留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁基费托催化剂预处理过程的原位表征技术研究进展

韩宇静 王会香 王连成 黄冬梅 王鹏飞 吕宝亮

韩宇静, 王会香, 王连成, 黄冬梅, 王鹏飞, 吕宝亮. 铁基费托催化剂预处理过程的原位表征技术研究进展[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022067
引用本文: 韩宇静, 王会香, 王连成, 黄冬梅, 王鹏飞, 吕宝亮. 铁基费托催化剂预处理过程的原位表征技术研究进展[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022067
HAN Yu-jing, WANG Hui-xiang, WANG Lian-cheng, HUANG Dong-mei, WANG Peng-fei, LV Bao-liang. Research progress on the in-situ characterizations of iron-based FTS catalysts pretreatment process[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022067
Citation: HAN Yu-jing, WANG Hui-xiang, WANG Lian-cheng, HUANG Dong-mei, WANG Peng-fei, LV Bao-liang. Research progress on the in-situ characterizations of iron-based FTS catalysts pretreatment process[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022067

铁基费托催化剂预处理过程的原位表征技术研究进展

doi: 10.19906/j.cnki.JFCT.2022067
基金项目: 国家自然科学基金(21972158),中科院联合基金(2021017),山西省留学基金委科研项目(2020-196),山西省青年科学基金(201901D211583)和山西省博士创业基金(SQ2019006)资助
详细信息
    通讯作者:

    E-mail: wangpf@sxicc.ac.cn (P. Wang)

    lbl604@sxicc.ac.cn (B. Lv)

  • 中图分类号: O643.36

Research progress on the in-situ characterizations of iron-based FTS catalysts pretreatment process

Funds: This work was supported by the National Natural Science Foundation of China (21972158), Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (Grant. YLU-DNL Fund 2021017), Research Project of Shanxi Scholarship Council of China (2020-196), Shanxi Province Science Foundation for Youths (201901D211583) and Doctoral Start-up Foundation of Shanxi Province (SQ2019006).
  • 摘要: 铁基费托合成(FTS)催化剂通常以氧化物前驱体α-Fe2O3的形式存在,在不同预处理条件下转变为铁碳化合物FexCy后具有不同的催化活性,因此,研究催化剂预处理过程对费托合成反应具有重要意义。然而该过程中物相体系高度动态复杂,通过常规表征手段无法捕捉到铁基催化剂准确的变化信息。为了深入探究前驱体α-Fe2O3体系在不同预处理过程中的真实变化,需要借助多种原位表征技术获取催化剂物相、形貌及其表面结构和性质的动态变化数据,从而可实现催化剂预处理过程和后续FTS催化性能的有效关联。本工作系统综述了X射线衍射、透射电子显微镜、X射线光电子能谱、红外光谱和拉曼光谱等原位表征技术在铁基FTS催化剂预处理过程中的实验方法以及数据处理方法,以明晰催化剂前驱体复杂的结构性质变化过程,进而促进更高效铁基FTS催化剂的设计和开发。
  • 图  1  (a)先H2后合成气,(b)CO,(c)合成气气氛下Rietveld精修的铁基催化剂物相相对丰度;在(d)2% CO/He和(e)2% CO/ 8% H2/He气氛下,Rietveld精修的Fe3O4平均晶粒尺寸[33, 35]

    Figure  1  Rietveld refinement of relative abundance of iron oxide in (a) syngas after H2, (b) CO and (c) syngas; Rietveld refinement of average crystal size of Fe3O4 in (d) 2% CO/He and (e) 2% CO/ 8% H2/He[33, 35]

    图  2  α-Fe2O3催化剂的in-situ XRD谱图:(a)高μC条件下预处理及其(b)随后的FTS过程;(d)低μC条件下预处理和及其(e)随后的FTS过程中;(c)高μC催化剂和(f)低μC催化剂在FTS条件下k1傅里叶变换Fe K边原位EXAFS数据[39]

    Figure  2  In-situ XRD patterns of the α-Fe2O3 catalyst evolution during (a) pretreatment in high µC and (b) subsequent FTS condition; (d) pretreatment in low µC and (e) subsequent FTS condition. Phase corrected, k1 weighted Fourier-transformed Fe K-edge EXAFS data of the α-Fe2O3 catalyst samples during FTS. (c) High µC catalyst and (f) low µC catalyst[39]

