留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物质“热溶富碳”及其产物利用

李致煜 郭柱 李显 胡振中 易琳琳 李建 钟梅 罗光前 姚洪

李致煜, 郭柱, 李显, 胡振中, 易琳琳, 李建, 钟梅, 罗光前, 姚洪. 生物质“热溶富碳”及其产物利用[J]. 燃料化学学报, 2023, 51(2): 129-144. doi: 10.19906/j.cnki.JFCT.2022076
引用本文: 李致煜, 郭柱, 李显, 胡振中, 易琳琳, 李建, 钟梅, 罗光前, 姚洪. 生物质“热溶富碳”及其产物利用[J]. 燃料化学学报, 2023, 51(2): 129-144. doi: 10.19906/j.cnki.JFCT.2022076
LI Zhi-yu, GUO Zhu, LI Xian, HU Zhen-zhong, YI Lin-lin, LI Jian, ZHONG Mei, LUO Guang-qian, YAO Hong. ' Thermal dissolution based carbon enrichment ' of biomass waste and the product utilization[J]. Journal of Fuel Chemistry and Technology, 2023, 51(2): 129-144. doi: 10.19906/j.cnki.JFCT.2022076
Citation: LI Zhi-yu, GUO Zhu, LI Xian, HU Zhen-zhong, YI Lin-lin, LI Jian, ZHONG Mei, LUO Guang-qian, YAO Hong. " Thermal dissolution based carbon enrichment " of biomass waste and the product utilization[J]. Journal of Fuel Chemistry and Technology, 2023, 51(2): 129-144. doi: 10.19906/j.cnki.JFCT.2022076

生物质“热溶富碳”及其产物利用

doi: 10.19906/j.cnki.JFCT.2022076
基金项目: 国家自然科学基金(22169019)和新疆维吾尔自治区区域协同创新专项(上海合作组织科技伙伴计划及国际科技合作计划)(2020E01018)
详细信息
    通讯作者:

    Tel:13396090358,13669931725,E-mail:xian_li@hust.edu.cn

    zhongmei0504@126.com

  • 中图分类号: TQ917

" Thermal dissolution based carbon enrichment " of biomass waste and the product utilization

Funds: The project was supported by the National Natural Science Foundation of China (22169019) and Xinjiang Uygur Autonomous Region Regional Collaborative Innovation Project (Shanghai Cooperation Organization Science and Technology Partnership Program and International Science and Technology Cooperation Program) (2020E01018)
  • 摘要: 生物质“热溶富碳”(Thermal Dissolution based Carbon Enrichment, TDCE)是利用非/弱极性有机溶剂在温和条件(350 ℃、氮气氛围)下对木质纤维素类生物质废弃物进行热萃取,经过一系列脱氧和芳构化反应,获得的目标固体产物Soluble和Deposit具有无水、无灰、高热值等优点,同时该技术还具有溶剂不参与化学反应,可回收循环利用的优势。因此,热溶富碳是实现生物质能源转化的有效途径之一。本综述首先介绍了目前生物质利用的各类方式;然后重点综述了生物质热溶富碳影响因素、反应机理以及产物利用途径。在“碳中和”的国家战略背景下,生物质热溶富碳技术具有较明显的经济价值和社会意义。
  • FIG. 2089.  FIG. 2089.

    FIG. 2089.  FIG. 2089.

    图  1  两段式间歇反应系统[43]

    Figure  1  Two-stage batch reaction system[43]

    图  2  热溶富碳实验流程图[43]

    Figure  2  Flow chart of TDCE experiment[43]

    图  3  连续热溶实验装置图[48]

    Figure  3  Diagram of the continuous hot melt experiment device[48]

    图  4  神府煤与稻杆不同温度下共热溶的热溶率与热溶物产率实验值(TSY)与理论计算值(TDY)之差[48]

    Figure  4  Thermal dissolution rate of ShenFu coal and rice straw co-thermally dissolved at different temperatures between TSY and TDY[48]

    图  5  煤和生物质热溶富碳处理中试系统流程图

    Figure  5  Flow chart of pilot-scale system for TDCE of coal and biomass

    图  6  不同生物质热溶富碳产物分子量分布[36]

    Figure  6  Molecular weight distribution of TDCE products of different biomass[36] (350 ℃,60 min)(with permission from ACS Publications)

    图  7  不同生物质热溶富碳产物的FT-IR谱图[36]

