留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙基废弃物对生物质吸附增强式气化制氢特性的影响研究

谌缘 杨海平 邹俊 赵雨佳 陈汉平

谌缘, 杨海平, 邹俊, 赵雨佳, 陈汉平. 钙基废弃物对生物质吸附增强式气化制氢特性的影响研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022054
引用本文: 谌缘, 杨海平, 邹俊, 赵雨佳, 陈汉平. 钙基废弃物对生物质吸附增强式气化制氢特性的影响研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022054
CHEN Yuan, YANG Hai-ping, ZOU Jun, ZHAO Yu-jia, CHEN Han-ping. Study of Calcium-based Waste on Adsorption Enhanced Biomass Gasification for Hydrogen Production[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022054
Citation: CHEN Yuan, YANG Hai-ping, ZOU Jun, ZHAO Yu-jia, CHEN Han-ping. Study of Calcium-based Waste on Adsorption Enhanced Biomass Gasification for Hydrogen Production[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022054

钙基废弃物对生物质吸附增强式气化制氢特性的影响研究

doi: 10.19906/j.cnki.JFCT.2022054
基金项目: 国家重点研发计划(2019YFB1503900)资助
详细信息
    通讯作者:

    Tel:18071748091,E-mail: zou_jun@hust.edu.cn

  • 中图分类号: TK6

Study of Calcium-based Waste on Adsorption Enhanced Biomass Gasification for Hydrogen Production

Funds: The project was supported by the National Key Research and Development Program of China (2019YFB1503900)
  • 摘要: 为了提高生物质气化制氢效率,综合利用工业固废资源,利用钙基废弃物——电石渣作为CO2吸附剂,在两段式固定床上探究了钙基废弃物的添加量、反应温度对生物质气化制氢特性的影响,着重研究了吸附剂在实际应用中的循环吸附性能,并以此探讨了电石渣对生物质吸附增强气化的影响机制。结果表明,随着电石渣添加量的逐渐增加,H2产量和浓度都呈现出增加的趋势。而随着温度的升高,H2产量和浓度先增加后减小。当CaO/C物质的量比为1,重整段温度为700 ℃时,气体产物中的H2产量和浓度为154.34 mL/g(生物质)和26.76%,获得最大值。当电石渣循环次数小于5时,H2的浓度和产量相较于初次反应都有所增加。
  • 图  1  两段式生物质增强吸附式制氢实验装置示意图

    Figure  1  Diagram of two-stage biomass enhanced adsorption hydrogen production experiment system

    图  2  CaO/C物质的量比对生物质气化气体特性的影响

    Figure  2  Influence of CaO/C mole ratio on gas characteristics of biomass gasification

    Note:S/B = 1, temperature of reforming section is 650 ℃(a): Gas concentration; (b): Gas production

    图  3  温度对生物质气化气体特性的影响

    Figure  3  Influence of temperature on gas characteristics of biomass gasification

    note:S/B = 1,CaO/C = 1(a): Gas concentration; (b): Gas production

    图  4  不同温度下反应前后电石渣#CS的XRD谱图

    Figure  4  XRD patterns of calcium carbide slag #CS before and after reaction at different temperatures

    图  5  吸附剂循环反应后的产气浓度

    Figure  5  Concentration of gas production after cyclic reaction of adsorbent

    图  6  吸附剂循环反应后的XRD谱图

    Figure  6  XRD patterns of adsorbents after cyclic reaction

    图  7  5次循环反应后电石渣#CS的微观形貌图

    Figure  7  Microstructure of calcium carbide slag #CS after 5 cycles of reaction

    表  1  生物质样品的工业分析和元素分析

    Table  1  Proximate and ultimate analysis of samples

    SampleProximate analysis wd/%Ultimate analysis
    wd/%
    QHHV/(MJ·kg−1)O/CH/C
    AFCVCHO*N
    Bamboo shavings5.477.7586.7853.326.6434.210.221.620.481.49
    note:FC -fixed carbon; V-volatile; A-ash; d-dry basis; * - by difference
    下载: 导出CSV

    表  2  电石渣XRF成分分析

    Table  2  XRF composition analysis of carbide slag

    SampleMass fraction w/%
    CaOMgOSiO2Al2O3Fe2O3TiO2Na2Oothers
    Carbide slag90.550.122.813.970.450.490.031.58
    下载: 导出CSV