    图  3  (a)常温,(b)400 ℃,(c)700 ℃时Fe/BN的TEM图像和FePt尺寸分布(插图);(d)保持900 ℃15 min后的HRTEM图像;((e)–(g))FePt被h-BN纳米片包裹的HRTEM图像[44]

    Figure  3  TEM images and FePt size distribution (inset) of Fe/BN at (a) RT, (b) 400 ℃, (c) 700 ℃; (d) HRTEM image of FP/BN at 900 ℃ after exposure for 15 min; ((e)–(g)) HRTEM images of FePt nanoparticles enveloped by h-BN nanosheets[44]

    图  4  (a)α-Fe2O3转变为γ-Fe2O3in-situ HRTEM图,(b,c)分别是(a)中红色方框区域b和c的衍射图,(d,e)b和c区域的EELS光谱,(f)ZnFe2O4@Co3O4在纯H2还原过程中获得的STEM-HAADF图像,插图为EELS光谱图像获得的复合元素图(Co:绿色;Zn-Fe:橙色)[30, 46]

    Figure  4  (a) In situ HRTEM of the transformation from α-Fe2O3 to γ-Fe2O3. (b, c) The diffractograms from red boxed regions b and c, in (a), respectively. (d, e) EELS spectra from the regions of red boxes b and c in (a). (f) STEM-HAADF images of ZnFe2O4@Co3O4 obtained during the in-situ TEM reduction in pure H2, with inset showing the composite elemental map obtained from the EELS spectrum image (Co: green; Zn-Fe :orange)[30, 46]

    图  5  (a)纳米α-Fe2O3和(b)块状α-Fe2O3在氢气中处理过程中的Fe 2p3/2 XPS谱图,箭头表示纳米颗粒样品中的等吸光点;不同气氛下FeCeNa催化剂的(c–d)O 1s和(e–f)Ce 3d in-situ XPS光谱谱图[32, 53]

    Figure  5  (a) Fe 2p3/2 XPS spectra during treatment of (a) the nanoparticles and (b) bulk iron oxide in H2, The arrow indicates the isosbestic point in the nanoparticulate sample; In situ XPS spectra of (c–d) O 1s and (e–f) Ce 3d of FeCeNa catalysts in different atmospheres[32, 53]

    图  6  (a)(s1)Al2O3/α-Fe2O3 = 1,(s2)SiO2/α-Fe2O3 = 1,(s3)α-Fe2O3活化后催化剂的in-situ CO-DRIFTS光谱;(b)SiO2负载的铁基催化剂的in-situ DRIFTS光谱谱图[18, 64]

    Figure  6  (a) in-situ CO-DRIFTS spectra of (s1) Al2O3/α-Fe2O3 = 1, (s2) SiO2/α-Fe2O3 = 1, (s3) α-Fe2O3; (B) in-situ DRIFTS spectra of SiO2-supported iron based catalyst[18, 64]

    图  7  (a)Fe2O3-C(b)Fe2O3-H(c)Fe2O3-R在350 ℃、10% CO气氛中记录的in-situ Raman光谱谱图[70]

    Figure  7  In-situ Raman spectra of (a) Fe2O3-C, (b) Fe2O3-H, (c)Fe2O3-R at 350 ℃ in 10% CO[70]

    图  8  (a)35FeK/m-ZrO2和(b)35FeK/t-ZrO2催化剂的in-situ Raman图,实验条件:1 atm、30 mL/min、10% CO/Ar和10 ℃/min的加热速率;(c)350 ℃下CO预处理300 min后35Fe K/m-ZrO2和35FeK/t-ZrO2催化剂的拉曼光谱谱图[72]

    Figure  8  In-situ Raman spectra of (a) 35FeK/m-ZrO2 and (b) 35FeK/t-ZrO2, Measurement conditions: 1 atm, 30 mL/min, 10% CO/Ar, and the heating rate of 10 ℃/min. (c) Raman spectra of 35FeK/m-ZrO2 and 35FeK/t-ZrO2 catalysts after the CO prereduction at 350 ℃ for 300 min[72]

    表  1  铁基催化剂的in-situ XPS、IR和Raman表征技术的常用参数

    Table  1  Common parameters of in-situ XPS, FT-IR and Raman characterization techniques for iron-based catalysts

