留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NiPt/SBA-15纳米催化剂的制备及其催化水合肼分解产氢性能研究

梁雨 李贵 郑君宁 许立信 叶明富 万超

梁雨, 李贵, 郑君宁, 许立信, 叶明富, 万超. NiPt/SBA-15纳米催化剂的制备及其催化水合肼分解产氢性能研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022072
引用本文: 梁雨, 李贵, 郑君宁, 许立信, 叶明富, 万超. NiPt/SBA-15纳米催化剂的制备及其催化水合肼分解产氢性能研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022072
LIANG Yu, LI Gui, ZHENG Jun-ning, XU Li-xin, YE Ming-fu, WAN Chao. Preparation of NiPt/SBA-15 nanocatalyst and its catalytic performance for the dehydrogenation of hydrous hydrazine[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022072
Citation: LIANG Yu, LI Gui, ZHENG Jun-ning, XU Li-xin, YE Ming-fu, WAN Chao. Preparation of NiPt/SBA-15 nanocatalyst and its catalytic performance for the dehydrogenation of hydrous hydrazine[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022072

NiPt/SBA-15纳米催化剂的制备及其催化水合肼分解产氢性能研究

doi: 10.19906/j.cnki.JFCT.2022072
基金项目: 国家自然科学基金青年基金(22108238),安徽省自然科学基金青年基金(1908085QB68),安徽省科技重大专项(201903a05020055),中国博士后面上项目(2019M662060)和特别资助站中项目(2020T130580),安徽省光电磁性功能材料重点实验室开放研究基金(ZD2021007)和江西省生态化工工程研究中心开放研究基金(STKF2109)资助
详细信息
    通讯作者:

    E-mail: wanchao@zju.edu.cn

  • 中图分类号: O643.36

Preparation of NiPt/SBA-15 nanocatalyst and its catalytic performance for the dehydrogenation of hydrous hydrazine

Funds: The project was supported by the National Natural Science Foundation of China (22108238), Anhui Provincial Natural Science Foundation (1908085QB68), Major Science and Technology Project of Anhui Province (201903a05020055), China Postdoctoral Science Foundation (2019M662060, 2020T130580), Open Research Funds of Anhui Key Laboratory of Photoelectric-Magnetic Functional Materials(ZD2021007) and Open Research Funds of Jiangxi Province Engineering Research Center of Ecological Chemical Industry(STKF2109).
  • 摘要: 本研究采用浸渍还原法制备了不同金属比例的NiPt双金属负载SBA-15(介孔二氧化硅)催化剂,对其催化水合肼脱氢性能进行了研究。研究结果表明,在催化剂的制备过程中Pt和Ni形成了合金,两种金属的电子协同效应可以有效地促进催化剂的催化性能,SBA-15与金属活性组分之间的相互作用有助于改善催化剂的催化性能和循环稳定性。Pt6Ni4/SBA-15催化剂催化水合肼脱氢的反应活化能为45.6 kJ/mol,TOF值为2123.3 h−1,优于大部分已经报道的催化剂。
  • 图  1  Pt6Ni4/SBA-15催化剂的TEM照片

    Figure  1  TEM images of Pt6Ni4/SBA-15

    图  2  (a) SBA-15和Pt6Ni4/SBA-15氮气吸附-脱附曲线 (b) SBA-15和Pt6Ni4/SBA-15孔径分布

    Figure  2  (a) Nitrogen adsorption and desorption curves of SBA-15 and Pt6Ni4/SBA-15 (b) pore size distribution of SBA-15 and Pt6Ni4/SBA-15

    图  3  (a) 不同催化剂的XRD谱图 (b) 催化反应生成气体的质谱图

    Figure  3  (a) XRD patterns of different catalysts (b) Mass spectrum of gases produced by catalytic reactions

    图  4  SBA-15和Pt6Ni4/SBA-15催化剂在Pt 4f和Ni 2p区的XPS光谱对比

    Figure  4  Comparison of XPS spectra of SBA-15 and Pt6Ni4/SBA-15 catalysts in the Pt 4f and Ni 2p region

    图  5  (a) 不同Pt/Ni物质的量比PtNi/SBA-15催化水合肼脱氢产生的气体当量与反应时间曲线 (b) 对应催化剂的TOF值

    Figure  5  (a) PtNi/SBA-15 catalysts with different Pt/Ni molar ratios for the dehydrogenation of hydrous hydrazine catalyzed by gas equivalent versus reaction time (b) TOF value map of the corresponding catalyst (323 K)