    Figure  7  FT-IR analysis of different biomass TDCE products[36](with permission from ACS Publications)

    图  8  原料和Soluble热解特性(TGA)[49]

    Figure  8  Feedstock and Soluble pyrolysis characteristics (TGA)[49]

    图  9  不同温度下稻杆和木屑Soluble(S)和Deposit(D)热解特性[44]

    Figure  9  Pyrolysis characteristics of rice straw and wood chips Soluble(S) and Deposit(D) at different temperatures[44]

    图  10  热溶富碳与传统生物质热处理产物组成及特性比较[15, 19, 36, 50-55]

    Figure  10  Comparison of composition and properties of TDCE and traditional biomass thermal treatment products[15, 19, 36, 50-55]

    (Torr.: Torrefaction,HTL: Hydrothermal liquefaction,Slow-Pyr.: Slow pyrolysis, Fast-Pyr.: Fast pyrolysis)

    图  11  生物质热溶富碳与传统热处理固体产物的Van-Krevelen图[15, 19, 36, 50-55]

    Figure  11  Van-Krevelen diagram of biomass TDCE and traditional thermally treated solid products[15, 19, 36, 50-55]

    图  12  基于BP-Adaboost法对原料特性与产物收率的相关性预测[40]

    Figure  12  Prediction of the correlation between raw material properties and product yield based on BP-Adaboost method[40] (with permission from Elsevier)

    图  13  生物质热溶富碳溶剂循环路线示意图[60]

    Figure  13  Circulation route map of biomass TDCE solvent[60] (with permission from ACS Publications)

    图  14  生物质热溶富碳反应机理示意图[61]

    Figure  14  Mechanism diagram of biomass TDCE reaction[61] (with permission from Elsevier)

    图  15  300和350 ℃生物质热溶富碳反应路径模型[62]

    Figure  15  Biomass TDCE reaction path model at 300 and 350 ℃[62] (with permission from ACS Publications)

    图  16  不同温度下稻杆和木屑Soluble(S)和Deposit(D)热塑性[44]

    Figure  16  Soluble(S) and Deposit(D) thermoplastics of rice straw and wood chips at different temperatures[44]

    图  17  生物质热溶富碳产物用做炼焦黏结剂思路[71]

    Figure  17  Idea of using biomass TDCE products as coking binder[71](with permission from Elsevier)

    图  18  生物质热溶富碳产物对焦炭品质的影响[71]

    Figure  18  Effect of biomass TDCE product on coke quality[71](with permission from Elsevier)

    图  19  生物质热溶富碳-催化加氢液化/热解制备生物油路线示意图[73, 75]

    Figure  19  Biomass TDCE-catalytic hydroliquefaction/pyrolysis route map for bio-oil production[73, 75](with permission from ACS Publications)

    表  1  不同生物质原料的各产物产率[36]

    Table  1  Product yields of different biomass feedstocks[36]

    SampleYeild wdaf/%
    solubledepositresiduegasliquid*
    Cellulose28.34.94.18.254.6
    Hemicellulose24.53.313.418.140.8
    Lignin20.71.549.010.618.2
    Leucaena36.93.812.317.029.4
    Eucalyptus45.05.28.811.929.1
    Oil palm EFB24.33.020.420.631.7
    Rice straw31.52.314.617.034.0
    Rice husk31.46.411.917.233.0
    Napier grass21.33.817.420.037.5
    Jatropha trunk23.63.019.018.036.5
    Cassava rhizome25.43.317.322.831.2
    *: by difference
    下载: 导出CSV

    表  2  热溶富碳-热解两段法与其他生物油制备技术比较[75]

    Table  2  Comparison of two-stage TDCE -pyrolysis method and other bio-oil preparation technologies[75]

    TechnologyMass yielda
    /%
    Mass yield /%Oxygen content /%Carbon-based yield a
    /%
    HHV /(MJ·kg−1)Energy yield a /%Catalyst
    Direct biomass pyrolysis35−6520−3035−40 ~ 5416−25 ~ 53.5no
    Two-stage method
    (Rice straw)
    11.7<10.620.944.6 ~ 32.6no
    Two-stage method (Sawdust)23.7<10.940.242.352.8no
    Catalytic pyrolysis30−4828.1−654.9−29.027−6223.7−42.030−67yes
    Hydrodeoxygenation12−354.3−5816−4020−3816.0−37.923−42.7yes
    Pyrolysis after torrefaction17−5016.5−4024−3925−43.915.6−28.730−53no
    a: On the basis of dry raw biomass
    下载: 导出CSV
  • [1] 张大勇. 3060零碳生物质能发展潜力蓝皮书[R]. 北京:中国产业发展促进会生物质能产业分会, 2021.

