留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

O2、SO2对As2O3在W-Cu/γ-Al2O3催化剂表面吸附特性的影响:实验及理论模拟

邢佳颖 王春波 李顺 黄玉林 岳爽

邢佳颖, 王春波, 李顺, 黄玉林, 岳爽. O2、SO2对As2O3在W-Cu/γ-Al2O3催化剂表面吸附特性的影响:实验及理论模拟[J]. 燃料化学学报(中英文), 2022, 50(10): 1324-1330. doi: 10.19906/j.cnki.JFCT.2022033
引用本文: 邢佳颖, 王春波, 李顺, 黄玉林, 岳爽. O2、SO2对As2O3在W-Cu/γ-Al2O3催化剂表面吸附特性的影响:实验及理论模拟[J]. 燃料化学学报(中英文), 2022, 50(10): 1324-1330. doi: 10.19906/j.cnki.JFCT.2022033
XING Jia-ying, WANG Chun-bo, LI Shun, HUANG Yu-lin, YUE Shuang. Effects of O2 and SO2 on As2O3 adsorption over W-Cu/γ-Al2O3 surface: An experimental combined theoretical analysis[J]. Journal of Fuel Chemistry and Technology, 2022, 50(10): 1324-1330. doi: 10.19906/j.cnki.JFCT.2022033
Citation: XING Jia-ying, WANG Chun-bo, LI Shun, HUANG Yu-lin, YUE Shuang. Effects of O2 and SO2 on As2O3 adsorption over W-Cu/γ-Al2O3 surface: An experimental combined theoretical analysis[J]. Journal of Fuel Chemistry and Technology, 2022, 50(10): 1324-1330. doi: 10.19906/j.cnki.JFCT.2022033

O2、SO2对As2O3在W-Cu/γ-Al2O3催化剂表面吸附特性的影响:实验及理论模拟

doi: 10.19906/j.cnki.JFCT.2022033
基金项目: 国家重点研发计划(2020YFB0606301)和国家自然科学基金(51976059)资助
详细信息
    通讯作者:

    E-mail: 120192102130@ncepu.edu.cn

  • 中图分类号: X511

Effects of O2 and SO2 on As2O3 adsorption over W-Cu/γ-Al2O3 surface: An experimental combined theoretical analysis

Funds: The project was supported by National Key R&D Program of China (2020YFB0606301) and National Natural Science Foundation of China (51976059)
More Information
  • 摘要: 采用实验及量子化学方法探究了O2和SO2对As2O3在W-Cu/γ-Al2O3催化剂表面吸附特性的影响。实验结果表明,O2促进了As2O3在催化剂表面的吸附,随着SO2体积分数的增加,As2O3的吸附量表现出先升高后降低的趋势。为进一步探究烟气组分对气相砷吸附的影响机理,采用密度泛函理论(DFT)方法,模拟了预吸附不同气体后催化剂表面As2O3的吸附。结果表明,O2对气相砷的促进影响主要归因于吸附氧的形成。预吸附的O原子明显增强了临近原子的吸附活性,而预吸附的O2分子则主要通过提供吸附活性位点促进As2O3的吸附。SO2在W-Cu/γ-Al2O3表面形成了${{\rm{SO}}^{2-} _4}$${\rm{HSO}}^-_4 $,改变了基底表面的势场,从而促进了As2O3的吸附。随体积分数的进一步增加,SO2与气相As2O3的竞争吸附作用增强,As2O3吸附量减少。
  • FIG. 1930.  FIG. 1930.

    FIG. 1930.  FIG. 1930.

    图  1  气相砷吸附系统示意图

    Figure  1  Schematic diagram of the experimental system for gaseous arsenic adsorption

    图  2  W-Cu/γ-Al2O3表面稳定构型

    Figure  2  Stable structure of W-Cu/γ-Al2O3 surface (Al, light blue; O, red; Cu, blue; W, brown)