    图  6  (a) 不同温度下Pt6Ni4/SBA-15催化水合肼脱氢的速率 (b) 为(a)对应的阿伦尼乌斯曲线

    Figure  6  (a) Rate curves of Pt6Ni4/SBA-15 catalyzed dehydrogenation of hydrous hydrazine at different temperatures; (b) is the corresponding Arrhenius plot obtained from the Graph (a)

    图  7  (a) Pt6Ni4/SBA-15在不同浓度的碱溶液中催化水合肼脱氢产生的气体当量与反应时间曲线 (b) Pt6Ni4/SBA-15催化水合肼脱氢循环使用性能

    Figure  7  (a) Pt6Ni4/SBA-15 catalyzed dehydrogenation of hydrous hydrazine in alkaline solutions with different concentrations of gas equivalent versus reaction time under the condition of 323 K; (b) Pt6Ni4/SBA-15 in fives run for decomposition of hydrous hydrazine

    表  1  323 K下碱性溶液中水合肼分解制氢各种金属催化剂的催化活性

    Table  1  Catalytic performances of various metal catalysts for hydrogen generation from the decomposition of hydrous hydrazine in alkaline solution at 323 K

    Catalyst TOF/h−1 Ea/(kJ·mol−1) Ref.
    Pt6Ni4/SBA-15 2123.3 45.6 this work
    Ni3Pt7/BNG-1000 199.4 28.4 [27]
    G4-OH (Pt12Ni48) 240 / [33]
    Ni84Pt16/graphene 415 40 [34]
    Ni60Pt40/NC-700 1602 48.3 [16]
    Ni87Pt13/MA 160 55.7 [14]
    Ni@Ni-Pt/La2O3 312 56.2 [32]
    Ni0.8Pt0.2/DT-Ti3C2Tx 1220 67.1 [35]
    Ni0.9Pt0.1/MIL-101/rGO 960 50.6 [36]
    Ni88Pt12@MIL‐101 375.1 51.29 [11]
    Ni3Pt7/graphene 416 49.36 [37]
    (Ni3Pt7)0.5-(MnOx)0.5/NPC-900 706 50.2 [38]
    Rh47Ni18P35@MOF-74 715.4 49.39 [39]
    Ni37Pt63/g-C3N4 570 36.6 [40]
    Ni0.4Pt0.6/CNTs 1725.3 36.3 [4]
    Pt0.6Ni0.4/PDA-rGO 2056 33.39 [23]
    下载: 导出CSV
  • [1] HUANG W K, LIU X. The “on-off” switch for on-demand H2 evolution from hydrous hydrazine over Ni8Pt1/C nano-catalyst[J]. Fuel,2022,315:123210. doi: 10.1016/j.fuel.2022.123210
    [2] ZHANG Z J, ZHANG S L, YAO Q L, FENG G, ZHU M H, LU Z H. Metal-organic framework immobilized RhNi alloy nanoparticles for complete H2 evolution from hydrazine borane and hydrous hydrazine[J]. Inorg Chem Front,2018,5(2):370−377. doi: 10.1039/C7QI00555E
    [3] JAIN P, ANILA K A, VINOD C P. Au based Ni and Co bimetallic core shell nanocatalysts for room temperature selective decomposition of hydrous hydrazine to hydrogen[J]. ChemistrySelect,2019,4(9):2734−2740. doi: 10.1002/slct.201900483
    [4] ZHANG M Y, LIU L, LU S, XU L X, AN Y, WAN C. Facile fabrication of NiPt/CNTs as an efficient catalyst for hydrogen production from hydrous hydrazine[J]. ChemistrySelect,2019,4(35):10494−10500. doi: 10.1002/slct.201902762
    [5] SINGH S K, LU Z H, XU Q. Temperature-induced enhancement of catalytic performance in selective hydrogen generation from hydrous hydrazine with Ni-based nanocatalysts for chemical hydrogen storage[J]. Eur J Inorg Chem,2011,2011(14):2232−2237. doi: 10.1002/ejic.201100083
    [6] ZHOU L, LUO X J, XU L X, WAN C, YE M F. Pt-Ni nanoalloys for H2 generation from hydrous hydrazine[J]. Catalysts,2020,10(8):930. doi: 10.3390/catal10080930