    PhaseXPS[18, 19]
    /eV
    OriginFT-IR[20-22]
    /cm−1
    OriginRaman[23, 24]
    /cm−1
    α-Fe2O3711.0
    529.8
    Fe 2p3/2
    O 1s
    650,575
    525,485
    440,400
    385,360,
    300
    Fe–O613,500
    412,299
    247,225
    1320
    Fe3O4709.0
    530.2
    Fe 2p3/2
    O 1s
    580
    400
    Fe–O676
    550
    FeO709.0
    530.2
    Fe 2p3/2
    O 1s
    490,
    425
    Fe–O210,390
    480,652
    α-Fe706.8
    720.3
    Fe 2p3/2
    Fe 2p1/2
    2040−
    1980
    CO
    surface adsorption
    χ-Fe5C2707.0
    719.9
    Fe 2p3/2
    Fe 2p1/2
    2015
    D band:
    1380
    G band:
    1580
    θ-Fe3C707.9
    720.6
    Fe 2p3/2
    Fe 2p1/2
    2030
    下载: 导出CSV
  • [1] 温晓东, 杨勇, 相宏伟, 焦海军, 李永旺. 费托合成铁基催化剂的设计基础: 从理论走向实践[J]. 中国科学: 化学,2017,47(11):1298−1311. doi: 10.1360/N032017-00111