    图  3  O2、SO2对砷吸附的影响

    Figure  3  Effects of O2 and SO2 on As2O3 adsorption

    图  4  SO2在W-Cu/γ-Al2O3表面吸附的FT-IR谱图

    Figure  4  FT-IR analysis of SO2 adsorption on W-Cu/γ-Al2O3 catalyst

    图  5  O2、SO2在W-Cu/γ-Al2O3表面吸附的稳定吸附构型

    Figure  5  Stable configurations of O2 and SO2 on W-Cu/γ-Al2O3 surface

    图  6  O2对As2O3在W-Cu/γ-Al2O3表面的吸附影响

    Figure  6  Effect of O2 on As2O3 adsorption

    图  7  ${{\rm{SO}}^{{2}-} _{4}} $${{\rm{HSO}}^{-} _{4}} $对As2O3吸附的影响

    Figure  7  Effect of ${{\rm{SO}}^{{2}-} _{4}} $ and ${{\rm{HSO}}^{-} _{4}} $ on As2O3 adsorption

    表  1  As2O3在吸附氧上的吸附能

    Table  1  Adsorption energies of As2O3 on adsorbed oxygen

    ConfigurationEads/eVConfigurationEads /eV
    As−Oads−0.04O−Oads−0.95
    As−Oads1−1.91O−Oads1−0.13
    As−Oads2−3.23O−Oads2−3.21
    下载: 导出CSV

    表  2  As2O3${{\bf{SO}}^{{{\boldsymbol{2}}}-} _{{\boldsymbol{4}}}}$${{\bf{HSO}}^- _{{\boldsymbol{4}}}}$上的吸附能

    Table  2  Adsorption energies of As2O3 on ${{\rm{SO}}^{{2}-} _{4}} $ and ${{\rm{HSO}}^{-} _{4}} $

    Configuration (${{\rm{SO}}^{{2}-} _{4}} $)Eads/eVConfiguration (${{\rm{HSO}}^- _{4}} $)Eads/eV
    As−O3ads−0.16As−O3ads−0.67
    As−O4ads−0.23As−O4ads−0.66
    O−O3ads−0.22O−H−0.75
    O−O4ads−0.18O−H−0.57
    下载: 导出CSV
  • [1] 杨婷婷, 白杨, 吕游, 张文广. SCR脱硝系统多目标优化控制研究[J]. 中国电机工程学报,2021,41(14):4905−4911.

    YANG Ting-ting, BAI Yang, LV You, ZHANG Wen-guang. Study on multi-objective optimal control of SCR denitrification system[J]. Proc CSEE,2021,41(14):4905−4911.
    [2] ZHOU J, GUO R T, ZHANG X F, LIU Y Z, DUAN C P, WU G L, PAN W G. Cerium oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3: A Review[J]. Energy Fuels,2021,35(4):2981−2998.
    [3] 王钧伟, 徐灿, 秦伟, 张建利, 张先龙, 董彦杰, 崔晓峰. 凹凸棒石(PG)负载MnOx催化剂脱除气态Hg0的研究[J]. 燃料化学学报,2020,48(12):1442−1451. doi: 10.3969/j.issn.0253-2409.2020.12.005

    WANG Jun-wei, QIN Wei, ZHANG Jian-li, ZHANG Xian-long, DONG Yan-jie. CUI Xiao-feng. Hg0 removal by palygorskite ( PG) supported MnOx catalyst[J]. J Fuel Chem Technol,2020,48(12):1442−1451. doi: 10.3969/j.issn.0253-2409.2020.12.005
    [4] 张霄玲, 鲍佳宁, 李运甲, 皇甫林, 李文松, 高士秋, 许光文, 李长明, 余剑. 工业MnOx颗粒催化剂的制备及其低温脱硝应用研究[J]. 化工学报,2020,71(11):5169−5177.

    ZHANG Xiao-ling, BAO Jia-ning, LI Yun-jia, HUANG Pu-lin, LI Wen-song, GAO Shi-qiu, XU Guang-wen, LI Chang-ming, YU Jian. Preparation and industrial application for MnOx particle catalyst for low temperature denitration[J]. J Chem Ind Eng,2020,71(11):5169−5177.
    [5] 黄海凤, 王庐云, 漆仲华, 卢晗锋. 柴油尾气DOC催化剂Pt-Pd/CeO2的活性和抗硫性[J]. 燃料化学学报,2013,41(11):1401−1408.

    HUANG Hai-feng, WANG Lu-yun, QI Zhong-hua, LU Han-feng. Activity and Sulfur resistance of Pt-Pd/CeO2 as DOC catalyst for diesel exhaust[J]. J Fuel Chem Technol,2013,41(11):1401−1408.
    [6] 李萍, 李长明, 段正康, 高士秋, 许光文, 余剑. 低温烟气脱硝催化剂适用条件与动力学[J]. 化工学报,2019,70(8):29681−2990.