    [7] WAN C, ZHOU L, SUN L, XU L X, CHENG D G, CHEN F Q, ZHAN X L, YANG Y R. Boosting visible-light-driven hydrogen evolution from formic acid over AgPd/2D g-C3N4 nanosheets Mott-Schottky photocatalyst[J]. Chem Eng J,2020,396:125229. doi: 10.1016/j.cej.2020.125229
    [8] WAN C, SUN L, XU L X, CHENG D G, CHEN F Q, ZHAN X L, YANG Y R. Novel NiPt alloy nanoparticle decorated 2D layered g-C3N4 nanosheets: a highly efficient catalyst for hydrogen generation from hydrous hydrazine[J]. J Mater Chem A,2019,7(15):8798−8804. doi: 10.1039/C9TA01535C
    [9] WANG J, LI W, WEN Y, GU L, ZHANG Y. Rh-Ni-B nanoparticles as highly efficient catalysts for hydrogen generation from hydrous hydrazine[J]. Adv Energy Mater,2015,5(10):1401879. doi: 10.1002/aenm.201401879
    [10] ARANISHI K, SINGH A K, XU, Q. Dendrimer-encapsulated bimetallic Pt-Ni nanoparticles as highly efficient catalysts for hydrogen generation from chemical hydrogen storage materials[J]. ChemCatChem,2013,5(8):2248−2252. doi: 10.1002/cctc.201300143
    [11] CAO N, YANG L, DAI H M, LIU T, SU J, WU X J, LUO W, CHENG G Z. Immobilization of ultrafine bimetallic Ni-Pt nanoparticles inside the pores of metal-organic frameworks as efficient catalysts for dehydrogenation of alkaline solution of hydrazine[J]. Inorg Chem,2014,53(19):10122−10128. doi: 10.1021/ic5010352
    [12] WANG H L, YAN J M, WANG Z L, IIO S, JIANG Q. Highly efficient hydrogen generation from hydrous hydrazine over amorphous Ni0.9Pt0.1/Ce2O3 nanocatalyst at room temperature[J]. J Mater Chem A,2013,1(47):14957−14962. doi: 10.1039/c3ta13259e
    [13] JIANG Y Y, DAI H B, ZHONG Y J, CHEN D M, WANG P. Complete and rapid conversion of hydrazine monohydrate to hydrogen over supported Ni-Pt nanoparticles on mesoporous ceria for chemical hydrogen storage[J]. Chem Eur J,2015,21(43):15439−15445. doi: 10.1002/chem.201502421
    [14] JIANG Y Y, KANG Q, ZHANG J J, DAI H B, WANG P. High-performance nickel-platinum nanocatalyst supported on mesoporous alumina for hydrogen generation from hydrous hydrazine[J]. J Power Sources,2015,273:554−560. doi: 10.1016/j.jpowsour.2014.09.119
    [15] DAI H, DAI H B, ZHONG Y J, KANG Q, SUN L X, WANG P. Kinetics of catalytic decomposition of hydrous hydrazine over CeO2-supported bimetallic Ni-Pt nanocatalysts[J]. Int J Hydrogen Energy,2017,42(9):5684−5693. doi: 10.1016/j.ijhydene.2016.10.160
    [16] QIU Y, SHI Q, ZHOU L L, CHEN M H, CHEN C, TANG P P, WALKER G S, WANG P. NiPt nanoparticles anchored onto hierarchical nanoporous N-doped carbon as an efficient catalyst for hydrogen generation from hydrazine monohydrate[J]. ACS Appl Mater Interfaces,2020,12(16):18617−18624. doi: 10.1021/acsami.0c03096
    [17] SINGH S K, SINGH A K, ARANISHI K, XU Q. Noble-metal-free bimetallic nanoparticle-catalyzed selective hydrogen generation from hydrous hydrazine for chemical hydrogen storage[J]. J Am Chem Soc,2011,133(49):19638−19641. doi: 10.1021/ja208475y
    [18] 邹爱华, 徐晓梅, 周浪, 林路贺, 康志兵. 石墨烯负载Co-CeOx纳米复合物的制备及其对氨硼烷水解产氢的催化性能[J]. 燃料化学学报,2021,49(9):1371−1378. doi: 10.1016/S1872-5813(21)60085-3