    WEN Xiao-dong, YANG Yong, XIANG Hong-wei, JIAO Hai-jun, LI Yong-wang. The design principle of iron-based catalysts for Fischer-Tropsch synthesis: from theory to practice[J]. Sci Sin: Chim,2017,47(11):1298−1311. doi: 10.1360/N032017-00111
    [2] TORRES GALVIS H M, BITTER J H, Khare C B, RUITENBEEK M, DUGULAN A I, DE JONG K P. Supported Iron Nanoparticles as Catalysts for Sustainable Production of Lower Olefins[J]. Science,2012,335(6070):835−838. doi: 10.1126/science.1215614
    [3] MA W, JACOBS G, SPARKS D E, TODIC B, BUKUR D B, DAVIS B H. Quantitative comparison of iron and cobalt based catalysts for the Fischer-Tropsch synthesis under clean and poisoning conditions[J]. Catal Today,2020,343:125−136. doi: 10.1016/j.cattod.2019.04.011
    [4] PHIENLUPHON R, AI P, GAO X, YONEYAMA Y, REUBROYCHAROEN P, VITIDSANT T, TSUBAKI N. Direct fabrication of catalytically active FexC sites by sol-gel autocombustion for preparing Fischer-Tropsch synthesis catalysts without reduction[J]. Catal Sci Technol,2016,6(20):7597−7603. doi: 10.1039/C6CY01383J
    [5] OPEYEMI OTUN K, YAO Y, LIU X, HILDEBRANDT D. Synthesis, structure, and performance of carbide phases in Fischer-Tropsch synthesis: A critical review[J]. Fuel,2021,296:120689−120711. doi: 10.1016/j.fuel.2021.120689
    [6] MAHAJAN D, GÜTLICH P, STUMM U. The role of nano-sized iron particles in slurry phase Fischer–Tropsch synthesis[J]. Catal Commun,2003,4(3):101−107. doi: 10.1016/S1566-7367(03)00002-5
    [7] SCHULZ H. Selforganization in Fischer-Tropsch synthesis with iron and cobalt catalysts[J]. Catal Today,2014,228:113−122. doi: 10.1016/j.cattod.2013.11.060
    [8] ANDERSON R B, HOFER L J E, COHN E M, SELIGMAN B. Studies of the Fischer-Tropsch synthesis. 9. phase changes of iron catalysts in the synthesis[J]. J Am Chem Soc,1951,73(3):944−946. doi: 10.1021/ja01147a016
    [9] JIN Y, DATYE A K. Phase transformations in iron Fischer-Tropsch catalysts during temperature-programmed reduction[J]. J Catal,2000,196(1):8−17. doi: 10.1006/jcat.2000.3024
    [10] BUKUR D B, OKABE K, ROSYNEK M P, LI C P, WANG D J, RAO K R P M, HUFFMAN G P. Activation studies with a precipitated iron catalyst for Fischer-Tropsch synthesis: I. characterization studies[J]. J Catal,1995,155(2):353−365. doi: 10.1006/jcat.1995.1217
    [11] CHANG Q, ZHANG C, LIU C, WEI Y, CHERUVATHUR A V, DUGULAN A I, NIEMANTSVERDRIET J W, LIU X, HE Y, QING M, ZHENG L, YUN Y, YANG Y, LI Y. Relationship between iron carbide phases (ε-Fe2C, Fe7C3, and χ-Fe5C2) and catalytic performances of Fe/SiO2 Fischer-Tropsch catalysts[J]. ACS Catal,2018,8(4):3304−3316. doi: 10.1021/acscatal.7b04085
    [12] WEZENDONK T A, SUN X, DUGULAN A I, VAN HOOF A J F, HENSEN E J M, KAPTEIJN F, GASCON J. Controlled formation of iron carbides and their performance in Fischer-Tropsch synthesis[J]. J Catal,2018,362:106−117. doi: 10.1016/j.jcat.2018.03.034
    [13] BOELLAARD E, VAN DER KRAAN A M, GEUS J W. Behaviour of a cyanide-derived Fe/Al2O3 catalyst during Fischer-Tropsch synthesis[J]. Appl Catal, A,1996,147(1):229−245. doi: 10.1016/S0926-860X(96)00192-5
    [14] DE SMIT E, WECKHUYSEN B M. The renaissance of iron-based Fischer-Tropsch synthesis: On the multifaceted catalyst deactivation behaviour[J]. Chem Soc Rev,2008,37(12):2758−2781. doi: 10.1039/b805427d
    [15] YU G, SUN B, PEI Y, XIE S, YAN S, QIAO M, FAN K, ZHANG X, ZONG B. Supporting information for FexOy@C spheres as an excellent catalyst for Fischer−Tropsch synthesis[J]. J Am Chem Soc,2010,132(3):935−937. doi: 10.1021/ja906370b
    [16] PAYNE J L, GIAGLOGLOU K, CARINS G M, CROUCH C J, PERCIVAL J D, SMITH R I, GOVER R K B, IRVINE J T S. In-situ studies of high temperature thermal batteries: A perspective[J]. Front Energy Res,2018,6:121−127. doi: 10.3389/fenrg.2018.00121
    [17] PALOMARES V, SHARMA N. EDITORIAL: In-situ and in-operando techniques for material characterizations during battery operation[J]. Front Energy Res,2019,7:10−12. doi: 10.3389/fenrg.2019.00010
    [18] LU F, CHEN X, LEI Z, WEN L, ZHANG Y. Revealing the activity of different iron carbides for Fischer-Tropsch synthesis[J]. Appl Catal, B,2021,281:119521−119531. doi: 10.1016/j.apcatb.2020.119521
    [19] DE SMIT E, DE GROOT F M F, BLUME R, HÄVECKER M, KNOP-GERICKE A, WECKHUYSEN B M. The role of Cu on the reduction behavior and surface properties of Fe-based Fischer–Tropsch catalysts[J]. Phys Chem Chem Phys,2010,12(3):667−680. doi: 10.1039/B920256K
