留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮氧共掺杂多孔炭的制备及其锌离子混合超级电容器性能研究

曹恩德 张苗苗 刘海龙 谢瑞伦 田誉娇

曹恩德, 张苗苗, 刘海龙, 谢瑞伦, 田誉娇. 氮氧共掺杂多孔炭的制备及其锌离子混合超级电容器性能研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022070
引用本文: 曹恩德, 张苗苗, 刘海龙, 谢瑞伦, 田誉娇. 氮氧共掺杂多孔炭的制备及其锌离子混合超级电容器性能研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022070
CAO En–de, ZHANG Miao–miao, LIU Hai–long, XIE Rui–lun, TIAN Yu–jiao. Preparation of nitrogen and oxygen co–doped porous carbon and study on the performance of Zn–ion hybrid supercapacitors[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022070
Citation: CAO En–de, ZHANG Miao–miao, LIU Hai–long, XIE Rui–lun, TIAN Yu–jiao. Preparation of nitrogen and oxygen co–doped porous carbon and study on the performance of Zn–ion hybrid supercapacitors[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022070

氮氧共掺杂多孔炭的制备及其锌离子混合超级电容器性能研究

doi: 10.19906/j.cnki.JFCT.2022070
基金项目: 安徽省自然科学基金(1708085QB33)和煤清洁转化与高值化利用安徽省重点实验室开放课题资助(CHV21-04)
详细信息
    通讯作者:

    Email address: ruilunxie@126.com

    tyjiao@163.com

  • 中图分类号: TM53

Preparation of nitrogen and oxygen co–doped porous carbon and study on the performance of Zn–ion hybrid supercapacitors

Funds: The project was supported by Natural Science Foundation of Anhui Province (1708085QB33) and Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization (CHV21-04).
  • 摘要: 锌离子混合超级电容器作为新兴的能源存储设备之一,具有能量密度和功率密度高等优点,而炭材料作为锌离子混合超级电容器领域研究较多的电极材料,展现出了独特的性能和广阔的应用前景。本研究以价格低廉、来源广泛的煤沥青作为炭前驱体、尿素作为氮源和模板、氢氧化钠作为活化剂,通过结合模板法与化学活化法成功制备了具有纳米片状结构的氮氧共掺杂的多孔炭材料。多孔炭电极在0.05 A g–1时最大比容量高达255.5 mAh g–1,在电流密度为1 A g–1时,放电比容量达到78 mAh g–1。经过12000次循环,容量保持率仍有72.4%,并且能量密度最高达到99.6 Wh kg–1,展现出作为正极材料的巨大潜力。以煤沥青为原料制备的氮氧共掺杂多孔炭材料作为锌离子混合超级电容器的正极材料表现出了优异的电化学性能。
  • 图  1  NO–PCM–x的制备流程

    Figure  1  Preparation process of NO–PCM–x

    图  2  原料煤沥青和NO–PCM–x的TG曲线

    Figure  2  TG curves for raw coal pitch and NO–PCM–x

    图  3  (a)和(b)NO–PCM–5的SEM图;(c) NO–PCM–5的元素分布图;(d)和(e) NO–PCM–5的TEM图

    Figure  3  (a) and (b) SEM images of NO–PCM–5; (c) elemental distribution of NO–PCM–5; (d) and (e) TEM images of NO–PCM–5

    图  4  NO–PCM–x的(a)XRD图;(b)拉曼光谱图;(c)氮气吸附–脱附等温线;(d)和(e)孔径分布图;(f)孔径分析图

    Figure  4  (a) XRD map; (b) Raman spectra; (c) nitrogen adsorption–desorption isotherms; (d) and (e) pore size distribution; (f) pore size analysis

    图  5  NO–PCM–5的XPS图(a)全谱;(b)C 1s光谱;(c)N 1s光谱;(d)O 1s光谱

    Figure  5  XPS maps of NO–PCM–5 (a) full spectrum; (b) C 1s spectrum; (c) N 1s spectrum; (d) O 1s spectrum

