZHANG De-xiang. Asphaltene reactivity and oil yield in direct liquefaction of Nuomaohu coal[J]. Chem Eng,2021,49(5):69−73+78. doi: 10.3969/j.issn.1005-9954.2021.05.014
    [17] HAO P, BAI Z Q, Hou R R, XU J L, BAI J, GUO Z X, KONG L X, LI W. Effect of solvent and atmosphere on product distribution, hydrogen consumption and coal structural change during preheating stage in direct coal liquefaction[J]. Fuel,2018,211:783−788. doi: 10.1016/j.fuel.2017.09.122
    [18] SHEN T, WANG Y J, LIU Q Y, LIU J P, LIU Z Y. A comparative study on direct liquefaction of two coals and hydrogen efficiency to the main products[J]. Fuel Process Technol,2021,217(15):106822.
    [19] 张晓静. 煤炭直接液化溶剂的研究[J]. 洁净煤技术,2011,17(4):26−29. doi: 10.3969/j.issn.1006-6772.2011.04.010

    ZHANG Xiao-jing. Study on solvents for direct coal liquefaction[J]. Clean Coal Technol,2011,17(4):26−29. doi: 10.3969/j.issn.1006-6772.2011.04.010
    [20] 郝盼. 油煤浆预热阶段溶剂与煤相互作用及其对液化过程的影响[D]. 太原: 中国科学院山西煤炭化学研究所, 2018.

    Hao Pan. Interaction between coal and solvent during preheating stage of direct coal liquefaction and its effects on coal conversion[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Sciences, 2018.
    [21] 许俊丽. 煤直接液化残渣与低阶煤共热解特性及交互作用机制[D]. 太原: 中国科学院山西煤炭化学研究所, 2018.

    Xu Jun-li. Co-pyrolysis characteristics of direct coal liquefaction residue with low-rank coals and their interactive mechanism[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Sciences, 2018.
    [22] 颜井冲. 褐煤温和加氢液化和残渣气化反应性研究[D]. 太原: 中国科学院山西煤炭化学研究所, 2015.

    YAN Jing-chong. Mild hydroliquefaction of brown coal and gasification reactivity of its residues[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Sciences, 2015.
    [23] ZUO P, QU S, SHEN W. Asphaltenes: Separations, structural analysis and applications[J]. J Energy Chem,2019,34:186−207. doi: 10.1016/j.jechem.2018.10.004
    [24] 蔺华林, 李克健, 章序文, 王洪学, 程时富. 煤液化沥青分析表征及结构模型[J]. 燃料化学学报,2014,42(7):779−784.

    LIN Hua-lin, LI Ke-jian, ZHANG Xu-wen, WANG Hong-xue, CHENG Shi-fu. Analysis and structural model of coal liquefaction asphaltene[J]. J Fuel Chem Technol,2014,42(7):779−784.
    [25] 谷小会, 史士东, 周铭. 神华煤直接液化残渣中沥青烯组分的分子结构研究[J]. 煤炭学报,2006,31(6):785−789. doi: 10.3321/j.issn:0253-9993.2006.06.019

    GU Xiao-hui, SHI Shi-dong, ZHOU Ming. Study on the molecular structure of asphaltene fraction from the Shenhua coal direct liquefaction residue[J]. J China Coal Soc,2006,31(6):785−789. doi: 10.3321/j.issn:0253-9993.2006.06.019
    [26] CHEN X Y, LIU L, ZHANG L Y, ZHAO Y, ZHANG Z, XIE X, QIU P H, CHEN G, PEI J T. Thermogravimetric analysis and kinetics of the co-pyrolysis of coal blends with corn stalks[J]. Thermochim Acta,2018,659:59−65. doi: 10.1016/j.tca.2017.11.005
    [27] 冉娜妮, 郭艳玲, 高峰, 何宏伟. 煤油共液化残渣制备中间相沥青及其表征[J]. 太原理工大学学报,2015,46(5):483−488.

    RAN Na-ni, GUO Yan-ling, GAO Feng, HE Hong-wei. Preparation and characterization of mesophase pitch from coal and oil slurry coliquefaction residue[J]. J Taiyuan Univ Technol,2015,46(5):483−488.
    [28] FENG Z H, BAI Z Q, ZHENG H Y, ZHENG K W, HOU R R, GUO Z X, KONG L X, BAI J, LI W. Study on the pyrolysis characteristic of mild liquefaction solid product of Hami coal and CO2 gasification of its char[J]. Fuel,2019,253:1034−1041. doi: 10.1016/j.fuel.2019.05.084
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  401
  • HTML全文浏览量:  150
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-23
  • 修回日期:  2022-03-11
  • 录用日期:  2022-03-15
  • 网络出版日期:  2022-03-25
  • 刊出日期:  2022-10-21

目录

    /

    返回文章
    返回