    ZHANG Da-yong. 3060 Blue Book of Zero-Carbon Biomass Development Potential[R]. Beijing: Biomass Energy Industry Branch of China Industrial Development Promotion Association, 2021.
    [2] 中国农业部. 中国农业年鉴[M]. 北京: 中国农业出版社, 2020.

    Ministry of Agriculture of China. Yearbook. China Agricultural Yearbook[M]. Beijing: China Agricultural Press, 2020.
    [3] 国家林业和草原局. 中国林业和草原统计年鉴[M]. 北京: 中国林业出版社, 2020.

    State Forestry and Grassland Administration. China Forestry and Grassland Statistical Yearbook[M]. Beijing: China Forestry Press, 2020.
    [4] 中国农业部. 中国畜牧兽医年鉴[M]. 北京: 中国农业出版社, 2020.

    Ministry of Agriculture of China. Animal Husbandry and Veterinary Yearbook[M]. Beijing: China Agricultural Press, 2020.
    [5] 中华人民共和国住房和城乡建设部. 中国城乡建设统计年鉴[M]. 北京: 中国计划出版社 2020.

    Ministry of Housing and Urban-Rural Development of the People's Republic Of China. China Urban and Rural Construction Statistical Yearbook[M]. Beijing: China Planning Press, 2020.
    [6] KAN T, STREZOV V, EVANS T J. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters[J]. Renewable Sustainable Energy Rev,2016,57:1126−1140.
    [7] 姚宗路, 田宜水, 孟海波, 赵立欣, 霍丽丽. 生物质固体成型燃料加工生产线及配套设备[J]. 农业工程学报,2010,26(9):280−285.

    YAO Zong-lu, TIAN Yi-shui, MENG Hai-bo, ZHAO Li-xin, HUO Li-li. Production line and corollary equipment of biomass solid fuel[J]. T Chin Soc Agric Eng,2010,26(9):280−285.
    [8] CARRILLO M A, STAGGENBORG S A, PINEDA J A. Washing sorghum biomass with water to improve its quality for combustion[J]. Fuel,2014,116:427−431.
    [9] 安娜. 新疆棉秆废弃物水洗脱灰及产物综合利用[D]. 乌鲁木齐: 新疆大学, 2020.

    AN Na. Deashing of biomass and comprehensive product utilization by washing[D]. Urumqi: Xinjiang University, 2020.
    [10] 熊钊. CO2-水洗对生物质中碱金属/碱土金属脱除的研究[D]. 武汉: 华中科技大学, 2020.

    XIONG Zhao. Alkaline and alkaline earth metal removal from biomass by CO2-water leaching[D]. Wuhan: Huazhong University of Science and Technology, 2020.
    [11] 杜婷婷, 云斯宁, 朱江, 黄欣磊, 张仙梅, 曾汉候. 生物质废弃物厌氧发酵的研究进展[J]. 中国沼气,2016,34(2):46−52.