    [20] POLING G W. Infrared reflection studies of the oxidation of copper and iron[J]. J Electrochem Soc,1969,116(7):958−963. doi: 10.1149/1.2412184
    [21] RENDON J L, SERNA C J. IR spectra of powder hematite: effects of particle size and shape[J]. Clay Miner,1981,16(4):375−382. doi: 10.1180/claymin.1981.016.4.06
    [22] HEXANA W M, COVILLE N J. Indium as a chemical promoter in Fe-based Fischer-Tropsch synthesis[J]. Appl Catal, A,2010,377(1):150−157.
    [23] MCINTYRE N S, ZETARUK D G. X-ray photoelectron spectroscopic studies of iron oxides[J]. Anal Chem,1977,49(11):1521−1529. doi: 10.1021/ac50019a016
    [24] DE FARIA D L A, VENÂNCIO SILVA S, DE OLIVEIRA M T. Raman microspectroscopy of some iron oxides and oxyhydroxides[J]. J Raman Spectrosc,1997,28(11):873−878. doi: 10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO;2-B
    [25] RIETVELD H. A profile refinement method for nuclear and magnetic structures[J]. J Appl Crystallogr,1969,2(2):65−71. doi: 10.1107/S0021889869006558
    [26] DU H, ZHU H, ZHAO Z, DONG W, LUO W, LU W, JIANG M, LIU T, DING Y. Effects of impregnation strategy on structure and performance of bimetallic CoFe/AC catalysts for higher alcohols synthesis from syngas[J]. Appl Catal, A,2016,523:263−271. doi: 10.1016/j.apcata.2016.06.022
    [27] SHI B, ZHANG Z, ZHA B, LIU D. Structure evolution of spinel Fe-MII (M=Mn, Fe, Co, Ni) ferrite in CO hydrogeneration[J]. Mol Catal,2018,456:31−37. doi: 10.1016/j.mcat.2018.06.019
    [28] YANG Z, LUO M, LIU Q, SHI B. In situ XRD and Raman investigation of the activation process over K–Cu–Fe/SiO2 catalyst for Fischer–Tropsch synthesis reaction[J]. Catal Lett,2020,150(8):2437−2445. doi: 10.1007/s10562-020-03147-6
    [29] LI J, ZHANG C, CHENG X, QING M, XU J, WU B, YANG Y, LI Y. Effects of alkaline-earth metals on the structure, adsorption and catalytic behavior of iron-based Fischer-Tropsch synthesis catalysts[J]. Appl Catal, A,2013,464-465:10−19. doi: 10.1016/j.apcata.2013.04.042
    [30] GOVENDER A, OLIVIER E J, CARLESCHI E, PRESTAT E, HAIGH S J, VAN RENSBURG H, DOYLE B P, BARNARD W, FORBES R P, NEETHLING J H, VAN STEEN E. Morphological and compositional changes of MFe2O4@Co3O4 (M = Ni, Zn) core-shell nanoparticles after mild reduction[J]. Mater Charact,2019,155:109806−109817. doi: 10.1016/j.matchar.2019.109806
    [31] ZHANG L, WANG H, YANG C, LI X, SUN J, WANG H, GAO P, SUN Y. The rare earth elements modified FeK/Al2O3 catalysts for direct CO2 hydrogenation to liquid hydrocarbons[J]. Catal Today,2020,356:613−621. doi: 10.1016/j.cattod.2019.11.006
    [32] ZHANG Z, LIU Y, JIA L, SUN C, CHEN B, LIU R, TAN Y, TU W. Effects of the reducing gas atmosphere on performance of FeCeNa catalyst for the hydrogenation of CO2 to olefins[J]. Chem Eng J,2022,428:131388−131399. doi: 10.1016/j.cej.2021.131388
    [33] NIELSEN M R, MOSS A B, BJØRNLUND A S, LIU X, KNOP-GERICKE A, KLYUSHIN A Y, GRUNWALDT J D, SHEPPARD T L, DORONKIN D E, ZIMINA A, SMITSHUYSEN T E L, DAMSGAARD C D, WAGNER J B, HANSEN T W. Reduction and carburization of iron oxides for Fischer–Tropsch synthesis[J]. J Energy Chem,2020,51:48−61. doi: 10.1016/j.jechem.2020.03.026
    [34] SUN X, LIU X, LIU J, HE Y, YIN J, SONG C, LV Z, BAI Y, LI Y W, YANG Y, WEN X D. Elucidation of the influence of Cu promoter on carburization prior to iron-based Fischer-Tropsch synthesis: an in situ X-ray diffraction study[J]. ChemCatChem,2019,11(2):715−723. doi: 10.1002/cctc.201801706
    [35] NIU L, LIU X, LIU X, LV Z, ZHANG C, WEN X, YANG Y, LI Y, XU J. In situ XRD study on promotional effect of potassium on carburization of spray-dried precipitated Fe2O3 catalysts[J]. ChemCatChem,2017,9(9):1691−1700. doi: 10.1002/cctc.201601665
    [36] FADLALLA M I, GANESH BABU S, NYATHI T M, KEES-JAN WESTSTRATE C J, FISCHER N, HANS NIEMANTSVERDRIET J W, CLAEYS M. Enhanced oxygenates formation in the Fischer−Tropsch synthesis over Co- and/or Ni-containing Fe alloys: characterization and 2D gas chromatographic product analysis[J]. ACS Catal,2020,10(24):14661−14677. doi: 10.1021/acscatal.0c03346
    [37] 郭天雨, 刘粟侥, 青明, 冯景丽, 吕振刚, 王洪, 杨勇. 原位XRD反应装置下H2O对Fe5C2的物相及F-T反应性能影响的研究[J]. 燃料化学学报,2020,48(1):75−82. doi: 10.3969/j.issn.0253-2409.2020.01.009

