留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同反应器中褐煤热解焦结构特性及其气化反应性研究

张莹 李挺 赵浩成 王海堂 武江红

张莹, 李挺, 赵浩成, 王海堂, 武江红. 不同反应器中褐煤热解焦结构特性及其气化反应性研究[J]. 燃料化学学报(中英文), 2022, 50(9): 1126-1133. doi: 10.19906/j.cnki.JFCT.2022035
引用本文: 张莹, 李挺, 赵浩成, 王海堂, 武江红. 不同反应器中褐煤热解焦结构特性及其气化反应性研究[J]. 燃料化学学报(中英文), 2022, 50(9): 1126-1133. doi: 10.19906/j.cnki.JFCT.2022035
ZHANG Ying, LI Ting, ZHAO Hao-cheng, WANG Hai-tang, WU Jiang-hong. Study on structure and gasification reactivity of lignite char from different pyrolysis reactor[J]. Journal of Fuel Chemistry and Technology, 2022, 50(9): 1126-1133. doi: 10.19906/j.cnki.JFCT.2022035
Citation: ZHANG Ying, LI Ting, ZHAO Hao-cheng, WANG Hai-tang, WU Jiang-hong. Study on structure and gasification reactivity of lignite char from different pyrolysis reactor[J]. Journal of Fuel Chemistry and Technology, 2022, 50(9): 1126-1133. doi: 10.19906/j.cnki.JFCT.2022035

不同反应器中褐煤热解焦结构特性及其气化反应性研究

doi: 10.19906/j.cnki.JFCT.2022035
基金项目: 山西省高等学校科技创新项目(2020L0732)和山西能源学院科研基金(ZY-2017005)资助
详细信息
    通讯作者:

    E-mail: zysxnyxy@163.com

  • 中图分类号: TQ530.2

Study on structure and gasification reactivity of lignite char from different pyrolysis reactor

Funds: The project was supported by the Science and Technology Project of Higher Education of Shanxi and Scientific (2020L0732),Research Foundation of Shanxi Institute of Energy (ZY-2017005)
More Information
  • 摘要: 本研究以褐煤为样品,流化床和下落床为反应器在900−1100 ℃条件下热解制备了系列煤焦,通过X射线衍射仪(XRD)、Raman光谱仪、静态物理吸附仪及固定床反应器研究了煤焦物化结构及CO2气化反应性。结果表明,流化床和下落床反应器中热解煤焦的气化反应性主要取决于其化学结构。两种反应器中,随热解温度升高,煤焦缩聚反应加深,微晶尺寸(芳香片层堆积高度Lc、平均直径La)增加、大环与小环比$ {I_{\rm{D}}}/{I_{({{\rm{G}}_{\rm{r}}}{\rm{ + }}{{\rm{V}}_{\rm{r}}}{\rm{ + }}{{\rm{V}}_{\rm{1}}})}} $升高,气化反应性降低。相较于下落床反应器,相同热解温度下流化床反应器中煤焦微晶尺寸、大环与小环比$ {I_{\rm{D}}}/{I_{({{\rm{G}}_{\rm{r}}}{\rm{ + }}{{\rm{V}}_{\rm{r}}}{\rm{ + }}{{\rm{V}}_{\rm{1}}})}} $均较低且其随热解温度升高变化程度较小,导致煤焦气化反应性较低且随热解温度升高变化幅度相对较小。这主要归因于流化床反应器中煤焦停留时间长,同时存在较强的煤焦与挥发分相互作用,加深了煤焦缩聚反应程度。
  • FIG. 1874.  FIG. 1874.

    FIG. 1874.  FIG. 1874.

    图  1  热解反应器示意图

    Figure  1  Schematic diagram of pyrolysis reactor

    图  2  不同热解反应器中煤焦的X射线衍射谱图

    Figure  2  XRD patterns of chars at different reactors

    图  3  煤焦1000FL的XRD分峰拟合图

    Figure  3  Curve-fitting of XRD peakfit diagram of 1000FL

    图  4  不同热解反应器中煤焦的拉曼光谱谱图

    Figure  4  Raman spectra of chars at different reactors

    图  5  不同热解反应器中煤焦的拉曼总峰面积变化

    Figure  5  Raman peak areas of chars at different reactors

    图  6  煤焦1000FL的Raman分峰拟合图

    Figure  6  Curve-fitting of Raman peakfit diagram of 1000FL

    图  7  不同热解反应器中煤焦的$ {I_{\rm{D}}}/{I_{({{\rm{G}}_{\rm{r}}}{\rm{ + }}{{\rm{V}}_{\rm{r}}}{\rm{ + }}{{\rm{V}}_{\rm{1}}})}} $比例