    DU Ting-ting, YUN Si-ning, ZHU Jiang, HUANG Xin-lei, ZHANG Xian-mei, ZENG Han-hou. Research progress of anaerobic fermentation of different biomass waste[J]. China Biogas,2016,34(2):46−52.
    [12] REZAIYAN J, CHEREMISINOFF N P.Gasification Technologies: A Primer for Engineers and Scientists[M]. Boca Raton: CRC press, 2005.
    [13] AMMENDOLA P, PIRIOU B, LISI L, RUOPPOLO G, CHIRONE R, RUSSO G. Dual bed reactor for the study of catalytic biomass tars conversion[J]. Exp Therm Fluid Sci,2010,34(3):269−274. doi: 10.1016/j.expthermflusci.2009.10.019
    [14] MASCHIO G, KOUFOPANOS C, LUCCHESI A. Pyrolysis, a promising route for biomass utilization[J]. Bioresour Technol,1992,42(3):219−231. doi: 10.1016/0960-8524(92)90025-S
    [15] QI Z, JIE C, WANG T, YING X. Review of biomass pyrolysis oil properties and upgrading research[J]. Energy Convers Manage,2007,48(1):87−92. doi: 10.1016/j.enconman.2006.05.010
    [16] KUMAR M, OLAJIRE OYEDUN A, KUMAR A. A review on the current status of various hydrothermal technologies on biomass feedstock[J]. Renewable Sustainable Energy Rev,2018,81:1742−1770. doi: 10.1016/j.rser.2017.05.270
    [17] CHIARAMONTI D, PRUSSI M, BUFFI M, RIZZO A M, PARI L. Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production[J]. Appl Energy,2017,185:963−972. doi: 10.1016/j.apenergy.2015.12.001
    [18] RAHEEM A, HE Q, DING L, DASTYAR W, YU G. Evaluating performance of pyrolysis and gasification processes of agriculture residues-derived hydrochar: Effect of hydrothermal carbonization[J]. J Cleaner Prod,2022,338:130578. doi: 10.1016/j.jclepro.2022.130578
    [19] LIU Z, QUEK A, HOEKMAN S K, BALASUBRAMANIAN R. Production of solid biochar fuel from waste biomass by hydrothermal carbonization[J]. Fuel,2013,103:943−949.
    [20] SASAKI M, FANG Z, FUKUSHIMA Y, ADSCHIRI T, ARAI K. Dissolution and hydrolysis of cellulose in subcritical and supercritical water[J]. Ind Eng Chem Res,2000,39(8):2883−2890. doi: 10.1021/ie990690j
    [21] 康世民. 木质素水热转化及其产物基础应用研究[D]. 广州: 华南理工大学, 2013.

    KANG Shi-min. Hydrothermal conversion of lignin and application studies of Its products[D]. Guangzhou: South China University of Technology, 2013.
    [22] B Q L A, A D L, C X H, A P W, B L S, A Z Y. Hydro-liquefaction of microcrystalline cellulose, xylan and industrial lignin in different supercritical solvents[J]. Bioresour Technol,2016,219:281−288. doi: 10.1016/j.biortech.2016.07.048
    [23] YAMADA T, ONO H. Rapid liquefaction of lignocellulosic waste by using ethylene carbonate[J]. Bioresour Technol,1999,70(1):61−67. doi: 10.1016/S0960-8524(99)00008-5
    [24] 徐莉莉, 廖兵, 年福伟, 黄健恒, 郭逗逗, 邓慕健, 庞浩. 竹粉的多元醇液化及其在半硬质聚氨酯泡沫中的应用[J]. 林产化学与工业,2013,33(6):48−54.

    XU Li-li, LIAO Bing, NIAN Fu-wei, HUANG Jian-heng, GUO Dou-dou, DENG Mu-jian, PANG Hao. Liquefaction of bamboo powder in polyols and Its application in preparation of semi-rigid polyurethane[J]. Chem Ind Forest Prod,2013,33(6):48−54.
    [25] CHEN H, ZHANG Y, XIE S. Selective liquefaction of wheat straw in phenol and Its fractionation[J]. Appl Biochem Biotechnol,2012,167(2):250−258. doi: 10.1007/s12010-012-9675-y
    [26] 操江飞, 洪亚明, 李冬明, 熊庭宋, 沈芳, 李志霞. 水-四氢萘混合溶剂液化蔗渣的工艺研究[J]. 广西大学学报,2015,40(3):519−526.

    CAO Jiang-fei, HONG Ya-ming, LI Dong-ming, XIONG Ting-song, SHEN Fang, LI Zhi-xia. Research on liquefaction process of bagasse in a water-tetralin mixed solvent[J]. J Guangxi Univ,2015,40(3):519−526.
    [27] MARZEC A. Towards an understanding of the coal structure: A review[J]. Fuel Process Technol,2002,77:25−32.
    [28] MIURA K, NAKAGAWA H, ASHIDA R, IHARA T. Production of clean fuels by solvent skimming of coal at around 350°C[J]. Fuel,2004,83(6):733−738. doi: 10.1016/j.fuel.2003.09.019
    [29] LI X, ASHIDA R, MIURA K. Preparation of high-grade carbonaceous materials having similar chemical and physical properties from various low-rank coals by degradative solvent extraction[J]. Energy Fuels,2012,26(11):6897−6904. doi: 10.1021/ef301364p
    [30] OKUYAMA N, KOMATSU N, SHIGEHISA T, KANEKO T, TSURUYA S. Hyper-coal process to produce the ash-free coal[J]. Fuel Process Technol,2004,85(8/10):947−967. doi: 10.1016/j.fuproc.2003.10.019
    [31] 黄珊珊, 赵小燕, 谢凤梅, 曹景沛, 魏贤勇, 宝田恭之. 双电层电容器用新型无灰煤(HyperCoal)基活性炭的制备[J]. 燃料化学学报,2014,42(5):539−544.