    GUO Tian-yu, LIU Su-yao, QING Ming, FENG Jing-li, LÜ Zheng-gang, WANG Hong, YANG Yong. In situ XRD study of the effect of H2O on Fe5C2 phase and Fischer-Tropsch performance[J]. J Fuel Chem Technol,2020,48(1):75−82. doi: 10.3969/j.issn.0253-2409.2020.01.009
    [38] THÜNE P, MOODLEY P, SCHEIJEN F, FREDRIKSSON H, LANCEE R, KROPF J, MILLER J, NIEMANTSVERDRIET J W. The effect of water on the stability of iron oxide and iron carbide nanoparticles in hydrogen and syngas followed by in situ X-ray absorption spectroscopy[J]. J Phys Chem C,2012,116(13):7367−7373. doi: 10.1021/jp210754k
    [39] DE SMIT E, CINQUINI F, BEALE A M, SAFONOVA O V, VAN BEEK W, SAUTET P, WECKHUYSEN B M. Stability and reactivity of ε-χ-θ iron carbide catalyst phases in Fischer-Tropsch synthesis: Controlling μc[J]. J Am Chem Soc,2010,132(42):14928−14941. doi: 10.1021/ja105853q
    [40] PEÑA D, JENSEN L, COGNIGNI A, MYRSTAD R, NEUMAYER T, VAN BEEK W, RØNNING M. The effect of copper loading on iron carbide formation and surface species in iron-based Fischer–Tropsch synthesis catalysts[J]. ChemCatChem,2018,10(6):1300−1312. doi: 10.1002/cctc.201701673
    [41] DAMSGAARD C D, ZANDBERGEN H, W. HANSEN T, CHORKENDORFF I, B. WAGNER J. Controlled environment specimen transfer[J]. Microsc Microanal,2014,20(4):1038−1045. doi: 10.1017/S1431927614000853
    [42] ZHENG H, SMITH R K, JUN Y W, KISIELOWSKI C, DAHMEN U, ALIVISATOS A P. Observation of single colloidal platinum nanocrystal growth trajectories[J]. Science,2009,324(5932):1309−12. doi: 10.1126/science.1172104
    [43] WAGNER J B, CAVALCA F, DAMSGAARD C D, DUCHSTEIN L D, HANSEN T W. Exploring the environmental transmission electron microscope[J]. Micron,2012,43(11):1169−1175. doi: 10.1016/j.micron.2012.02.008
    [44] KONOPATSKY A S, FIRESTEIN K L, EVDOKIMENKO N D, KUSTOV A L, BAIDYSHEV V S, CHEPKASOV I Y V, POPOV Z I, MATVEEV A T, SHETININ I V, LEYBO D V, VOLKOV I N, KOVALSKII A M, GOLBERG D, SHTANSKY D V. Microstructure and catalytic properties of Fe3O4/BN, Fe3O4(Pt)/BN, and FePt/BN heterogeneous nanomaterials in CO2 hydrogenation reaction: Experimental and theoretical insights[J]. J Catal,2021,402:130−142. doi: 10.1016/j.jcat.2021.08.026
    [45] JANBROERS S, LOUWEN J N, ZANDBERGEN H W, KOOYMAN P J. Insights into the nature of iron-based Fischer-Tropsch catalysts from quasi in situ TEM-EELS and XRD[J]. J Catal,2009,268(2):235−242. doi: 10.1016/j.jcat.2009.09.021
    [46] ZHU W, WINTERSTEIN J P, YANG W D, YUAN L, SHARMA R, ZHOU G. In situ atomic-scale probing of the reduction dynamics of two-dimensional Fe2O3 nanostructures[J]. ACS Nano,2017,11(1):656−664. doi: 10.1021/acsnano.6b06950
    [47] LIU X, ZHANG C, LI Y, NIEMANTSVERDRIET J W, WAGNER J B, HANSEN T W. Environmental transmission electron microscopy (ETEM) studies of single iron nanoparticle carburization in synthesis gas[J]. ACS Catal,2017,7(7):4867−4875. doi: 10.1021/acscatal.7b00946
    [48] BONIFACIO C S, DAS G, KENNEDY I M, VAN BENTHEM K. Reduction reactions and densification during in situ TEM heating of iron oxide nanochains[J]. J Appl Phys,2017,122(23):234303−234310. doi: 10.1063/1.5004092
    [49] JACOBS G, MA W, GAO P, TODIC B, BHATELIA T, BUKUR D B, DAVIS B H. The application of synchrotron methods in characterizing iron and cobalt Fischer–Tropsch synthesis catalysts[J]. Catal Today,2013,214:100−139. doi: 10.1016/j.cattod.2013.05.011
    [50] NGUYEN L, TAO F F, TANG Y, DOU J, BAO X-J. Understanding catalyst surfaces during catalysis through near ambient pressure X-ray photoelectron spectroscopy[J]. Chem Rev,2019,119(12):6822−6905. doi: 10.1021/acs.chemrev.8b00114
    [51] ZHANG S, SHAN J-J, ZHU Y, FRENKEL A I, PATLOLLA A, HUANG W, YOON S J, WANG L, YOSHIDA H, TAKEDA S, TAO F. WGS catalysis and in situ studies of CoO1–x, PtCon/Co3O4, and PtmCom′/CoO1–x nanorod catalysts[J]. J Am Chem Soc,2013,135(22):8283−8293. doi: 10.1021/ja401967y
    [52] LU F, HUANG J, WU Q, ZHANG Y. Mixture of α-Fe2O3 and MnO2 powders for direct conversion of syngas to light olefins[J]. Appl Catal, A,2021,621:118213−118220. doi: 10.1016/j.apcata.2021.118213
