留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiO2改性钒磷氧催化剂催化醋酸甲醛合成丙烯酸研究

黄博雅 郭荷芹 贾丽涛 肖勇 李德宝 张建利

黄博雅, 郭荷芹, 贾丽涛, 肖勇, 李德宝, 张建利. TiO2改性钒磷氧催化剂催化醋酸甲醛合成丙烯酸研究[J]. 燃料化学学报(中英文), 2022, 50(10): 1351-1360. doi: 10.19906/j.cnki.JFCT.2022036
引用本文: 黄博雅, 郭荷芹, 贾丽涛, 肖勇, 李德宝, 张建利. TiO2改性钒磷氧催化剂催化醋酸甲醛合成丙烯酸研究[J]. 燃料化学学报(中英文), 2022, 50(10): 1351-1360. doi: 10.19906/j.cnki.JFCT.2022036
HUANG Bo-ya, GUO He-qin, JIA Li-tao, XIAO Yong, LI De-bao, ZHANG Jian-li. Study on aldol condensation of acetic acid with formaldehyde to acrylic acid over TiO2 modified VPO[J]. Journal of Fuel Chemistry and Technology, 2022, 50(10): 1351-1360. doi: 10.19906/j.cnki.JFCT.2022036
Citation: HUANG Bo-ya, GUO He-qin, JIA Li-tao, XIAO Yong, LI De-bao, ZHANG Jian-li. Study on aldol condensation of acetic acid with formaldehyde to acrylic acid over TiO2 modified VPO[J]. Journal of Fuel Chemistry and Technology, 2022, 50(10): 1351-1360. doi: 10.19906/j.cnki.JFCT.2022036

TiO2改性钒磷氧催化剂催化醋酸甲醛合成丙烯酸研究

doi: 10.19906/j.cnki.JFCT.2022036
详细信息
    通讯作者:

    E-mail: heqinguo@sxicc.ac.cn

  • 中图分类号: O643

Study on aldol condensation of acetic acid with formaldehyde to acrylic acid over TiO2 modified VPO

  • 摘要: 采用有机溶剂热法制备了系列TiO2改性的钒磷氧催化剂,利用TEM、XRD、XPS、NH3-TPD及CO2-TPD对催化剂结构及表面物化性质进行了表征,以醋酸甲醛合成丙烯酸为探针反应对催化剂的反应性能进行了评价。结果表明,与未改性的钒磷氧催化剂相比,TiO2的加入显著改变钒磷氧催化剂的(${I_{{{\rm{V}}^{{\rm{5 + }}}}/{{\rm{V}}^{{\rm{4 + }}}}}} $)/IV比值,当TiO2的前驱体为金红石相并且Ti/V物质的量比为2.0时,(${I_{{{\rm{V}}^{{\rm{5 + }}}}/{{\rm{V}}^{{\rm{4 + }}}}}} $)/IV比值达到最高,因此,该催化剂具有最高的丙烯酸收率(18.0%)和丙烯酸生成速率(6.61 mmol/(g·h)),表明对于TiO2改性的钒磷氧催化剂,V5+与V4+的氧化还原循环在催化醋酸甲醛制丙烯酸反应过程中起主要作用。
  • FIG. 1933.  FIG. 1933.

    FIG. 1933.  FIG. 1933.

    图  1  催化剂的TEM-EDS元素分布

    Figure  1  TEM-EDS elemental distribution of catalysts (a): TEM images of catalysts; (b): Elemental distribution of catalysts

    (I):VPO;(II):VPO-Rut-1;(III):VPO-Rut-2;(IV):VPO-Rut-12

    图  2  催化剂的XRD谱图

    Figure  2  XRD patterns of catalysts

    图  3  催化剂的XPS V 2p3/2谱图

    Figure  3  XPS V 2p3/2 spectra of catalysts

    图  4  催化剂的XPS P 2p谱图

    Figure  4  XPS P 2p spectra of catalysts

    图  5  催化剂的NH3-TPD谱图

    Figure  5  NH3-TPD profiles of catalysts

    a:VPO;b:VPO-Rut-1;c:VPO-Rut-2;d:VPO-Rut-4; e:VPO-Rut-6;f:VPO-Rut-12

    图  6  催化剂的NH3-TPD分峰拟合

    Figure  6  Peak fitting results of NH3-TPD profiles of catalysts

    图  7  催化剂的CO2-TPD谱图

    Figure  7  CO2-TPD profiles of catalysts

    a: VPO; b: VPO-Rut-1; c: VPO-Rut-2; d: VPO-Rut-4; e: VPO-Rut-6; f: VPO-Rut-12

    图  8  催化剂的CO2-TPD分峰拟合

    Figure  8  Peak fitting results of CO2-TPD profiles of catalysts

    图  9  催化剂(${I_{{{\rm{V}}^{{\rm{5 + }}}}/{{\rm{V}}^{{\rm{4 + }}}}}} $)/IV比值与其催化性能的关系