    LI Ping, LI Chang-ming, DUAN Zheng-kang, GAO Shi-qiu, XU Guang-wen, YU Jian. Application conditions and kinetics simulation over SCR catalyst for flue gas denitrification under low temperature[J]. J Chem Ind Eng,2019,70(8):29681−2990.
    [7] UPAKUL D, AMÉLIE J, EINAR A, EILERTSEN, HERMANN E, MARK A, SATU T, BERT M, ANDREW M. Confirmation of isolated Cu2+ ions in SSZ-13 zeolite as active sites in NH3-selective catalytic reduction[J]. J Phys Chem C,2012,116(7):4809−4818. doi: 10.1021/jp212450d
    [8] FICKEL D, D’ADDIO E, LAUTERBACH J, LOBO R. The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites[J]. Appl Catal B: Environ,2011,102(3/4):441−448. doi: 10.1016/j.apcatb.2010.12.022
    [9] WANG H Y, WANG B D, ZHOU J L, LI G, ZHANG D J, MA Z R, XIONG R H, SUN Q, XU W Q. CuO modified vanadium-based SCR catalysts for Hg0 oxidation and NO reduction[J]. J Environ Manage,2019,239(1):17−22.
    [10] 赵清森. CuO/γ-Al2O3及其改性催化剂脱硫脱硝性能研究[D]. 武汉: 华中科技大学, 2009.

    ZHAO Qing-sen. The experimental study on desulfurization and denitrification by CuO/γ-Al2O3 and modified catalysts[D]. Wuhan: Huazhong University of Science and Technology, 2009.
    [11] HU J Y, LUO G Q, LI Z H, LIU, M Y, ZOU R J, LI X, YAO H. Deactivation mechanism of KCl and K2SO4 poisoned V2O5/WO3-TiO2 catalyst on gaseous elemental mercury oxidation[J]. Fuel,2020,278(9):118245.
    [12] ZHANG Y, ZHAO L, KANG M D, CHEN Z, GAO S J, HAO H G. Insights into high CO-SCR performance of CuCoAlO catalysts derived from LDH/MOFs composites and study of H2O/SO2 and alkali metal resistance[J]. Chem Eng J,2021,426:131873. doi: 10.1016/j.cej.2021.131873
    [13] SHEN F H, LIU J, ZHANG Z, DAI J X. On-Line analysis and kinetic behavior of arsenic release during coal combustion and pyrolysis[J]. Environ Sci Technol,2015,49(22):13716−13723. doi: 10.1021/acs.est.5b03626
    [14] LIU H M, PAN W P, WANG C B, SHEN F H. Volatilization of arsenic during coal combustion based on isothermal thermogravimetric analysis at 600−1500 ℃[J]. Energy Fuels,2016,30(8):6790−6798. doi: 10.1021/acs.energyfuels.6b00816
    [15] LI X, LI J H, PENG Y, SI W Z, HE X, HAO J M. Regeneration of commercial SCR catalysts: Probing the existing forms of arsenic oxide[J]. Environ Sci Technol,2015,49(16):9971−9978. doi: 10.1021/acs.est.5b02257
    [16] 陆强, 裴鑫琦, 徐明新, 王涵啸, 吴亚昌, 欧阳昊东. SCR脱硝催化剂抗砷中毒改性优化与再生研究进展[J]. 化工进展,2021,40(5):2365−2374.

