留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

B/N共掺杂多孔碳片的制备及其储钾性能

韩娜 张冬冬 武婷婷 杨磊 李宏强 何孝军

韩娜, 张冬冬, 武婷婷, 杨磊, 李宏强, 何孝军. B/N共掺杂多孔碳片的制备及其储钾性能[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022075
引用本文: 韩娜, 张冬冬, 武婷婷, 杨磊, 李宏强, 何孝军. B/N共掺杂多孔碳片的制备及其储钾性能[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022075
HAN Na, ZHANG Dong-dong, WU Ting-ting, YANG Lei, LI Hong-qiang, HE Xiao-jun. Preparation of B/N co-doped porous carbon sheets and their potassium storage properties[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022075
Citation: HAN Na, ZHANG Dong-dong, WU Ting-ting, YANG Lei, LI Hong-qiang, HE Xiao-jun. Preparation of B/N co-doped porous carbon sheets and their potassium storage properties[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022075

B/N共掺杂多孔碳片的制备及其储钾性能

doi: 10.19906/j.cnki.JFCT.2022075
基金项目: 国家自然科学基金(52072002,51872005)资助
详细信息
    通讯作者:

    Tel: 13866835091, E-mail: xjhe@ahut.edu.cn

  • 中图分类号: O646

Preparation of B/N co-doped porous carbon sheets and their potassium storage properties

Funds: The project was supported by the National Natural Science Foundation of China (52072002,51872005).
  • 摘要: 本研究以甘氨酸为碳源和氮源、硼酸为模板和硼源,采用一步碳化法制备了二维B/N共掺杂多孔碳片(BNCSs)。通过水洗即可除去硼酸模板,合成方法绿色环保。BNCSs上短的孔道缩短了钾离子的传输距离,丰富的微孔提供了大量的储钾活性位点。此外,BNCSs中较高的B/N掺杂量提升了碳基质的缺陷度,扩大了碳层间距,有利于钾离子的吸附、嵌入和脱嵌。钾离子半电池性能的测试结果表明,BNCS800电极展现出高的比容(在0.05 A/g电流密度下为310 mAh/g)、优异的倍率性能(在2 A/g电流密度下为100 mAh/g)和良好的循环稳定性(在1 A/g下循环1000次后容量保持率为75.9%)。
  • 图  1  BNCSs合成过程示意图

    Figure  1  Illustration for the synthetic process of BNCSs

    图  2  H3BO3(a), B2O3@BNCS(b), NC(c), BNCS700(d), BNCS800(e)and BNCS900(f)的FESEM图;NC(g)andBNCS800(h)的TEM图;BNCS800(i)的HRTEM图

    Figure  2  FESEM images of H3BO3 (a), B2O3@BNCS (b), NC (c), BNCS700 (d), BNCS800 (e) and BNCS900 (f); TEM images of NC (g) and BNCS800 (h); HRTEM of BNCS800 (i)

    图  3  NC 和BNCSs的氮气吸附-脱附等温线(a)和孔径分布(b)

    Figure  3  Nitrogen adsorption-desorption isotherms (a) and pore size distribution curves (b) of NC and BNCSs

    图  4  NC和BNCSs的XRD谱图(a)和Raman谱图(b)

    Figure  4  Raman spectra (a) and XRD patterns (b) of NC and BNCSs

    图  5  NC和BNCSs的全谱图(a);BNCS700(b), BNCS800(c), and BNCS900(d)的B 1s谱图;NC(e), BNCS700(f), BNCS800(g)and BNCS900(h)的N 1s谱图;NC和BNCSs的吡咯氮/吡啶氮比值(i)

    Figure  5  XPS survey spectra (a) of NC and BNCSs; B 1s spectra of BNCS700 (b), BNCS800 (c), and BNCS900 (d); N 1s spectra of NC (e), BNCS700 (f), BNCS800 (g) and BNCS900 (h); the ratios of Pyrrolic-N/Pyridinic-N of NC and BNCSs (i)

    图  6  NC(a), BNCS700(b), BNCS800(c)和 BNCS900(d)在0.1 mV/s下的CV曲线;NC(e), BNCS700(f), BNCS800(g)andBNCS900(h)在0.05 A/g下的前三圈GCD曲线

    Figure  6  CV curves of NC (a), BNCS700 (b), BNCS800 (c) and BNCS900 (d) at 0.1 mV/s; GCD profiles of NC (e), BNCS700 (f), BNCS800 (g) and BNCS900 (h) at 0.05 A/g

    图  7  NC和BNCSs的倍率性能(a);BNCS800的GCD曲线(b);BNCSs和其他羰基电极的倍率性能对比(c);NC和BNCSs在1 A/g下的循环性能(d)