    ZOU Ai-hua, XU Xiao-mei, ZHOU Lang, LIN Lu-he, KANG Zhi-bing. Preparation of graphene-supported Co-CeOx nanocomposites as a catalyst for the hydrolytic dehydrogenation of ammonia borane[J]. J Fuel Chem Technol,2021,49(9):1371−1378. doi: 10.1016/S1872-5813(21)60085-3
    [19] TUNÇ N, RAKAP M. Preparation and characterization of Ni-M (M: Ru, Rh, Pd) nanoclusters as efficient catalysts for hydrogen evolution from ammonia borane methanolysis[J]. Renewable Energy,2020,155:1222−1230. doi: 10.1016/j.renene.2020.04.079
    [20] MEN Y N, DU X Q, CHENG G Z, LUO W. CeOx-modified NiFe nanodendrits grown on rGO for efficient catalytic hydrogen generation from alkaline solution of hydrazine[J]. Int J Hydrogen Energy,2017,42(44):27165−27173. doi: 10.1016/j.ijhydene.2017.08.214
    [21] CHEN J M, ZOU H T, YAO Q L, LUO M H, LI X G, LU Z H. Cr2O3-modified NiFe nanoparticles as a noble-metal-free catalyst for complete dehydrogenation of hydrazine in aqueous solution[J]. Appl Surf Sci,2020,501:144247. doi: 10.1016/j.apsusc.2019.144247
    [22] WANG K, YAO Q L, QING S J, LU Z H. La(OH)3 nanosheet-supported CoPt nanoparticles: a highly efficient and magnetically recyclable catalyst for hydrogen production from hydrazine in aqueous solution[J]. J Mater Chem A,2019,7(16):9903−9911. doi: 10.1039/C9TA01066A
    [23] SONG F Z, ZHU Q L, XU Q. Monodispersed PtNi nanoparticles deposited on diamine-alkalized graphene for highly efficient dehydrogenation of hydrous hydrazine at room temperature[J]. J Mater Chem A,2015,3(46):23090−23094. doi: 10.1039/C5TA05664K
    [24] CHEN Q, DENG L D, WU Z W, WANG F, JIANG X M. Mesoporous silica SBA-15 supported Pt-Ga nanoalloys as an active and stable catalyst for propane dehydrogenation[J]. Ind Eng Chem Res,2022,61(23):7799−7809. doi: 10.1021/acs.iecr.2c00646
    [25] KOH K, JEON M, YOON C W, ASEFA T. Formic acid dehydrogenation over Pd NPs supported on amine-functionalized SBA-15 catalysts: structure-activity relationships[J]. J Mater Chem A,2017,5(31):16150−16161. doi: 10.1039/C7TA02040F
    [26] HUANG L H, XU B L, YANG L L, FAN Y N. Propane dehydrogenation over the PtSn catalyst supported on alumina-modified SBA-15[J]. Catal Commun,2008,9(15):2593−2597. doi: 10.1016/j.catcom.2008.07.015
    [27] DU X Q, DU C, CAI P, LUO W, CHENG G Z. NiPt nanocatalysts supported on boron and nitrogen Co-doped graphene for superior hydrazine dehydrogenation and methanol oxidation[J]. ChemCatChem,2016,8(7):1410−1416. doi: 10.1002/cctc.201501405
    [28] XU F, LIU X. Synergistically promoted H2 evolution from dimethylamine-borane and hydrazine monohydrate by simply alloying of Pt/C with Ni[J]. Fuel,2021,304:121433. doi: 10.1016/j.fuel.2021.121433
    [29] 李振彪. Ni/SBA-15和Ni/Al-SBA-15催化顺酐加氢性能研究[D]. 太原: 山西大学, 2016.

    LI Zhen-biao. Hydrogenation performance of Ni/SBA-15 and Ni/Al-SBA-15 catalysts on maleic anhydride[D]. Taiyuan: Shanxi University, 2016.
    [30] 郭靖, 范素兵, 高新华, 马清祥, 张建利, 赵天生. Co-Ni-B/SBA-15催化1-辛烯氢甲酰化活性研究[J], 燃料化学学报, 2021, 49(7): 945–951.

