留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温下煤焦孔结构系数变化规律及其对气化速率影响的研究

许世森 周必茂 王肖肖 李小宇 刘刚 任永强 谭厚章

许世森, 周必茂, 王肖肖, 李小宇, 刘刚, 任永强, 谭厚章. 高温下煤焦孔结构系数变化规律及其对气化速率影响的研究[J]. 燃料化学学报(中英文), 2022, 50(9): 1116-1125. doi: 10.19906/j.cnki.JFCT.2022024
引用本文: 许世森, 周必茂, 王肖肖, 李小宇, 刘刚, 任永强, 谭厚章. 高温下煤焦孔结构系数变化规律及其对气化速率影响的研究[J]. 燃料化学学报(中英文), 2022, 50(9): 1116-1125. doi: 10.19906/j.cnki.JFCT.2022024
XU Shi-sen, ZHOU Bi-mao, WANG Xiao-xiao, LI Xiao-yu, LIU Gang, REN Yong-qiang, TAN Hou-zhang. Study on the variation of pore structure parameter of coal char at high temperature and its effect on gasification rate[J]. Journal of Fuel Chemistry and Technology, 2022, 50(9): 1116-1125. doi: 10.19906/j.cnki.JFCT.2022024
Citation: XU Shi-sen, ZHOU Bi-mao, WANG Xiao-xiao, LI Xiao-yu, LIU Gang, REN Yong-qiang, TAN Hou-zhang. Study on the variation of pore structure parameter of coal char at high temperature and its effect on gasification rate[J]. Journal of Fuel Chemistry and Technology, 2022, 50(9): 1116-1125. doi: 10.19906/j.cnki.JFCT.2022024

高温下煤焦孔结构系数变化规律及其对气化速率影响的研究

doi: 10.19906/j.cnki.JFCT.2022024
基金项目: 华能集团科技项目(HNKJ20-H57)和国家重点研发计划项目(2017YFB0601900)资助
详细信息
    通讯作者:

    E-mail: hzt@mail.xjtu.edu.cn

  • 中图分类号: TQ545

Study on the variation of pore structure parameter of coal char at high temperature and its effect on gasification rate

Funds: The project was supported by Huaneng Group Science and Technology Project (HNKJ20-H57) and National key R & D Program (2017YFB0601900).
  • 摘要: 本研究使用沉降炉(DTF)和热重分析仪(TG),研究了三种煤焦的孔隙结构与气化温度的关系;煤焦孔隙结构对气化反应的影响。结果表明,气化温度升高将增加煤焦的孔结构系数,表明高温孔发生收缩和闭合。在灰熔点温度附近,孔结构系数局部降低,表明高温下孔隙发生堵塞和覆盖。本研究定义增长率为煤焦最大气化反应速率与初始反应速率的差与初始反应速率的比值,孔结构系数大于2时,增长率与孔结构系数呈现线性关系,随着孔结构系数的增加增长率增大;当孔结构系数小于2时,增长率的变化与孔结构系数关系不明显。实验结果还表明,较高的碱金属含量会显著影响气化速率,使实验数据曲线与现有模型存在明显偏差,而增长率的值不会受其影响。因此,可将增长率耦合到气化模型中以提高模型的鲁棒性。
  • FIG. 1873.  FIG. 1873.

    FIG. 1873.  FIG. 1873.