    Figure  7  $ {I_{\rm{D}}}/{I_{({{\rm{G}}_{\rm{r}}}{\rm{ + }}{{\rm{V}}_{\rm{r}}}{\rm{ + }}{{\rm{V}}_{\rm{1}}})}} $ ratios of chars at different reactors

    图  8  不同反应器中煤焦的孔隙结构参数

    Figure  8  Pore structure parameters of chars at different reactors

    图  9  不同反应器中下煤焦的气化反应性

    Figure  9  Gasification reactivity of chars at different reactors

    表  1  煤样的元素工业分析和元素分析

    Table  1  Proximate and ultimate analyses of coal samples

    Proximate analysis wad/%Ulitimate analysis wdaf/%
    MAVCHO*NS
    8.623.6926.7078.223.7716.081.740.19
    ad: air dry base; daf: dry and ash free; *: by difference
    下载: 导出CSV

    表  2  不同热解反应器中煤焦样品的碳微晶参数

    Table  2  Microcrystalline structural parameters of chars at different reactors

    Sampled002/nmLc/nmLa/nm
    900FL0.4001.7820.835
    1000FL0.3261.7890.891
    1100FL0.3231.7950.926
    900EF0.4271.7761.159
    1000EF0.3731.7901.199
    1100EF0.3331.8051.377
    下载: 导出CSV
  • [1] 王永刚, 孙加亮, 张书. 反应气氛对褐煤气化反应性及半焦结构的影响[J]. 煤炭学报,2014,39(8):1765−1771.

    WANG Yong-gang, SUN Jiang-liang, ZHANG Shu. Impacts of the gas atmosphere on the gasification reactivity and char structure of the brown coal[J]. J China Coal Soc,2014,39(8):1765−1771.
    [2] OCHOA J, CASSANELLO M C, BONELLI P R, CUKIERMAN A L. CO2 gasification of Argentinean coal chars: A kinetic characterization[J]. Fuel Process Technol,2001,74(3):161−176. doi: 10.1016/S0378-3820(01)00235-1
    [3] 李润, 周敏, 王姗. 灰分和气化温度对胜利褐煤煤焦CO2气化反应性和结构特性的影响[J]. 煤炭转化,2020,43(6):27−31.

    LI Run, ZHOU Min, WANG Shan. Effects of ash and temperature on CO2 gasification reactivity and structure characteristics of Shengli lignite[J]. Coal Convers,2020,43(6):27−31.
    [4] 汪大千, 赵 创, 吴 阳, 杨海平. 加压热解煤焦的气化反应动力学研究[J]. 华中科技大学学报(自然科学版),2019,47(7):45−49.

    WANG Da-qian, ZHAO Chuang, WU Yang, YANG Hai-ping. Study on gasification reaction kinetics of coal char obtained by pressured pyrolysis[J]. J Huazhong Univ Sci Technol (Nat Sci Ed),2019,47(7):45−49.
    [5] 温雨鑫, 徐祥, 肖云汉. 热解条件对煤焦孔结构和反应性的影响[J]. 中国电机工程学报,2013,33(29):63−68.

    WEN Yu-xin, XU Xiang, XIAO Yun-han. Effects of pyrolysis conditions on the pore structure and reactivity of chars[J]. Proc CSEE,2013,33(29):63−68.
    [6] 徐秀峰, 崔洪, 顾永达, 陈诵英, 吴东. 煤焦制备条件对其气化反应性的影响[J]. 燃料化学学报,1996,24(5):404−410.

    XU Xiu-feng, CUI Hong, GU Yong-da, CHEN Song-ying, WU Dong. Influence of charring conditiongs of coal chars their gasification reactivity by air[J]. J Fuel Chem Technol,1996,24(5):404−410.
    [7] 方顺利, 姚伟, 刘家利, 姚斌, 杨忠灿, 王桂芳. 乌拉盖褐煤半焦气化特性试验[J]. 热力发电,2017,46(12):75−79.

    FANG Shun-li, YAO Wei, LIU Jia-li, YAO Bing, YANG Zhong-can, WANG Gui-fang. Experimental study on gasification characteristics of Wulagai lignite semi-coke[J]. Therm Power Gen,2017,46(12):75−79.
    [8] YEASMIN H, MATHEWS J F, OUYANG S. Rapid devolatisation of yallourn brown coal at high pressures and temperatures[J]. Fuel,1999,78(1):11−24. doi: 10.1016/S0016-2361(98)00119-7
    [9] 吕洁, 宗志敏, 谢瑞伦, 姚子硕, 魏晴, 郄丽曼, 芦海云, 魏贤勇. 淮南煤焦结构及其高温气化反应性研究[J]. 武汉科技大学学报,2010,33(2):191−195.