    图  6  (a)充放电电流为0.05 A g–1时的GCD曲线对比图;(b)NO–PCM–5在不同电流密度下的GCD曲线;(c)NO–PCM–x在不同电流密度下的放电比容量;(d)NO–PCM–x//3 M ZnSO4 (aq.)//Zn的Ragone图;(e)NO–PCM–x在1 A g–1时的放电比容量和库伦效率

    Figure  6  (a) GCD curve comparison plot at charge/discharge current of 0.05 A g–1; (b) GCD curve of NO–PCM–5 at different current densities; (c) discharge specific capacity of NO–PCM–x at different current densities; (d) Ragone plot of NO–PCM–x//3 M ZnSO4 (aq.) //Zn; (e) discharge specific capacity and coulomb efficiency of NO–PCM–x at 1 A g–1

    图  7  (a)NO–PCM–x//3 M ZnSO4 (aq.)//Zn储能系统示意图;(b)NO–PCM–x在2 mV s–1时的CV曲线;(c)NO–PCM–5在2–50 mV s–1的CV曲线;(d)在特定电位下的b值;(e)在不同扫描速率下电容控制和离子扩散控制对电容贡献的百分比;(f)NO–PCM–5在8 mV s–1时的电容贡献

    Figure  7  (a) Schematic diagram of NO–PCM–x//3 M ZnSO4 (aq.)//Zn energy storage system; (b) CV curves of NO–PCM–x at 2 mV s–1; (c) CV curves of NO–PCM–5 at 2–50 mV s–1; (d) b values at specific potentials; (e) percentage contribution of capacitance control and ion diffusion control to capacitance at different scan rates; (f) capacitance contribution of NO–PCM–5 at 8 mV s–1

    图  8  (a)NO–PCM–x的阻抗图谱(内嵌图是NO–PCM–5的模拟电路图);(b)NO–PCM–x在阻抗图中低频区曲线的拟合

    Figure  8  (a) Nyquist plot of NO–PCM–x (the inset shows the analogue circuit diagram of the NO–PCM–5); (b) the fitted line of NO–PCM–x

    表  1  原料煤沥青的工业分析和元素分析

    Table  1  Proximate analysis and ultimate analyses of raw coal pitch

    Proximate analysis w/%Ultimate analysis wdaf/%
    MadAdVdafFCdaf*CHNSO*
    0.081.0055.8043.1291.344.011.030.433.19
    *:by difference
    下载: 导出CSV
  • [1] SIMON P, GOGOTSI Y. Perspectives for electrochemical capacitors and related devices[J]. Nat Mater,2020,19(11):1151−1163. doi: 10.1038/s41563-020-0747-z
    [2] ZHANG Y, LI X, FAN L S, SHUAI Y, ZHANG N Q. Ultrathin and super–tough membrane for anti–dendrite separator in aqueous zinc–ion batteries[J]. Cell Rep Phys Sci,2022,100824.
    [3] SEHRAWAT P, JULIEN C, ISLAM S S. Carbon nanotubes in Li–ion batteries: A review[J]. Mat Sci Eng B,2016,213:12−40. doi: 10.1016/j.mseb.2016.06.013
    [4] ZHANG Y Z, WANG Y, CHENG T, YAO L Q, LI X, LAI W Y, HUANG W. Printed supercapacitors: materials, printing and applications[J]. Chem Soc Rev,2019,48(12):3229−3264. doi: 10.1039/C7CS00819H
    [5] TANG B Y, SHAN L T, LIANG S Q, ZHOU J. Issues and opportunities facing aqueous zinc–ion batteries[J]. Energy Environ Sci,2019,12(11):3288−3304. doi: 10.1039/C9EE02526J
    [6] HOU R L, LIU B, SUN Y L, LIU L Y, MENG J N, LEVI M D, JI H X, YAN X B. Recent advances in dual–carbon based electrochemical energy storage devices[J]. Nano Energy,2020,72:104728. doi: 10.1016/j.nanoen.2020.104728
    [7] YABUUCHI N, KUBOTA K, DAHBI M, KOMABA S. Research development on sodium–ion batteries[J]. Chem Rev,2014,114(23):11636−11682. doi: 10.1021/cr500192f
    [8] 黄玲, 王帅, 张宇, 黄祥红, 彭俊军, 杨锋. 氮/磷共掺杂废旧棉织物基活性炭的制备及其超级电容器性能[J]. 新型炭材料,2021,36(6):1128−1135. doi: 10.1016/S1872-5805(21)60054-9