    GUO Jing, FAN Su-bing, GAO Xin-hua, MA Qing-xiang, ZHANG Jian-li, ZHAO Tian-sheng. Study on catalytic performance of Co-Ni-B/SBA-15 for hydroformylation of 1-octene[J]. J Fuel Chem Technol, 2021, 49(7): 945–951.
    [31] YAO Q L, HE M, HONG X L, ZHANG X L, LU Z H. MoOx-modified bimetallic alloy nanoparticles for highly efficient hydrogen production from hydrous hydrazine[J]. Inorg Chem Front,2019,6(6):1546−1552. doi: 10.1039/C9QI00379G
    [32] ZHONG Y J, DAI H B, JIANG Y Y, CHEN D M, ZHU M, SUN L X, WANG P. Highly efficient Ni@Ni-Pt/La2O3 catalyst for hydrogen generation from hydrous hydrazine decomposition: effect of Ni-Pt surface alloying[J]. J Power Sources,2015,300:294−300. doi: 10.1016/j.jpowsour.2015.09.071
    [33] WAN C, ZHOU L, XU S M, JIN B Y, GE X, QIAN X, XU L X, CHEN F Q, ZHAN X L, YANG Y R, CHENG D G. Defect engineered mesoporous graphitic carbon nitride modified with AgPd nanoparticles for enhanced photocatalytic hydrogen evolution from formic acid[J]. Chem Eng J,2022,429:132388. doi: 10.1016/j.cej.2021.132388
    [34] DU Y S, SU J, LUO W, CHENG G Z. Graphene-supported nickel-platinum nanoparticles as efficient catalyst for hydrogen generation from hydrous hydrazine at room temperature[J]. ACS Appl Mater Interfaces,2015,7(2):1031−1034. doi: 10.1021/am5068436
    [35] GUO F, ZOU H T, YAO Q L, HUANG B, LU Z H. Monodispersed bimetallic nanoparticles anchored on TiO2-decorated titanium carbide MXene for efficient hydrogen production from hydrazine in aqueous solution[J]. Renewable Energy,2020,155:1293−1301. doi: 10.1016/j.renene.2020.04.047
    [36] ZOU H T, ZHANG S L, HONG X L, YAO Q L, LUO Y, LU Z H. Immobilization of Ni-Pt nanoparticles on MIL-101/rGO composite for hydrogen evolution from hydrous hydrazine and hydrazine borane[J]. J Alloys Compd,2020,835:155426. doi: 10.1016/j.jallcom.2020.155426
    [37] CAO N, YANG L, DU C, SU J, LUO W, CHENG G Z. Highly efficient dehydrogenation of hydrazine over graphene supported flower-like Ni-Pt nanoclusters at room temperature[J]. J Mater Chem A,2014,2(35):14344−14347. doi: 10.1039/C4TA02964J
    [38] XIA B Q, LIU T, LUO W, CHENG G Z. NiPt-MnOx supported on N-doped porous carbon derived from metal-organic frameworks for highly efficient hydrogen generation from hydrazine[J]. J Mater Chem A,2016,4(15):5616−5622. doi: 10.1039/C6TA00766J
    [39] XING W N, TU W G, HAN Z H, HU Y D, MENG Q Q, CHEN G. Template-induced high-crystalline g-C3N4 nanosheets for enhanced photocatalytic H2 evolution[J]. ACS Energy Lett,2018,3(3):514−519. doi: 10.1021/acsenergylett.7b01328
    [40] XU L X, LIU N, HONG B, CUI P, CHENG D G, CHEN F Q, AN Y, WAN C. Nickel-platinum nanoparticles immobilized on graphitic carbon nitride as highly efficient catalyst for hydrogen release from hydrous hydrazine[J]. RSC Adv,2016,6(38):31687−31691. doi: 10.1039/C6RA01335J
    [41] ZHANG W, JIAJUNWANG J J, LIU Z W, PI Y B, TAN R. Visible light-driven oxidant-free dehydrogenation of alcohols in water using porous ultrathin g-C3N4 nanosheets[J]. Green Energy Environ,2022,7:712−722. doi: 10.1016/j.gee.2020.11.019
    [42] 张安琪, 姚淇露, 卢章辉. 水合肼分解产氢催化剂研究进展[J]. 化学学报,2021,79(7):885−902. doi: 10.6023/A21030126

    ZHANG An-qi, YAO Qi-lu, LU Zhang-hui. Recent progress on catalysts for hydrogen evolution from decomposition of hydrous hydrazine[J]. Acta Chim Sin,2021,79(7):885−902. doi: 10.6023/A21030126
    [43] SONG F Z, YANG X C, XU Q. Ultrafine bimetallic Pt-Ni nanoparticles achieved by metal-organic framework templated zirconia/porous carbon/reduced graphene oxide: remarkable catalytic activity in dehydrogenation of hydrous hydrazine[J]. Small Methods,2020,4(1):1900707. doi: 10.1002/smtd.201900707
    [44] KARATAS Y, GÜLCAN M, ZAHMAKIRAN M. Silica supported ternary NiRuPt alloy nanoparticles: Highly efficient heterogeneous catalyst for H2 generation via selective decomposition of hydrous hydrazine in alkaline solution[J]. Int J Hydrogen Energy,2020,45(51):27098−27113. doi: 10.1016/j.ijhydene.2020.07.048
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  8
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-25
  • 录用日期:  2022-09-07
  • 修回日期:  2022-08-26
  • 网络出版日期:  2022-09-08

目录

    /

    返回文章
    返回