    图  1  碳转化率x与时间t的关系

    Figure  1  Relationship between carbon conversion x and time t

    (a): SH; (b): YN; (c): ZD

    图  2  不同温度下的焦炭反应性指数

    Figure  2  Reactivity index at different temperatures (t0.5 represents the time required for the carbon conversion to reach 50% at current temperature)

    图  3  随机孔模型的拟合效果(神华煤)

    Figure  3  Fitting effect of random pore model (SH) (Except for 900 ℃, the R square of the other temperatures is higher than 0.96)

    图  4  随机孔模型的拟合效果(印尼煤)

    Figure  4  Fitting effect of random pore model (YN) (Except for 900 ℃, the R square of the other temperatures is higher than 0.97)

    图  5  随机孔模型的拟合效果(准东煤)

    Figure  5  Fitting effect of random pore model (ZD) (Except for 900 ℃, the R square of the other temperatures is higher than 0.89)

    图  6  阿累尼乌斯图

    Figure  6  Arrhenius plots of the gasification reaction rate of test chars

    图  7  温度对孔结构系数的影响

    Figure  7  Effect of temperature on pore structure parameter

    图  8  不同结构参数对应的增长率

    Figure  8  Growth ratio of different structural parameters

    图  9  较大ψ值情况下孔表面积的增加与孔交叉示意图

    Figure  9  Schematic diagram of the increase of pore surface area and pore crossing in the case of large ψ value

    表  1  煤质分析

    Table  1  Properties of coals

    SampleProximate analysis war /% Ultimate analysis wd /%
    FCAMVNCHSO*
    SH52.911.13.932.11.369.84.70.512.2
    YN22.8418.754.41.467.551.219.9
    ZD39.85.215.539.50.9713.70.517.6
    *: by difference
    下载: 导出CSV

    表  2  煤焦的工业分析和元素分析

    Table  2  Proximate and ultimate analysis results of chars

    SampleProximate analysis w /%Ultimate analysis w /%
    FCAVNCHS
    SH79.7916.993.220.8682.260.360.78
    YN89.858.251.901.3288.810.201.34
    ZD88.669.062.281.0189.420.170.99
    下载: 导出CSV

    表  3  煤灰的成分分析

    Table  3  Results of ash composition of coals

    SampleAsh composition w /%
    SiO2Al2O3CaOSO3Fe2O3K2ONa2OMgO
    SH47.220.712.96.86.61.71.61.1
    YN39.622.710.410.81.87.56.1
    ZD12.56.118.625.616.40.75.913.0
    下载: 导出CSV

    表  4  煤灰的熔融特性

    Table  4  Fusion characteristics of coal ash

    SampleTemperature/℃
    DTSTHTFT
    SH1220123812571270
    YN1208122012341250
    ZD12991304
    下载: 导出CSV

    表  5  煤焦气化动力学数据

    Table  5  Kinetic data of coal char gasification

    SampleTemperature range
    high temperaturemiddle temperaturelow temperature
    E/(kJ·mol−1)lnAE/(kJ·mol−1)lnAE/(kJ·mol−1)lnA
    SH11.1−3.666.30.6240.616.8
    YN17.2−2.975.91.8281.820.5
    ZD−1.8−4.549.8−0.5158.69.5
    下载: 导出CSV
  • [1] LEE R P, SEIDL L G, HUANG Q L, MEYER B. An analysis of waste gasification and its contribution to China’s transition towardscarbon neutrality and zero waste cities[J]. J Fuel Chem Technol,2021,49(8):1057−1076. doi: 10.1016/S1872-5813(21)60093-2
    [2] REN Y Q, XU S S, LI G Y. Experimental study on the operational performance of an advanced two-stage entrained-flow coal gasifier[J]. Energy Fuels,2014,28(8):4911−4917. doi: 10.1021/ef500833f
    [3] LIU G, BENYON P, BENFELL K E, BRYANT G W, TATE A G, BOYD R K, HARRIS D J, WALL T F. The porous structure of bituminous coal chars and its influence on combustion and gasification under chemically controlled conditions[J]. Fuel,2000,79(6):617−626. doi: 10.1016/S0016-2361(99)00185-4
    [4] BHATIA S K, PERLMUTTER D D. A random pore model for fluid‐solid reactions: I. Isothermal, kinetic control[J]. AIChE J,1980,26(3):379−386. doi: 10.1002/aic.690260308
    [5] BAI Y H, LV P, YANG X H, GAO M Q, ZHU S H, YAN L J, LI F. Gasification of coal char in H2O/CO2 atmospheres: Evolution of surface morphology and pore structure[J]. Fuel,2018,218:236−246. doi: 10.1016/j.fuel.2017.11.105
    [6] TONG W, LIU Q C, YANG C, CAI Z L, WU H L, REN S. Effect of pore structure on CO2 gasification reactivity of biomass chars under high-temperature pyrolysis[J]. J Energy Inst,2020,93(3):962−976. doi: 10.1016/j.joei.2019.08.007
    [7] LIU W Z, NIU S W, TANG H B, ZHOU K. Pore structure evolution during lignite pyrolysis based on nuclear magnetic resonance[J]. Case Stud Therm Eng,2021,26:101−125.
    [8] KAWAKAMI M, TAGA H, TAKENAKA T, YOKOYAMA S. Micro pore structure and reaction rate of coke, wood charcoal and graphite with CO2[J]. ISIJ Int,2004,44(12):2018−2022. doi: 10.2355/isijinternational.44.2018
    [9] 鞠付栋, 陈汉平, 杨海平, 王贤华, 张世红. 煤气化过程中焦炭的表面孔隙结构及其分形特征[J]. 中国电机工程学报,2010,30(8):9−14.