    HUANG Ling, WANG Shuai, ZHANG Yu, HUANG Xiang–hong, PENG Jun–jun, YANG Feng. Preparation of a N/P co–doped waste cotton fabric–based activated carbon for supercapacitor electrodes[J]. New Carbon Mater,2021,36(6):1128−1135. doi: 10.1016/S1872-5805(21)60054-9
    [9] 王满, 车晓刚, 刘思宇, 杨卷. 锌离子电容器用碳基正极材料的研究进展[J]. 新型炭材料,2021,177(01):429−166. doi: 10.19869/j.ncm.1007-8827.20200264

    WANG Man, CHE Xiao–gang, LIU Si–yu, YANG Juan. A review of carbon–based cathode materials for zinc–ion capacitors[J]. New Carbon Mater,2021,177(01):429−166. doi: 10.19869/j.ncm.1007-8827.20200264
    [10] TIAN Y H, AMAL R, WANG D W. An Aqueous Metal–Ion Capacitor with Oxidized Carbon Nanotubes and Metallic Zinc Electrodes[J]. Front Energy Res,2016,4:34.
    [11] SONG J H, XU K, LIU N, REED D, LI X L. Crossroads in the renaissance of rechargeable aqueous zinc batteries[J]. Mater Today,2021,45:191−212. doi: 10.1016/j.mattod.2020.12.003
    [12] WU S L, CHEN Y T, JIAO T P, ZHOU J, CHENG J Y, LIU B, YANG S R, ZHANG K L, ZHANG W J. An Aqueous Zn–Ion Hybrid Supercapacitor with High Energy Density and Ultrastability up to 80 000 Cycles[J]. Adv Energy Mater,2019,9(47):1902915. doi: 10.1002/aenm.201902915
    [13] ZHANG X, PEI Z, WANG C, YUAN Z, WEI L, PAN Y, MAHMOOD A, SHAO Q, CHEN Y. Flexible Zinc–Ion Hybrid Fiber Capacitors with Ultrahigh Energy Density and Long Cycling Life for Wearable Electronics[J]. Small,2019,15(47):1903817. doi: 10.1002/smll.201903817
    [14] ZHAO Y, WANG Y N, ZHAO Z M, ZHAO J W, XIN T, WANG N, LIU J Z. Achieving high capacity and long life of aqueous rechargeable zinc battery by using nanoporous–carbon–supported poly(1, 5–naphthalenediamine) nanorods as cathode[J]. Energy Storage Mater,2020,28:64−72. doi: 10.1016/j.ensm.2020.03.001
    [15] LI Z W, CHEN D H, AN Y F, CHEN C L, WU L Y, CHEN Z J, SUN Y, ZHANG X G. Flexible and anti–freezing quasi–solid–state zinc ion hybrid supercapacitors based on pencil shavings derived porous carbon[J]. Energy Storage Mater,2020,28:307−314. doi: 10.1016/j.ensm.2020.01.028
    [16] 张晓虎, 孙现众, 张熊, 安亚斌, 王凯, 韦统振, 马衍伟. 锂离子电容器在新能源领域应用展望[J]. 电工电能新技术,2020,39(11):48−58. doi: 10.12067/ATEEE2001022