    Figure  7  Rate capability (a) of NC and BNCSs; GCD curves (b) of BNCS800; comparison of rate capability (c) of BNCSs and other carbonaceous electrodes; cycle performance (d) of NC and BNCSs at 1 A/g

    图  9  NC 和 BNCS800的Nyquist图(a);NC 和 BNCS800的瓦尔堡系数拟合(b)

    Figure  9  Nyquist plots of (a) NC and BNCS800; Fitting of Warburg coefficients (b) of NC and BNCS800

    图  8  NC(a)和 BNCS800(b)在0.1–2 mV/s下的CV曲线;NC(c)和 BNCS800(d)的b值

    Figure  8  CV curves of NC (a) and BNCS800 (b) from 0.1 to 2 mV/s; b-values of NC (c) and BNCS800 (d)

    表  1  NC和BNCSs样品的孔结构参数表*

    Table  1  Pore structural parameters of NC and BNCSs samples

    SampleDap/
    nm
    SBET/
    (m2·g−1)
    Smic/
    (m2·g−1)
    vt/
    (cm3·g−1)
    vmic/
    (cm3·g−1)
    NC2.072782460.140.13
    BNCS7005.734921520.700.08
    BNCS8005.355602160.750.11
    BNCS9006.58368890.610.05
    * Dap: average pore diameter; SBET: specific surface area; Smic: micropore surface area; vt: total pore volume; vmic: micropore volume
    下载: 导出CSV

    表  2  NC和BNCSs中碳、氧、硼、氮元素和含氮官能团的含量

    Table  2  Contents of carbon oxygen boron nitrogen elements and nitrogen-containing functional groups in NC and BNCSs