    LU Qiang, PEI Xin-qi, XU Ming-xin, WANG Han-xiao, WU Ya-chang, OUYANG Hao-dong. Progress in the development and regeneration of SCR catalysts for anti-arsenic poisoning[J]. Chem Ind Eng Prog,2021,40(5):2365−2374.
    [17] LI X Y, J. CHEN J, XIAO Y, LU C M, YAO H. Insight into the homogenous and heterogeneous transformation behavior of arsenic on commercial V2O5-WO3-TiO2 and novel γ-Fe2O3 catalysts during selective catalytic reduction of NOx[J]. Fuel,2021,301:121051. doi: 10.1016/j.fuel.2021.121051
    [18] DORIS V, HANNS H, JOSEF S, WOLFGANG G, FRANZ R. Deactivation processes on TiO2 V2O5 based denox catalysts[J]. Chem Ing Tech,1988,60(9):714−715. doi: 10.1002/cite.330600918
    [19] XING J Y, WANG C B, HUANG Y L, YUE S, EDWARD J. The effect of W and Mo modification on arsenic adsorption over Cu/γ-Al2O3 catalyst: Experimental and theoretical analysis[J]. Chem Eng J,2022,432:134376. doi: 10.1016/j.cej.2021.134376
    [20] XING J Y, WANG C B, ZHANG Y, SI T, LIU X. A deep insight into the role of O2 on As2O3 capture over γ-Al2O3 sorbent: Experimental and DFT study[J]. Chem Eng J,2020,410:128311.
    [21] ZHANG Y, WANG C B, LIU H M. Experiment and mechanism research on gas-phase As2O3 adsorption of Fe2O3/γ-Al2O3[J]. Fuel,2016,181:1034−1040. doi: 10.1016/j.fuel.2016.04.141
    [22] CHEN D K, HU H Y, XU Z, LIU H, CAO J X, SHEN J H, YAO H. Findings of proper temperatures for arsenic capture by CaO in the simulated flue gas with and without SO2[J]. Chem Eng J,2015,267:201−206. doi: 10.1016/j.cej.2015.01.035
    [23] HU P B, WENG Q Y, LI D L, LV T, WANG S J, ZHOU Y Q. Effects of O2, SO2, H2O and CO2 on As2O3 adsorption by γ-Al2O3 based on DFT analysis[J]. J Hazard Mater,2020,403:123866.
    [24] 刘翔, 张月, 邢佳颖, 郭雨生, 许桐, 王春波. Mn改性Fe2O3/γ-Al2O3脱除气相As2O3实验研究[J]. 中国电机工程学报,2021,41(15):5250−5258.

    LIU Xiang, ZHANG Yue, XING Jia-ying, GUO Yu-sheng, XU Tong, WANG Chun-bo. Experimental study on removal of gas-phase As2O3 by Mn modified Fe2O3/γ-Al2O3[J]. Proc CSEE,2021,41(15):5250−5258.
    [25] GAO Z Y, SUN Y, LI M H, YANG W J, DING X L. Adsorption sensitivity of Fe decorated different graphene supports toward toxic gas molecules (CO and NO)[J]. Appl Surf Sci,2018,456:351−359. doi: 10.1016/j.apsusc.2018.06.112
    [26] HALGREN T A, LIPSCOMB W N. The synchronous-transit method for determining reaction pathways and locating molecular transition states[J]. Chem Phys Lett,1977,49(2):225−232. doi: 10.1016/0009-2614(77)80574-5
    [27] CONTRERAS M L, AROSTEGUI J M, ARMESTO L. Arsenic interactions during co-combustion processes based on thermodynamic equilibrium calculations[J]. Fuel,2009,88(3):539−546. doi: 10.1016/j.fuel.2008.09.028
    [28] SONG B, SONG M, CHEN D D, MENG F Y, WEI Y X. Retention of arsenic in coal combustion flue gas at high temperature in the presence of CaO[J]. Fuel,2020,259:116249. doi: 10.1016/j.fuel.2019.116249
    [29] DENG X Y, MIN B K, GULOY A, CYNTHIA M. Enhancement of O2 dissociation on Au(111) by adsorbed oxygen: implications for oxidation catalysis[J]. J Am Chem Soc,2005,127(25):9267. doi: 10.1021/ja050144j
    [30] WANG Z, LIU J, YANG Y, LIU F, DING J Y. Heterogeneous reaction mechanism of elemental mercury oxidation by oxygen species over MnO2 catalyst[J]. Proc Combust Inst,2019,37(3):2967−2975. doi: 10.1016/j.proci.2018.06.132
    [31] GAO Z Y, LI M H, SUN Y, YANG W J. Effects of oxygen functional complexes on arsenic adsorption over carbonaceous surface[J]. J Hazard Mater,2018,360(15):436−444.
  • 2022-F024_补充材料修改_燃料化学学报.docx
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  322
  • HTML全文浏览量:  172
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-05
  • 修回日期:  2022-04-01
  • 网络出版日期:  2022-04-22
  • 刊出日期:  2022-10-31

目录

    /

    返回文章
    返回