    Figure  9  Relationship between proportion of V content forming V5+ and V4+ ion pair to total V on the catalyst surface and the reaction performances

    (a): VPO catalysts with different TiO2 content; (b): VPO catalysts with different TiO2 precursors

    图  10  VPO-Rut-2催化剂失活再生性能

    Figure  10  Deactivation/reactivation behavior of VPO-Rut-2 catalysts

    reaction condition: amount of catalysts 6 g; HAc/HCHO = 3∶1; volume of feedstock 0.25 mL/min; LHSV is 2.5 h−1 ; reaction temperature 365 ℃ (HAc, acetic acid; AA, acrylic acid )

    表  1  催化剂的表面组成

    Table  1  Surface composition of catalysts

    SampleRelative amount / %P/V (mole ratio)Ti/V (mole ratio)(${I_{{{\rm{V}}^{{\rm{5 + }}}}/{{\rm{V}}^{{\rm{4 + }}}}}} $)/IVBinding energy/eV
    PV5+V4+TiOPV5+V4+
    VPO17.41.73.4077.53.4066.8%134.9518.5517.5
    VPO-Rut-114.11.62.13.179.03.70.8185.3%133.9518.3516.9
    VPO-Rut-210.91.31.54.482.03.91.590.3%134.2518.4517.0
    VPO-Rut-410.41.01.310.277.24.64.585.8%133.8517.6516.6
    VPO-Rut-65.20.81.010.082.92.75.386.2%133.7517.4516.4
    VPO-Rut-122.42.40.612.382.20.784.041.6%133.5517.1516.1
    VPO-TBOT-215.80.81.55..876.06.52.475.6%134.3518.4517.1
    VPO-Ana-215.00.71.06.876.58.63.982.6%134.3518.5517.1
    (${I_{{{\rm{V}}^{{\rm{5 + }}}}/{{\rm{V}}^{{\rm{4 + }}}}}} $)/IV: Proportion of V content forming V5+ and V4+ ion pair to total V
    下载: 导出CSV

    表  2  催化剂的表面酸碱性

    Table  2  Surface acidity and basicity of catalysts

    SampleNH3-TPDTotal acid quantities /
    (μmol·g−1)
    CO2-TPDTotal basic
    quantities /
    (μmol·g−1)
    weak acid
    quantities /
    (μmol·g−1)
    intermediate
    acid quantities /
    (μmol·g−1)
    weak basic
    quantities /
    (μmol·g−1)
    intermediate basic
    quantities /
    (μmol·g−1)
    VPO7.910.318.210.812.122.9
    VPO-Rut-142.1630.6672.649.337.887.1
    VPO-Rut-2102.41910.92013.360.256.5116.7
    VPO-Rut-498.5478.5576.946.472.0118.4
    VPO-Rut-6150.2204.9355.2132.3105.3237.6
    VPO-Rut-12172.5110.3282.8159.4129.8289.2
    下载: 导出CSV

    表  3  催化剂的反应性能

    Table  3  Reaction performances of catalysts

    SampleConv. of HAc /%Selec. of AA /%Yield of AA /%STY /(mmol·g−1·min−1 )
    VPO15.183.012.54.62
    VPO-Rut-119.583.016.25.95
    VPO-Rut-221.185.418.06.61
    VPO-Rut-421.082.117.36.34
    VPO-Rut-620.684.617.46.39
    VPO-Rut-1211.865.17.72.81
    VPO-TBOT-218.679.714.85.43
    VPO-Ana-220.183.816.96.24
    the reaction condition: amount of catalysts 6 g; HAc/HCHO = 3/1; volume of feedstock 0.25 mL/min; LHSV is 2.5 h−1 ; reaction temperature 365 ℃ (HAc, acetic acid; AA, acrylic acid )
    下载: 导出CSV

    表  4  温度对催化剂反应性能的影响

    Table  4  Effect of reaction temperature on the catalytic performance

    Temp. /℃Conv. of HAc /%Selec. of AA /%Yield of AA /%STY /
    (mmol·g−1·min−1 )
    32017.281.414.05.14
    35020.984.117.56.44
    36521.185.418.06.61
    38015.880.512.74.65
    reaction condition: amount of catalysts 6 g; HAc/HCHO = 3∶1; volume of feedstock 0.25 mL/min; LHSV is 2.5 h−1; (HAc, acetic acid; AA, acrylic acid )
    下载: 导出CSV