    表  3  吸附剂循环反应后的气体产物特性

    Table  3  Characteristics of gas products after cyclic reaction of adsorbent

    Cycles12345
    Gas production rate
    w/%
    39.3839.2040.3638.9237.23
    Hydrogen production
    /(mL·g−1 biomass)
    154.34192.64188.16161.28159.49
    下载: 导出CSV
  • [1] UDOMSIRICHAKORN J, BASU P, SALAM P A, ACHARYA B. Effect of CaO on tar reforming to hydrogen-enriched gas with in-process CO2 capture in a bubbling fluidized bed biomass steam gasifier[J]. Int J Hydrog Energy,2013,38(34):14495−14504. doi: 10.1016/j.ijhydene.2013.09.055
    [2] DUAN W, YU Q. Thermodynamic analysis of hydrogen-enriched syngas generation coupled with in situ CO2 capture using chemical looping gasification method[J]. J Therm Anal Calorim,2017,131(2):1671−1680.
    [3] DONG J, NZIHOU A, CHI Y, WEISS-HORTALA E, NI M, LYCZKO N, TANG Y, DUCOUSSO M. Hydrogen-rich gas production from steam gasification of bio-char in the presence of CaO[J]. Waste Biomass Valori,2016,8(8):2735−2746.
    [4] LI B, MAGOUA MBEUGANG C F, HUANG Y, LIU D, WANG Q, ZHANG S. A review of CaO based catalysts for tar removal during biomass gasification[J]. Energy,2022,244:1.
    [5] GENG Y, GUO Y, FAN B, CHENG F, CHENG H. Research progress of calcium-based adsorbents for CO2 capture and anti-sintering modification[J]. J Fuel Chem Technol,2021,49(7):998−1013. doi: 10.1016/S1872-5813(21)60040-3
    [6] ZHANG H, JIANG T, YASEEN H A S M, ZHAO Y, WANG S, MA X. Pelletization and attrition of CaO‐based adsorbent for CO2 capture[J]. Asia-Pac J Chem Eng,2021,16(4):2656-1−2656-19.
    [7] XU Y, LUO C, ZHENG Y, DING H, WANG Q, SHEN Q, LI X, ZHANG L. Characteristics and performance of CaO-based high temperature CO2 sorbents derived from a sol-gel process with different supports[J]. RSC Adv,2016,6(83):79285−79296. doi: 10.1039/C6RA15785H
    [8] WANG S, SHEN H, FAN S, ZHAO Y, MA X, GONG J. Enhanced CO2 adsorption capacity and stability using CaO-based adsorbents treated by hydration[J]. AIChE J,2013,59(10):3586−3593. doi: 10.1002/aic.14126
    [9] YANG H, WANG D, LI B, ZENG Z, QU L, ZHANG W, CHEN H. Effects of potassium salts loading on calcium oxide on the hydrogen production from pyrolysis-gasification of biomass[J]. Bioresour Technol,2018,249:744−750. doi: 10.1016/j.biortech.2017.10.083
    [10] XU A, ZHOU W, ZHANG X, ZHAO B, CHEN L, SUN L, DING W, YANG S, GUAN H, BAI B. Gas production by catalytic pyrolysis of herb residues using Ni/CaO catalysts[J]. J Anal Appl Pyrolysis,2018,130:216−223. doi: 10.1016/j.jaap.2018.01.006
    [11] LIU F, LI W, LIU B, LI R. Synthesis, characterization, and high temperature CO2 capture of new CaO based hollow sphere sorbents[J]. J Mater Chem A,2013,1(27):8037. doi: 10.1039/c3ta11369h
    [12] 刘小通. 改性钙基CO2高温吸附剂的研究[D]. 西安: 西北大学, 2017.

    LIU Xiao-tong . Study of modified CaO-based sorbents for CO2 at high temperture[D]. Xi 'an : Northwest University, 2017.
    [13] LV S Z, ZHAO S Y, LIU M M, WU P P. Preparation of calcium carbonate by calcium carbide residue[J]. Adv Mat Res,2013,864-867:1963−1967.
    [14] LI Y, WANG W, CHENG X, SU M, MA X, XIE X. Simultaneous CO2/HCl removal using carbide slag in repetitive adsorption/desorption cycles[J]. Fuel,2015,142:21−27. doi: 10.1016/j.fuel.2014.10.071
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  65
  • HTML全文浏览量:  14
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-12
  • 修回日期:  2022-06-15
  • 网络出版日期:  2022-07-11

目录

    /

    返回文章
    返回