    HUANG Shan-shan, ZHAO Xiao-yan, XIE Feng-mei, CAO Jing-pei, WEI Xian-yong. Takarada Takayuki. Preparation of HyperCoal-based activated carbons for electric double layer capacitor[J]. J Fuel Chem Technol,2014,42(5):539−544.
    [32] QIAN W, LI X, ZHU X, HU Z, YAO H. Preparation of activated carbon nanofibers using degradative solvent extraction products obtained from low-rank coal and their utilization in supercapacitors[J]. RSC Adv,2020,10(14):8172−8180. doi: 10.1039/C9RA09966B
    [33] 李显, 钱玮翔, 吴超, 胡振中, 张旭, 聂帅, 姚洪. 一种煤基活性碳纤维, 其制备方法和应用: 中国, 2019104316148[P]. 2019-05-23

    LI Xian, QIAN Wei-Xiang, WU Chao, HU Zhen-Zhong, ZHANG Xu, NIE Shuai, YAO Hong. A kind of coal-based activated carbon fiber, its preparation method and application: CN, 2019104316148[P]. 2019-05-23.
    [34] RAHIMI A, ULBRICH A, COON J J, STAHL S S. Formic-acid-induced depolymerization of oxidized lignin to aromatics[J]. Nature,2014,515(7526):249−252. doi: 10.1038/nature13867
    [35] MATHEWS J P, CHAFFEE A L. The molecular representations of coal – A review[J]. Fuel,2012,96:1−14. doi: 10.1016/j.fuel.2011.11.025
    [36] WANNAPEERA J, LI X, WORASUWANNARAK N, ASHIDA R, MIURA K. Production of high-grade carbonaceous materials and fuel having similar chemical and physical properties from various types of biomass by degradative solvent extraction[J]. Energy Fuels,2012,26(7):4521−4531.
    [37] WEI W, WU S, XU S. Enhancement of enzymatic saccharification of bagasse by ethanol based organosolv auto catalyzed pretreatment[J]. J Chem Technol Biotechnol,2017,92(3):580−587.
    [38] PASCAL K, REN H, SUN F, GUO S, HU J, HE J. Mild acid-catalyzed atmospheric glycerol organosolv pretreatment effectively improves enzymatic hydrolyzability of lignocellulosic biomass[J]. ACS omega,2019,4(22):20015−20023. doi: 10.1021/acsomega.9b02993
    [39] TANG S, DONG Q, FANG Z, MIAO Z D. Complete recovery of cellulose from rice straw pretreated with ethylene glycol and aluminum chloride for enzymatic hydrolysis[J]. Bioresour Technol,2019,284:98−104. doi: 10.1016/j.biortech.2019.03.100
    [40] HU Z, YUAN Y, LI X, TU Z, DACRES O D, ZHU Y, SHI L, HU H, LIU H, LUO G, YAO H. Yield prediction of “Thermal-dissolution based carbon enrichment” treatment on biomass wastes through coupled model of artificial neural network and AdaBoost[J]. Bioresour Technol,2022,343:126083.
    [41] HU Z, LI X, SUN Y, DONOVAN DACRES O, WANG Y, HU H, LIU H, LUO G, YAO H. “Thermal-dissolution based carbon enrichment” treatment of biomass wastes: Mechanism study of biomass pyrolysis in a highly-dispersed medium[J]. Energy Convers Manage,2021,238:114151.
    [42] HU Z, LI X, TU Z, WANG Y, YAO H. "Thermal dissolution carbon enrichment" treatment of biomass wastes: Supercapacitor electrode preparation using the residue[J]. Fuel Process Technol,2020,205:106430.
    [43] 朱贤青, 张宗, 周岐雄, 蔡颋, 乔恩, 李显, 姚洪. 稻杆的热溶剂提质及多级分离[J]. 燃料化学学报,2015,43(4):422−428.