    [53] DE SMIT E, VAN SCHOONEVELD M M, CINQUINI F, BLUHM H, SAUTET P, DE GROOT F M F, WECKHUYSEN B M. On the surface chemistry of iron oxides in reactive gas atmospheres[J]. Angew Chem,2011,123(7):1622−1626. doi: 10.1002/ange.201005282
    [54] LOPEZ LUNA M, TIMOSHENKO J, KORDUS D, RETTENMAIER C, CHEE S W, HOFFMAN A S, BARE S R, SHAIKHUTDINOV S, ROLDAN CUENYA B. Role of the oxide support on the structural and chemical evolution of Fe catalysts during the hydrogenation of CO2[J]. ACS Catal,2021,11(10):6175−6185. doi: 10.1021/acscatal.1c01549
    [55] CHEN L, YELON A, SACHER E. Surface chemistry and thermal stability of Fe nanoparticles annealed under ultrahigh-vacuum conditions[J]. J Phys Chem C,2011,115(26):12972−12980. doi: 10.1021/jp2028824
    [56] ZHANG J L, MA L H, FAN S B, ZHAO T S, SUN Y H. Synthesis of light olefins from CO hydrogenation over Fe-Mn catalysts: Effect of carburization pretreatment[J]. Fuel,2013,109:116−123. doi: 10.1016/j.fuel.2012.12.081
    [57] DONG Z, WANG T, ZHAO J, FU T, WANG L, LI J, DING W. Catalytic performance of iron oxide loaded on electron-rich surfaces of carbon nitride[J]. J Energy Chem,2016,25(6):1021−1026. doi: 10.1016/j.jechem.2016.10.005
    [58] NIU L, LIU X, LIU J, LIU X, WEN X, YANG Y, XU J, LI Y. Tuning carburization behaviors of metallic iron catalysts with potassium promoter and CO/syngas/C2H4/C2H2 gases[J]. J Catal,2019,371:333−345. doi: 10.1016/j.jcat.2019.02.013
    [59] RODULFO-BAECHLER S M, GONZÁLEZ-CORTÉS S L, OROZCO J, SAGREDO V, FONTAL B, MORA A J, DELGADO G. Characterization of modified iron catalysts by X-ray diffraction, infrared spectroscopy, magnetic susceptibility and thermogravimetric analysis[J]. Mater Lett,2004,58(20):2447−2450. doi: 10.1016/j.matlet.2004.02.032
    [60] BRAVO-SUÁREZ J J, SRINIVASAN P D. Design characteristics of in situ and operando ultraviolet-visible and vibrational spectroscopic reaction cells for heterogeneous catalysis[J]. Catal Rev Sci Eng,2017,59(4):295−445. doi: 10.1080/01614940.2017.1360071
    [61] MCNAB A I, MCCUE A J, DIONISI D, ANDERSON J A. Combined quantitative FTIR and online GC study of Fischer-Tropsch catalysts[J]. J Catal,2017,353:295−304. doi: 10.1016/j.jcat.2017.07.028
    [62] KOLLÁR M, DE STEFANIS A, SOLT H E, MIHÁLYI M R, VALYON J, TOMLINSON A A G. The mechanism of the Fischer–Tropsch reaction over supported cobalt catalysts[J]. J Mol Catal A: Chem,2010,333(1):37−45.
    [63] CHEN Y, QIU B, LIU Y, ZHANG Y. An active and stable nickel-based catalyst with embedment structure for CO2 methanation[J]. Appl Catal B Environ,2020,269:118801−118810. doi: 10.1016/j.apcatb.2020.118801
    [64] LIU Y, LI Z, ZHANG Y. Selectively forming light olefins via macroporous iron-based Fischer–Tropsch catalysts[J]. React Kinet, Mech Catal,2016,119(2):457−468. doi: 10.1007/s11144-016-1064-z
    [65] LI L, HU C, LIU W, FEI P, CUI X, LI Y, XU J. The origin of Mo promotion during H2 pretreatment on an Fe catalyst for Fischer–Tropsch synthesis[J]. RSC Adv,2017,7(70):44474−44481. doi: 10.1039/C7RA07338K
    [66] HUTCHINGS G J, DESMARTIN-CHOMEL A, OLIER R, VOLTA J-C. Role of the product in the transformation of a catalyst to its active state[J]. Nature,1994,368(6466):41−45. doi: 10.1038/368041a0
    [67] ZHANG Y, FU D, XU X, SHENG Y, XU J, HAN Y-F. Application of operando spectroscopy on catalytic reactions[J]. Curr Opin Chem Eng,2016,12:1−7. doi: 10.1016/j.coche.2016.01.004
    [68] SATTLER J J H B, MENS A M, WECKHUYSEN B M. Real-Time Quantitative operando Raman spectroscopy of a CrOx/Al2O3 propane dehydrogenation catalyst in a pilot-scale reactor[J]. ChemCatChem,2014,6(11):3139−3145. doi: 10.1002/cctc.201402649
    [69] KATAGIRI G, ISHIDA H, ISHITANI A. Raman spectra of graphite edge planes[J]. Carbon,1988,26(4):565−571. doi: 10.1016/0008-6223(88)90157-1
    [70] 李培侠, 曲龙梅, 张彩虹, 任晓波, 王会香, 张建利, 穆跃文, 吕宝亮. 原位拉曼光谱研究CO还原α-Fe2O3过程的晶面效应[J]. 燃料化学学报,2021,49(10):1558−1566. doi: 10.1016/S1872-5813(21)60154-8