    ZHANG Xiao–hu, SUN Xian–zhong, ZHANG Xiong, AN Ya–bin, WANG Kai, WEI Tong–zhen, MA Yan–wei. Prospect of lithium–ion capacitor application in new energy field[J]. Adv Technol Electr Eng Energy,2020,39(11):48−58. doi: 10.12067/ATEEE2001022
    [17] ZHANG X, CAO E D, TIAN Y J, ZHANG M M, LIU X C, LEI Z, ZHAO Z G, CUI P, LING Q, XIE R L. Synthesis of coal tar pitch–derived heteroatom–doped porous carbon materials for aqueous zinc–ion hybrid supercapacitors[J]. Carbon Resources Conversion,2022,5(3):193−199. doi: 10.1016/j.crcon.2022.05.002
    [18] WANG D W, PAN Z M, LU Z M. From starch to porous carbon nanosheets: Promising cathodes for high–performance aqueous Zn–ion hybrid supercapacitors[J]. Microporous Mesoporous Mater,2020,306:110445. doi: 10.1016/j.micromeso.2020.110445
    [19] WEI F, ZHANG H F, WANG J F, ZHUANG J L, LV Y H. N, S co–doped porous carbons with well–developed pores for supercapacitor and zinc ion hybrid capacitor[J]. J Alloys Compd,2022,907:164536. doi: 10.1016/j.jallcom.2022.164536
    [20] WANG J M, HUANG Y, HAN X P, LI Z Y, ZHANG S, ZONG M. A flexible Zinc–ion hybrid supercapacitor constructed by porous carbon with controllable structure[J]. Appl Surf Sci,2022,579:152247. doi: 10.1016/j.apsusc.2021.152247
    [21] WANG D W, PAN Z M, CHEN G X, LU Z M. Glycerol derived mesopore–enriched hierarchically carbon nanosheets as the cathode for ultrafast zinc ion hybrid supercapacitor applications[J]. Electrochim Acta,2021,379:138170. doi: 10.1016/j.electacta.2021.138170
    [22] ZHENG Y W, ZHAO W, JIA D D, LIU Y, CUI L, WEI D, ZHENG R K, LIU J Q. Porous carbon prepared via combustion and acid treatment as flexible zinc–ion capacitor electrode material[J]. Chem Eng J,2020,387:124161. doi: 10.1016/j.cej.2020.124161
    [23] ZHAO S Y, KANG X H, FAN H H, SI C L, SONG X P. Preparation of zinc–doped bagasse–based activated carbon multilayer composite and its electrochemical performance as a supercapacitor[J]. Microporous Mesoporous Mater,2022,329:111518. doi: 10.1016/j.micromeso.2021.111518
    [24] YANG W, WANG P, TU Z Q, HOU L, YAN L, JIANG B, ZHANG C X, HUANG G Y, YANG F, LI Y F. Heteroatoms–doped hierarchical porous carbon with multi–scale structure derived from petroleum asphalt for high–performance supercapacitors[J]. Carbon,2022,187:338−348. doi: 10.1016/j.carbon.2021.11.008
    [25] DENG X Y, LI J J, SHAN Z, SHA J W, MA L Y, ZHAO N Q. A N, O co–doped hierarchical carbon cathode for high–performance Zn–ion hybrid supercapacitors with enhanced pseudocapacitance[J]. J Mater Chem A,2020,8(23):11617−11625. doi: 10.1039/D0TA02770G
    [26] WANG D W, WANG S Y, LU Z M. S–doped 3D porous carbons derived from potassium thioacetate activation strategy for zinc–ion hybrid supercapacitor applications[J]. Int J Energy Res,2021,45(2):2498−2510. doi: 10.1002/er.5944
    [27] WANG K Y, CHEN Y, LIU Y B, ZHANG H, SHEN Y X, PU Z Y, QIU H L, LI Y M. Plasma boosted N, P, O co–doped carbon microspheres for high performance Zn ion hybrid supercapacitors[J]. J Alloys Compd,2022,901:163588. doi: 10.1016/j.jallcom.2021.163588
    [28] ZHUANG Q Q, CAO J P, WU Y, ZHAO X Y, WEI Y L, YANG Z H, ZHOU Z, HE Z M, ZHAO Y P, BAI H C. Direct synthesis of oxygen–enriched 3D porous carbons via NaCl template derived from oxidized coal tar pitch for excellent cycling stability electric double layer capacitor[J]. J Power Sources,2021,508:230330. doi: 10.1016/j.jpowsour.2021.230330
    [29] YI Z H, CHEN G Y, HOU F, WANG L Q, LIANG J. Strategies for the Stabilization of Zn Metal Anodes for Zn–Ion Batteries[J]. Adv Energy Mater,2021,11(1):2003065. doi: 10.1002/aenm.202003065
    [30] ZHANG P, LI Y, WANG G, WANG F, YANG S, ZHU F, ZHUANG X, SCHMIDT O G, FENG X. Zn–Ion Hybrid Micro–Supercapacitors with Ultrahigh Areal Energy Density and Long–Term Durability[J]. Adv Mater,2019,31(3):1806005. doi: 10.1002/adma.201806005
    [31] LU Y Y, LI Z W, BAI Z Y, MI H Y, JI C C, PANG H, YU C, QIU J S. High energy–power Zn–ion hybrid supercapacitors enabled by layered B/N co–doped carbon cathode[J]. Nano Energy,2019,66:104132. doi: 10.1016/j.nanoen.2019.104132
    [32] WANG D W, FANG G L, XUE T, MA J F, GENG G H. A melt route for the synthesis of activated carbon derived from carton box for high performance symmetric supercapacitor applications[J]. J Power Sources,2016,307:401−409. doi: 10.1016/j.jpowsour.2016.01.009
    [33] HOU J, CAO C, IDREES F, MA X. Hierarchical Porous Nitrogen–Doped Carbon Nanosheets Derived from Silk for Ultrahigh–Capacity Battery Anodes and Supercapacitors[J]. ACS Nano,2015,9(3):2556−2564. doi: 10.1021/nn506394r
    [34] 雷杰, 王韬翔, 李治, 陈辉, 杨松, 韩海波, 李康. 大碳层间距的煤沥青基多级孔碳材料的制备及其在超级电容器中的应用[J]. 无机化学学报,2021,37(07):1218−1226.