    JU Fu-dong, CHEN Han-ping, YANG Hai-ping, WANG Xian-hua, ZHANG Shi-hong. Surface pore structure and fractal characteristics of coke during coal gasification[J]. Proc CSEE,2010,30(8):9−14.
    [10] CAI Y D, LIU D M, LIU Z H, ZHOU Y F, CHE Y. Evolution of pore structure, submaceral composition and produced gases of two chinese coals during thermal treatment[J]. Fuel Process Technol,2017,156:298−309. doi: 10.1016/j.fuproc.2016.09.011
    [11] 孙英峰, 赵毅鑫, 王欣, 彭磊, 孙强. 基于同步辐射装置定量表征煤孔隙结构非均质性和各向异性[J]. 石油勘探与开发,2019,46(6):1128−1137. doi: 10.11698/PED.2019.06.10

    SUN Ying-feng, ZHAO Yi-xin, WANG Xin, PENG Lei, SUN Qiang. Heterogeneity and anisotropy of pore structure of coal based on synchrotron radiation device[J]. Petrol Explor Dev,2019,46(6):1128−1137. doi: 10.11698/PED.2019.06.10
    [12] 李贵友, 肖博. 基于SEM图像的煤样孔隙结构分形特征[C]//北京力学会第26届学术年会论文集. 2020.

    LI Guiyou, XIAO Bo. Fractal characteristics of pore structure of coal samples based on SEM images [C]//Proceedings of the 26th Annual meeting of Beijing Mechanical Society. 2020.
    [13] 杨帆, 范晓雷, 周志杰, 刘海峰, 龚欣, 于遵宏. 随机孔模型应用于煤焦与CO2气化的动力学研究[J]. 燃料化学学报,2005,33(6):671−676. doi: 10.3969/j.issn.0253-2409.2005.06.006

    YANG Fan, FAN Xiao-lei, ZHOU Zhi-jie, LIU Hai-feng, GONG Xin, YU Zun-hong. Random pore model is applied to study the kinetics of coal char and CO2 gasification[J]. J Fuel Chem Technol,2005,33(6):671−676. doi: 10.3969/j.issn.0253-2409.2005.06.006
    [14] KAJITANI S, HARA S, MATSUDA H. Gasification rate analysis of coal char with a pressurized drop tube furnace[J]. Fuel,2002,81(5):539−546. doi: 10.1016/S0016-2361(01)00149-1
    [15] TREMEL A, SPLIETHOFF H. Gasification kinetics during entrained flow gasification – part I; devolatilisation and char deactivation[J]. Fuel,2013,103:663−671. doi: 10.1016/j.fuel.2012.09.014
    [16] TREMEL A, SPLIETHOFF H. Gasification kinetics during entrained flow gasification – part III: modelling and optimisation of entrained flow gasifiers[J]. Fuel,2013,107:170−182. doi: 10.1016/j.fuel.2013.01.062
    [17] 于庆波, 李朋, 秦勤, 杜文亚. 煤焦—CO2高温气化反应特性的实验研究[J]. 东北大学学报,2009,30(12):1763−1766.