    LI Pei-xia, QU Long-mei, ZHANG Cai-hong, REN Xiao-bo, WANG Hui-xiang, ZHANG Jian-li, MU Yue-wen, LÜ Bao-Liang. Probing into the crystal plane effect on the reduction of α-Fe2O3 in CO by Operando Raman spectroscopy[J]. J Fuel Chem Technol,2021,49(10):1558−1566. doi: 10.1016/S1872-5813(21)60154-8
    [71] FU D, DAI W, XU X, MAO W, SU J, ZHANG Z, SHI B, SMITH J, LI P, XU J, HAN Y-F. Probing The structure evolution of iron-based Fischer-Tropsch to produce olefins by operando Raman spectroscopy[J]. ChemCatChem,2015,7(5):752−756. doi: 10.1002/cctc.201402980
    [72] HUANG J, JIANG S, WANG M, WANG X, GAO J, SONG C. Dynamic evolution of Fe and carbon species over different ZrO2 supports during CO prereduction and their effects on CO2 hydrogenation to light olefins[J]. ACS Sustainable Chem Eng,2021,9(23):7891−7903. doi: 10.1021/acssuschemeng.1c01777
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  26
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-08
  • 录用日期:  2022-07-29
  • 修回日期:  2022-07-28
  • 网络出版日期:  2022-08-11

目录

    /

    返回文章
    返回