    表  5  液空对催化剂的反应性能的影响

    Table  5  Effect of LHSV on the catalytic performance

    LHSV /h−1Conv. of HAc /%Selec. of AA /%Yield of AA /%STY / (mmol·g−1·min−1 )
    1.025.780.920.83.04
    2.521.185.418.06.61
    4.014.772.310.76.26
    reaction condition: amount of catalysts 6 g; HAc/HCHO = 3∶1; reaction temperature 365 ℃ (HAc, acetic acid; AA, acrylic acid)
    下载: 导出CSV
  • [1] BAILEY O H, MONTAG R A, YOO J S. Methacrylic acid synthesis. Part 1. Condensation of propionic acid with formaldehyde over alkali metal cation on silica catalysts[J]. Appl Catal A: Gen,1992,88(2):163−177. doi: 10.1016/0926-860X(92)80213-V
    [2] ANASTAS P T, WARNER J C. (1998) Green Chemistry: Theory and Practice[M]. New York: Oxford University Press.
    [3] ZUO C C, LI Y P, LI C S, CAO S S, YAO H Y, ZHANG S J. Thermodynamics and separation process for quaternary acrylic systems[J]. AICHE J,2016,62(1):228−240. doi: 10.1002/aic.15015
    [4] GUO X, YANG D, ZUO C, PENG Z, LI C, ZHANG S. Catalysts, process optimization, and kinetics for the production of methyl acrylate over vanadium phosphorus oxide catalysts[J]. Ind Eng Chem Res,2017,56(20):5860−5871. doi: 10.1021/acs.iecr.7b01212
    [5] 朱俊杰, 王志遵, 李常青, 商红岩. 改性聚丙烯酸高级酯的合成及其降凝效果的考察[J]. 燃料化学学报,2002,30(4):328−331. doi: 10.3969/j.issn.0253-2409.2002.04.008