    SampleC 1s
    /%
    O 1s
    /%
    B 1s
    /%
    N 1s
    /%
    N 1s functionalities/%
    pyridinic-Npyrrolic-Ngraphitic-NN−O
    NC83.756.469.792115568
    BNCS70072.4314.331.9011.343334312
    BNCS80071.9511.644.1612.252241325
    BNCS90072.1813.573.9810.2724353011
    下载: 导出CSV
  • [1] WU Y M, ZHAO H T, WU Z G, YUE L C, LIANG J, LIU Q, LUO Y L, GAO S. Y, LU S Y, CHEN G, SHI X F, ZHONG B H, GUO X D, SUN X P. Rational design of carbon materials as anodes for potassium-ion batteries[J]. Energy Storage Mater,2021,34:483−507. doi: 10.1016/j.ensm.2020.10.015
    [2] ZHU L F, ZHANG Z, LUO J D, ZHANG H, QU Y H, YANG Z Y. Self-templated synthesis of hollow hierarchical porous olive-like carbon toward universal high-performance alkali (Li, Na, K)-ion storage[J]. Carbon,2021,174:317−324. doi: 10.1016/j.carbon.2020.12.029
    [3] ZHANG Q F, CHENG X L, WANG C X, RAO A M, LU B A. Sulfur-assisted large-scale synthesis of graphene microspheres for superior potassium-ion batteries[J]. Energy Environ Sci,2021,14(2):965−974. doi: 10.1039/D0EE03203D
    [4] WANG B, ZHANG Z Y, YUAN F, ZHANG D, WANG Q J, LI W, LI Z J, WU Y A, WANG W. An insight into the initial coulombic efficiency of carbon-based anode materials for potassium-ion batteries[J]. Chem Eng J,2022,428:131093. doi: 10.1016/j.cej.2021.131093
    [5] QIN G H, LIU Y H, LIU F S, XUAN S, HOU L R, LIU B B, YUAN C Z. Magnetic field assisted construction of hollow red P nanospheres confined in hierarchical N-doped carbon nanosheets/nanotubes 3D framework for efficient potassium storage[J]. Adv Energy Mater,2020,11(4):2003429.
    [6] ZHONG Y L, DAI W X, LIU D, WANG W, WANG L T, XIE J P, LI R, YUAN Q L, HONG G. Nitrogen and fluorine dual doping of soft carbon nanofibers as advanced anode for potassium ion batteries[J]. Small,2021,17(43):2101576. doi: 10.1002/smll.202101576
    [7] WU Z R, ZOU J, SHABANIAN S, GOLOVIN K, LIU J. The roles of electrolyte chemistry in hard carbon anode for potassium-ion batteries[J]. Chem Eng J,2022,427:130972. doi: 10.1016/j.cej.2021.130972
    [8] RUAN J F, MO F J, CHEN Z L, LIU M, ZHENG S Y, WU R B, FANG F, SONG Y, SUN D L. Rational construction of nitrogen-doped hierarchical dual-carbon for advanced potassium-ion hybrid capacitors[J]. Adv Energy Mater,2020,10(15):1904045. doi: 10.1002/aenm.201904045
    [9] LI C, FU Q, ZHAO K J, WANG Y P, TANG H, LI H H, JIANG H B, CHEN L. Nitrogen and phosphorous dual-doped graphene aerogel with rapid capacitive response for sodium-ion batteries[J]. Carbon,2018,139:1117−1125. doi: 10.1016/j.carbon.2018.06.035
    [10] WU Y J, SUN Y J, ZHENG J F, RONG J H, LI H Y, NIU L. MXenes: Advanced materials in potassium ion batteries[J]. Chem Eng J,2021,404:126565. doi: 10.1016/j.cej.2020.126565
    [11] DENG H L, WANG L, LI S Y, ZHANG M, WANG T, ZHOU J, CHEN M X, CHEN S, CAO J H, ZHANG Q S, ZHU J, LU B A. Radial pores in nitrogen/oxygen dual-doped carbon nanospheres anode boost high-power and ultrastable potassium‐ion batteries[J]. Adv Funct Mater,2021,31(51):2107246. doi: 10.1002/adfm.202107246
    [12] ZHANG L P, WANG W, LU S F, XIANG Y. Carbon anode materials: A detailed comparison between Na-ion and K-ion batteries[J]. Adv Energy Mater,2021,11(11):2003640. doi: 10.1002/aenm.202003640
    [13] JIN Q Z, LI W, WANG K L, LI H M, FENG P Y, ZHANG Z C, WANG W, JIANG K. Tailoring 2D heteroatom‐doped carbon nanosheets with dominated pseudocapacitive behaviors enabling fast and high‐performance sodium storage[J]. Adv Funct Mater,2020,30(14):1909907. doi: 10.1002/adfm.201909907
    [14] ZHANG C C, PAN H G, SUN L X, XU F, OUYANG Y F, ROSEI F. Progress and perspectives of 2D materials as anodes for potassium-ion batteries[J]. Energy Storage Mater,2021,38:354−378. doi: 10.1016/j.ensm.2021.03.007
    [15] SHARE K, COHN A. P, CARTER R, ROGERS B, PINT C L. Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes[J]. ACS Nano,2016,10(10):9738−9744. doi: 10.1021/acsnano.6b05998
    [16] JIAN Z L, LUO W, JI X L. Carbon electrodes for K-ion batteries[J]. J Am Chem Soc,2015,137(36):11566−9. doi: 10.1021/jacs.5b06809
    [17] LU C, SUN Z T, YU L H, LIAN X Y, YI Y Y, JIE L, LIU Z F, DOU S X, SUN J Y. Enhanced kinetics harvested in heteroatom dual-doped graphitic hollow architectures toward high rate printable potassium‐ion batteries[J]. Adv Energy Mater,2020,10(28):2001161. doi: 10.1002/aenm.202001161
    [18] ZHANG H F, HE X J, WEI F, DONG S A, XIAN N, QIU J S. Moss-covered rock-like hybrid porous carbons with enhanced electrochemical properties[J]. ACS Sustainable Chem Eng,2020,8(8):3065−3071. doi: 10.1021/acssuschemeng.9b05075
    [19] LIU Z M, WANG J, JIA X X, LI W L, ZHANG Q F, FAN L, DING H B, YANG H G, YU X Z, LI X K, LU B A. Graphene armored with a crystal carbon shell for ultrahigh-performance potassium ion batteries and aluminum batteries[J]. ACS Nano,2019,13(9):10631−10642. doi: 10.1021/acsnano.9b04893