    LEI Jie, WANG Tao–xiang, LI Zhi, CHEN Hui, YANG Song, HAN Hai–bo, LI Kang. Synthesis of Multi-stage Pore Carbon Material with Large Spacing of Carbon Layers from Asphalt for Supercapacitors[J]. Chinese J Inorg Chem,2021,37(07):1218−1226.
    [35] THOMMES M, KANEKO K, NEIMARK A V, OLIVIER J P, RODRIGUEZ–REINOSO F, ROUQUEROL J, SING K S W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) [J]. Pure Appl Chem, 2015, 87(9–10): 1051–1069.
    [36] CHEN G X, HU Z W, PAN Z M, WANG D W. Design of honeycomb–like hierarchically porous carbons with engineered mesoporosity for aqueous zinc–ion hybrid supercapacitors applications[J]. J Energy Storage,2021,38:102534. doi: 10.1016/j.est.2021.102534
    [37] LI H X, WU J, WANG L T, LIAO Q X, NIU X H, ZHANG D Y, WANG K J. A zinc ion hybrid capacitor based on sharpened pencil–like hierarchically porous carbon derived from metal–organic framework[J]. Chem Eng J,2022,428:131071. doi: 10.1016/j.cej.2021.131071
    [38] LIU P G, LIU W F, HUANG Y P, LI P L, YAN J, LIU K Y. Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn–Ion energy storage[J]. Energy Storage Mater,2020,25:858−865. doi: 10.1016/j.ensm.2019.09.004
    [39] YUAN M, CAO B, MENG C Y, ZUO H M, LI A, MA Z K, CHEN X H, SONG H H. Preparation of pitch–based carbon microbeads by a simultaneous spheroidization and stabilization process for lithium–ion batteries[J]. Chem Eng J,2020,400:125948. doi: 10.1016/j.cej.2020.125948
    [40] SHI M L, CHEN Z Y, SUN J. Determination of chloride diffusivity in concrete by AC impedance spectroscopy[J]. Cem Concr Res,1999,29(7):1111−1115. doi: 10.1016/S0008-8846(99)00079-4
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  6
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-03
  • 录用日期:  2022-08-14
  • 修回日期:  2022-08-06
  • 网络出版日期:  2022-09-05

目录

    /

    返回文章
    返回