    YU Qing-bo, LI Peng, QIN Qin, DU Wen-ya. Experimental study on the characteristics of coal char–CO2 gasification at high temperature[J]. J Northeastern Univ,2009,30(12):1763−1766.
    [18] 徐朝芬, 孙路石, 向军, 卢腾飞, 谢天. 烟煤煤焦的CO2气化反应[J]. 燃烧科学与技术,2010,16(4):347−352.

    XU Chao-fen, SUN Lu-shi, XIANG Jun, LU Teng-fei, XIE Tian. CO2 gasification of bituminous coal char[J]. Combust Sci Technol,2010,16(4):347−352.
    [19] KAJITANI S, SUZUKI N, ASHIZAWA M, HARA S. CO2 gasification rate analysis of coal char in entrained flow coal gasifier[J]. Fuel,2006,85(2):163−169. doi: 10.1016/j.fuel.2005.07.024
    [20] SONG Q S, WANG X H, GU C H, LI H W, HUO J P. Study on CO2 gasification kinetics of biomass char based on pore structure analysis: Theoretical modelling of structural parameter ψ in random pore model[J]. Int J Energy Res,2021,45(3):4429−4442. doi: 10.1002/er.6113
    [21] TAKARADA T, TAMAI Y, TOMITA A. Reactivities of 34 coals under steam gasification[J]. Fuel,1985,64(10):1438−1442. doi: 10.1016/0016-2361(85)90347-3
    [22] 乌晓江, 张忠孝, 朴桂林, 小林信介, 森滋勝, 板谷義紀. 高灰熔点煤高温下煤焦CO2/水蒸气气化反应特性的实验研究[J]. 中国电机工程学报,2007,27(32):24−28. doi: 10.3321/j.issn:0258-8013.2007.32.005

    WU Xiao-jiang, ZHANG Zhong-xiao, PIAO Gui-lin, SHINSUKE K, TZU M, YOSHINORI K. Experimental study on CO2/steam gasification of coal char with high ash melting point at high temperature[J]. Proc CSEE,2007,27(32):24−28. doi: 10.3321/j.issn:0258-8013.2007.32.005
    [23] 徐秀峰, 崔洪, 顾永达, 陈诵英, 吴东. 煤焦制备条件对其气化反应性的影响[J]. 燃料化学学报,1996,24(5):404−409.

    XU Xiu-feng, CUI Hong, GU Yong-da, CHEN Chun-ying, WU Dong. Effect of preparation conditions of coal char on its gasification reactivity[J]. J Fuel Chem Technol,1996,24(5):404−409.
    [24] LIU Y H, GUAN Y, ZHANG Y D, XIONG Y. Effects of atmosphere on mineral transformation of Zhundong coal during gasification in CO2/H2O conditions[J]. Fuel,2022,310:122428. doi: 10.1016/j.fuel.2021.122428
    [25] YUAN S, CHEN X L, LI J, WANG F C. CO2 gasification kinetics of biomass char derived from high-temperature rapid pyrolysis[J]. Energy Fuels,2011,25(5):2314−2321. doi: 10.1021/ef200051z
    [26] 刘铁峰, 房倚天, 王洋. 不同彬县焦的水蒸气气化反应动力学研究[J]. 燃料化学学报,2009,37(2):161−165. doi: 10.3969/j.issn.0253-2409.2009.02.007

    LIU Tie-feng, FANG Yi-tian, WANG Yang. Study on steam gasification kinetics of different Binxian coke[J]. J Fuel Chem Technol,2009,37(2):161−165. doi: 10.3969/j.issn.0253-2409.2009.02.007
    [27] 崔洪, 徐秀峰, 顾永达. 煤焦CO2气化的热重分析研究(I)等温热重研究[J]. 煤炭转化,1996,19(2):75−78.