    ZHU Jun-jie, WANG Zhi-zun, LI Chang-qing, SHANG Hong-yan. Synthesis and evaluation of MPAE as pour point depressant for diesels[J]. J Fuel Chem Technol,2002,30(4):328−331. doi: 10.3969/j.issn.0253-2409.2002.04.008
    [6] KADAR J, HEENE-WUERL N, HAHN S, NAGENGAST J, KEHRER M, TACCARDI N, COLLIAS D, DZIEZOK P, WASSERSCHEID P, ALBERT J. Acrylic acid synthesis from lactide in a continuous liquid-phase process[J]. ACS Sustainable Chem Eng,2019,7(7):7140−7147. doi: 10.1021/acssuschemeng.8b06538
    [7] BOTELLA P, NIETO J M L, SOLSONA B, MIFSUD A, MARQUEZ F. The preparation, characterization, and catalytic behavior of MoVTeNbO catalysts prepared by hydrothermal synthesis[J]. J Catal,2002,209(2):445−455. doi: 10.1006/jcat.2002.3648
    [8] BU Y J, SANG S K, SANG H M. Performance of WOx-added Mo-V-Te-Nb-O catalysts in the partial oxidation of propane to acrylic acid[J]. Appl Catal A: Gen,2010,378(1):76−82. doi: 10.1016/j.apcata.2010.02.002
    [9] WEN F, GE Q J, YU J F, XU H Y. Catalytic selective oxidation of propane to acrylic acid in a fixed-bed reactor with an O2-distributor[J]. Ind Eng Chem Res,2011,50(4):1962−1967. doi: 10.1021/ie1018386
    [10] MA Z L, MA X G, LIU H C, HE Y L, ZHU W L, GUO X W, LIU Z M. A green route to methyl acrylate and acrylic acid by an aldol condensation reaction over H-ZSM-35 zeolite catalysts[J]. Chem Commun,2017,53(65):9071−9074. doi: 10.1039/C7CC04574C
    [11] YANG D, WANG G, WU H, GUO X, ZHANG S, LI Z, LI C. Deactivation behavior on VPO and VPO-Zr catalysts in the aldol condensation of methyl acetate and formaldehyde[J]. Catal Today,2018,316:122−128. doi: 10.1016/j.cattod.2018.06.019
    [12] ZUO C, GE T, WANG G, GUO X, LI C, ZHANG S. Enhanced catalytic activity with oxygen for methyl acrylate production via cross-aldol condensation reaction[J]. Chem Eng Technol,2018,41(7):1331−1341. doi: 10.1002/ceat.201700500
    [13] LIU J, WANG P, FENG Y, XU Z, FENG X, JI W, AU C-T. Precisely phase-modulated VPO catalysts with enhanced inter-phase conjunction for acrylic acid production through the condensation of acetic acid and formaldehyde[J]. J Catal,2019,374:171−182. doi: 10.1016/j.jcat.2019.04.032
    [14] LIU J, XU P, WANG P, XU Z, FENG X, JI W, AU C-T. Vanadium phosphorus oxide/siliceous mesostructured cellular foams: Efficient and selective for sustainable acrylic acid production via condensation route[J]. Sci Rep,2019,9(1):1−10.
    [15] LIU J, WANG P, XU P, XU Z, FENG X, JI W, ARANDIYAN H, AU C-T. How to achieve a highly selective yet simply available vanadium phosphorus oxide-based catalyst for sustainable acrylic acid production via acetic acid-formaldehyde condensation[J]. Chem Commun,2020,56(7):1022−1025. doi: 10.1039/C9CC08700A
    [16] AI M. Vapor-phase aldol condensation of formaldehyde with acetic acid on V2O5P2O5 catalysts[J]. J Catal,1987,107(1):201−208. doi: 10.1016/0021-9517(87)90285-5
    [17] FENG X, SUN B, YAO Y, SU Q, JI W, AU C-T. Renewable production of acrylic acid and its derivative: New insights into the aldol condensation route over the vanadium phosphorus oxides[J]. J Catal,2014,314:132−141. doi: 10.1016/j.jcat.2014.04.005
    [18] YANG D, SARARUK C, SUZUKI K, LI Z, LI C. Effect of calcination temperature on the catalytic activity of VPO for aldol condensation of acetic acid and formalin[J]. Chem Eng J,2016,300:160−168. doi: 10.1016/j.cej.2016.04.107
    [19] HE T, QU Y, WANG J. Experimental and theoretical study for vapor phase aldol condensation of methyl acetate and formaldehyde over alkali metal oxides supported on SBA-15[J]. Ind Eng Chem Res,2018,57(8):2773−2786. doi: 10.1021/acs.iecr.7b02841
    [20] ZUO C, GE T, GUO X, LI C, ZHANG S. Synthesis and catalytic performance of Cs/P modified ZSM-5 zeolite in aldol condensation of methyl acetate with different sources of formaldehyde[J]. Microporous Mesoporous Mater,2018,256:58−66. doi: 10.1016/j.micromeso.2017.07.045
    [21] ZHAO H, ZUO C, YANG D, LI C, ZHANG S. Effects of support for vanadium phosphorus oxide catalysts on vapor-phase aldol condensation of methyl acetate with formaldehyde[J]. Ind Eng Chem Res,2016,55(50):12693−12702. doi: 10.1021/acs.iecr.6b03079
    [22] WANG Y, WANG Z, HAO X, ZHANG W, ZHU W. Nb-Doped vanadium phosphorus oxide catalyst for the aldol condensation of acetic acid with formaldehyde to acrylic acid[J]. Ind Eng Chem Res,2018,57(36):12055−12060. doi: 10.1021/acs.iecr.8b02132
    [23] YANG D, SARARUK C, WANG H, ZHANG S, LI Z, LI C. Effect of metal ion in bulk VPO in aldol condensation of formaldehyde and methyl acetate to methyl acrylate[J]. Ind Eng Chem Res,2018,57(1):93−100. doi: 10.1021/acs.iecr.7b03521
    [24] WANG A, HU J, YIN H, LU Z, XUE W, SHEN L, LIU S. Aldol condensation of acetic acid with formaldehyde to acrylic acid over Cs(Ce, Nd) VPO/SiO2 catalyst[J]. Rsc Adv,2017,7(76):48475−48485. doi: 10.1039/C7RA09778F
    [25] VAN, VEEN, ANDRE, C. , MUELLER, SEBASTIAN, LIU, YUE, SUN, XIANYONG. Coke formation and deactivation pathways on H-ZSM-5 in the conversion of methanol to olefins[J]. J Catal,2015,325:48−59. doi: 10.1016/j.jcat.2015.02.013
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  290
  • HTML全文浏览量:  183
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-28
  • 修回日期:  2022-04-02
  • 录用日期:  2022-04-05
  • 网络出版日期:  2022-05-05
  • 刊出日期:  2022-10-31

目录

    /

    返回文章
    返回