    [20] HE H N, HUANG D, TANG Y G, WANG Q, JI X B, WANG H Y, GUO Z P. Tuning nitrogen species in three-dimensional porous carbon via phosphorus doping for ultra-fast potassium storage[J]. Nano Energy,2019,57:728−736. doi: 10.1016/j.nanoen.2019.01.009
    [21] XU Z Q, WU M Q, CHEN Z, CHEN C, YANG J, FENG T T, PAEK E, MITLIN D. Direct structure-performance comparison of all-carbon potassium and sodium ion capacitors[J]. Adv Sci,2019,6(12):1802272. doi: 10.1002/advs.201802272
    [22] YAN J, LI W, FENG P Y, WANG R X, JIANG M, HAN J, CAO S L, WANG K L, JIANG K. Enhanced Na + pseudocapacitance in a P, S co-doped carbon anode arising from the surface modification by sulfur and phosphorus with C-S-P coupling[J]. J Mater Chem A,2020,8(1):422−432. doi: 10.1039/C9TA11594C
    [23] FENG W T, FENG N Y, LIU W, CUI Y P, CHEN C, DONG T T, LIU S, DENG W Q, WANG H L, JIN Y C. Liquid-state templates for constructing B, N, co-doping porous carbons with a boosting of potassium-ion storage performance[J]. Adv Energy Mater,2021,11:2003215. doi: 10.1002/aenm.202003215
    [24] TAO L, YANG Y P, WANG H L, ZHENG H L, HAO Y L, SONG W P, SHI J, HUANG M H, MITLIN D. Sulfur-nitrogen rich carbon as stable high capacity potassium ion battery anode: Performance and storage mechanisms[J]. Energy Storage Mater,2020,27:212−225. doi: 10.1016/j.ensm.2020.02.004
    [25] CHANG X Q, MA Y F, YANG M, XING T, TANG L Y, CHEN T T, GUO Q B, ZHU X H, LIU J Z, XIA H. In-situ solid-state growth of N, S codoped carbon nanotubes encapsulating metal sulfides for high-efficient-stable sodium ion storage[J]. Energy Storage Mater,2019,23:358−366. doi: 10.1016/j.ensm.2019.04.039
    [26] WANG B, GU L, YUAN F, ZHANG D, SUN H L, WANG J, WANG Q J, HUAN W, LI Z J. Edge-enrich N-doped graphitic carbon: Boosting rate capability and cyclability for potassium ion battery[J]. Chem Eng J,2022,432:134321. doi: 10.1016/j.cej.2021.134321
    [27] TZADIKOV J, LEVY N R, ABISDRIS L, COHEN R, WEITMAN M, KAMINKER L, GOLDBOURT A, EIN-ELI Y, SHALOM M. Bottom-up synthesis of advanced carbonaceous anode materials containing sulfur for Na-ion batteries[J]. Adv Funct Mater,2020,30(19):2000592. doi: 10.1002/adfm.202000592
    [28] CAO B, ZHANG Q, LIU H, XU B, ZHANG S L, ZHOU T F, MAO J F, PANG W K, GUO Z P, LI A, ZHOU J S, CHEN X H, SONG H H. Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries[J]. Adv Energy Mater,2018,8(25):1801149. doi: 10.1002/aenm.201801149
    [29] SHEN C, YUAN K, TIAN T, BAI M H, WANG J G, LI X F, XIE K Y, FU Q G, WEI B. Q. Flexible sub-micro carbon fiber@CNTs as anodes for potassium-ion batteries[J]. ACS Appl Mater Interfaces,2019,11(5):5015−5021. doi: 10.1021/acsami.8b18834
    [30] WU Z R, WANG L P, HUANG J, ZOU J, CHEN S L, CHEN H, JIANG C, GAO P, NIU X B. Loofah-derived carbon as an anode material for potassium ion and lithium ion batteries[J]. Electrochim Acta,2019,306:446−453. doi: 10.1016/j.electacta.2019.03.165
    [31] ZENG S F, ZHOU X F, WANG B, FENG Y Z, XU R, ZHANG H B, PENG S M, YU Y. Freestanding CNT-modified graphitic carbon foam as a flexible anode for potassium ion batteries[J]. J Mater Chem A,2019,7(26):15774−15781. doi: 10.1039/C9TA03245B
    [32] WANG S, LIY Y, MA F T, WU X Z, ZHOU P F, MIAO Z C, GAO P B, ZHUO S P, ZHOU J. Phenolic resin-based carbon microspheres for potassium ion storage[J]. Appl Surface Sci,2020,506:144805. doi: 10.1016/j.apsusc.2019.144805
    [33] ZHAO C X, LI H, ZOU Y J, QI Y Y, JIAN Z L, CHEN W. Low-cost carbon materials as anode for high-performance potassium-ion batteries[J]. Mater Lett,2020,262:127147. doi: 10.1016/j.matlet.2019.127147
    [34] LIU Q, RAO A M, HAN X, LU B A. Artificial SEI for superhigh-performance K-graphite anode[J]. Adv Sci,2021,8(9):2003639. doi: 10.1002/advs.202003639
    [35] Wang S Z, Zhao H P, Lv S Y, Jiang H H, Shao Y L, Wu Y Z, Hao X P, Lei Y. Insight into nickel-cobalt oxysulfide nanowires as advanced anode for sodium-ion capacitors[J]. Adv Energy Mater,2021,11(18):2100408. doi: 10.1002/aenm.202100408
    [36] QIAN M M, XU Z F, WANG Z C, WEI B, WANG H, HU S X, LIU L M, GUO L. Realizing few-layer iodinene for high-rate sodium-ion batteries[J]. Adv Mater,2020,32(43):e2004835. doi: 10.1002/adma.202004835
    [37] JU Z C, LI P Z, MA G Y, XING Z, ZHUANG Q C, QIAN Y T. Few layer nitrogen-doped graphene with highly reversible potassium storage[J]. Energy Storage Mater,2018,11:38−46. doi: 10.1016/j.ensm.2017.09.009
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  12
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-03
  • 录用日期:  2022-09-07
  • 修回日期:  2022-08-31
  • 网络出版日期:  2022-09-29

目录

    /

    返回文章
    返回