    CUI Hong, XU Xiu-feng, GU Yong-da. Thermogravimetric analysis of CO2 gasification of coal char (I) isothermal thermogravimetric study[J]. Coal Convers,1996,19(2):75−78.
    [28] LIU H, LUO C H, SHIGERU K, SHIGEYUKI U, MASAHIRO K, TOSHINORI K. Kinetics of CO2/char gasification at elevated temperatures part I: Experimental results[J]. Fuel Process Technol,2006,87(9):775−781. doi: 10.1016/j.fuproc.2006.02.006
    [29] JEONG H J, SEO D K, HWANG J. CFD modeling for coal size effect on coal gasification in a two-stage commercial entrained-bed gasifier with an improved char gasification model[J]. Appl Energy,2014,123:29−36. doi: 10.1016/j.apenergy.2014.02.026
    [30] 谷小虎, 曹敏, 王兰甫, 张爱民. 义马煤焦CO2气化反应性研究[J]. 煤炭转化,2009,32(3):6−8. doi: 10.3969/j.issn.1004-4248.2009.03.002

    GU Xiao-hu, CAO Min, WANG Lan-fu, ZHANG Ai-min. Study on CO2 gasification reactivity of Yima coal char[J]. Coal Convers,2009,32(3):6−8. doi: 10.3969/j.issn.1004-4248.2009.03.002
    [31] 李绍锋, 吴诗勇. 高温下煤焦的碳微晶及孔结构的演变行为[J]. 燃料化学学报,2010,38(5):513−517. doi: 10.3969/j.issn.0253-2409.2010.05.001

    LI Shao-feng, WU Shi-yong. Evolution behavior of carbon microcrystals and pore structure of coal char at high temperature[J]. J Fuel Chem Technol,2010,38(5):513−517. doi: 10.3969/j.issn.0253-2409.2010.05.001
    [32] 苏晓键. 发电厂燃用印尼煤常见问题与防范措施[J]. 机电信息,2020,(17):105−107. doi: 10.3969/j.issn.1671-0797.2020.17.058

    SU Xiao-jian. Common problems and preventive measures of burning Indonesian coal in power plant[J]. Mech Electr Infor,2020,(17):105−107. doi: 10.3969/j.issn.1671-0797.2020.17.058
    [33] 乌晓江, 张忠孝, 周托, 陈玉爽, 朴桂林, 小林信介, 森滋勝, 板谷義紀. 煤焦-CO2/H2O气化反应过程中灰的熔融特性[J]. 中国电机工程学报,2010,30(14):36−43.

    WU Xiao-jiang, ZHANG Zhong-xiao, ZHOU Tuo, CHEN Yu-shuang, PIAO Gui-lin, SHINSUKE K, TZU M, YOSHINORI K. Melting characteristics of ash during coal char–CO2/H2O gasification reaction[J]. Proc CSEE,2010,30(14):36−43.
    [34] 关昱, 张彦迪, 刘银河. CO2/H2O气氛下红沙泉煤中碱(土)金属的分布及其气化反应特性[J]. 燃料化学学报,2022,50(6):674−682.

    GUAN Yu, ZHANG Yan-di, LIU Yin-he. Distribution of alkaline (earth) metals and gasification reaction characteristics of HSQ coal under CO2/H2O atmosphere[J]. J Fuel Chem Technol,2022,50(6):674−682.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  326
  • HTML全文浏览量:  136
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-15
  • 修回日期:  2022-03-27
  • 录用日期:  2022-03-28
  • 网络出版日期:  2022-04-20
  • 刊出日期:  2022-10-21

目录

    /

    返回文章
    返回