    LÜ Jie, ZONG Zhi-min, XIE Rui-lun, YAO Zi-shuo, WEI Qing, QIE Li-man, LU Hai-yun, WEI Xian-yong. Structure and gasification reactivity of Huainan coal chars at elevated temperatures[J]. J Wuhan Univ Sci Technol,2010,33(2):191−195.
    [10] 范冬梅. 低阶煤热解半焦的气化反应特性研究[D]. 北京: 中国科学院工程热物理研究所, 2013.

    FAN Dong-mei. Characteristics study on pyrolysis and gasification of low rank coal[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2013.
    [11] 王美君, 于彦旭, 王欢, 孔娇, 常丽萍, 鲍卫仁. 一种微型流化床上吸式粉体物料喂料装置及喂料方法[P]. CN: 109230541 B, 2021.

    WANG Mei-jun, YU Yan-xu, WANG Huan, KONG Jiao, CHANG Li-ping, BAO Wei-ren. A feeding device and method of a up-suction micro-fluidized bed for powder material[P]. CN: 109230541 B, 2021.
    [12] 白永辉. CO2作为气化剂对煤焦-H2O气化反应的影响机制[D]. 太原: 太原理工大学, 2014.

    BAI Yong-hui. Influence of CO2 on char-steam gasification reaction mechanism[D]. Taiyuan: Taiyuan University of Technology, 2014.
    [13] SENNECA O, CORTESE L. Thermal annealing of coal at high temperature and high pressure. Effects on fragmentation and on rate of combustion, gasification and oxy-combustion[J]. Fuel,2014,116:221−228. doi: 10.1016/j.fuel.2013.07.065
    [14] LU L, SAHAJWALLA V, KONG C, HARRIS D. Quantitative X-ray diffraction analysis and its application to various coals[J]. Carbon,2001,39(12):1821−1833. doi: 10.1016/S0008-6223(00)00318-3
    [15] WANG M J, TIAN J L, ROBERTS D G, CHANG L P, XIE K C. Interactions between corncob and lignite during temperature-programmed co-pyrolysis[J], Fuel, 2015, 142: 102-108.
    [16] TAY H L, KAJITANI S, ZHANG S, LI C Z. Inhibiting and other effects of hydrogen during gasification: Further insights from FT-Raman spectroscopy[J]. Fuel,2014,116:1−6. doi: 10.1016/j.fuel.2013.07.066
    [17] ZHANG L, LI T, QUYN D, DONG L, LI C Z. Structural transformation of nascent char during the fast pyrolysis of mallee wood and low-rank coals[J]. Fuel Process Technol,2015,138:390−396. doi: 10.1016/j.fuproc.2015.05.003
    [18] LI X J, HAYASHI J I, LI C Z. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel,2006,85(12/13):1700−1707. doi: 10.1016/j.fuel.2006.03.008
    [19] ZHANG S, CHEN Z D, HAI Y, WANG Y G, XU X Q, CHEN L, YU M. The catalytic reforming of tar from pyrolysis and gasification of brown coal: Effects of parental carbon materials on the performance of char catalysts[J]. Fuel Process Technol,2018,174:142−148. doi: 10.1016/j.fuproc.2018.02.022
    [20] 郭沛, 赵慧明, 贾挺豪, 王美君, 常丽萍. 共热解过程对褐煤焦和生物质焦氧化特性的影响[J]. 燃料化学学报,2015,43(10):1188−1194. doi: 10.3969/j.issn.0253-2409.2015.10.006

    GUO Pei, ZHAO Hui-ming, JIA Ting-hao, WANG Mei-jun, CHANG Li-ping. Effect of co-pyrolysis process on the oxidation reactivity of lignite char and biomass char[J]. J Fuel Chem Technol,2015,43(10):1188−1194. doi: 10.3969/j.issn.0253-2409.2015.10.006
    [21] 曾鑫, 张静, 张永发, 安英保, 郑琪. 高温, 高压, 快速加氢热解煤残渣的结构和CO2气化反应性研究[J]. 现代化工,2020,40(9):116−125.

    ZENG Xin, ZHANG Jing, ZHANG Yong-fa, AN Ying-bao, ZHENG Qi. Study on structure and CO2 gasification reactivity of coal pyrolysis residue at high temperature, high pressure and rapid hydrogenation[J]. Mod Chem Ind,2020,40(9):116−125.
    [22] 郭沛. 生物质焦和煤焦在气化过程中的结构演变及其与反应性的关联[D]. 太原: 太原理工大学, 2015.

    GUO Pei. Links between reactivity and structure evolution during gasification of biomass char and coal chars[D]. Taiyuan: Taiyuan University of Technology, 2015.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  295
  • HTML全文浏览量:  85
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-18
  • 修回日期:  2022-04-19
  • 录用日期:  2022-04-22
  • 网络出版日期:  2022-05-12
  • 刊出日期:  2022-10-21

目录

    /

    返回文章
    返回