    ZHU Xian-qing, ZHANG Zong, ZHOU Qi-xiong, CAI Ting, QIAO En, LI Xian, YAO Hong. Upgrading and multistage separation of rice straw by degradative solvent extraction[J]. J Fuel Chem Technol,2015,43(4):422−428.
    [44] 朱贤青. 农林废弃物热溶萃取提质机理及其产物高效利用研究[D]. 武汉: 华中科技大学, 2018.

    ZHU Xian-qing. Mechanism study of degradative solvent extraction of agriculture and forestry waste and the utilization of the extraction products[D]. Wuhan: Huazhong University of Science and Technology, 2018.
    [45] PRIYANTO D E. Degradative solvent extraction of low grade carbonaceous resources and the utilization of products for liquid fuels and carbon material[D]. Japan: Kyoto University, 2013.
    [46] YI-MING J, XIAN L, XIAN-QING Z, RYUICHI A, NAKORN W, ZHEN-ZHONG H, GUANG-QIAN L, HONG Y, MEI Z, JING-MEI L, FENG-YUN M. Interaction between low-rank coal and biomass during degradative solvent extraction[J]. J Fuel Chem Technol,2019,47(1):14−22. doi: 10.1016/S1872-5813(19)30003-9
    [47] MIURA K, ASHIDA R, XIAN L, WORASUWANNARAK N, WANNAPEERA J. Upgrading of low-rank coal and biomass utilizing mild solvent treatment at around 350°C [C]//proceedings of 2011 IEEE Conference on Clean Energy and Technology (CET), Kuala Lumpur, Malaysia, 2011.
    [48] 周华, 姜青青, 潘春秀, 水恒福, 雷智平, 王知彩. 神府煤与稻杆共热溶研究[J]. 燃料化学学报,2014,42(1):1−6.

    ZHOU Hua, JIANG Qing-qing, PAN Chun-xiu, SHUI Heng-fu, LEI Zhi-ping, WANG Zhi-cai. Co-thermal dissolution property of Shenfu coal and rice straw[J]. J Fuel Chem Technol,2014,42(1):1−6.
    [49] WANNAPEERA J L X, WORASUWANNARAK N, ASHIDA R, MIURA K. Upgrading of biomass by the degradative thermal extraction at mild condition[R]. Ho Chi Minh City Vietnam, 2011.
    [50] BRIDGWATER A V. Review of fast pyrolysis of biomass and product upgrading[J]. Biomass Bioenergy,2012,38:68−94.
    [51] CHEW J J, DOSHI V. Recent advances in biomass pretreatment – Torrefaction fundamentals and technology[J]. Renewable Sustainable Energy Rev,2011,15(8):4212−4222. doi: 10.1016/j.rser.2011.09.017
    [52] CHAO W, PAN J, LI J, YANG Z. Comparative studies of products produced from four different biomass samples via deoxy-liquefaction[J]. Bioresour Technol,2008,99(8):2778−2786. doi: 10.1016/j.biortech.2007.06.023
    [53] STELT M, GERHAUSER H, KIEL J, PTASINSKI K J. Biomass upgrading by torrefaction for the production of biofuels: A review[J]. Biomass Bioenergy,2011,35(9):3748−3762.
    [54] YILGIN M, PEHLIVAN D. Poplar wood-water slurry liquefaction in the presence of formic acid catalyst[J]. Energy Convers Manage,2004,45(17):2687−2696. doi: 10.1016/j.enconman.2003.12.010
    [55] TOOR S S, ROSENDAHL L, RUDOLF A. Hydrothermal liquefaction of biomass: A review of subcritical water technologies[J]. Energy,2011,36(5):2328−2342. doi: 10.1016/j.energy.2011.03.013
    [56] 谭洪, 张磊, 韩玉阁. 不同种类生物质热解炭的特性实验研究[J]. 生物质化学工程,2009,43(5):31−34.

    TAN Hong, ZHANG Lei, HAN Yu-Ge. Experimental research on the characterization of char product from biomass pyrolysis[J]. Bio Chem Eng,2009,43(5):31−34.
    [57] JADSADAJERM S, MUANGTHONG-ON T, WANNAPEERA J, OHGAKI H, MIURA K, WORASUWANNARAK N. Degradative solvent extraction of biomass using petroleum based solvents[J]. Bioresour Technol,2018,260:169−176. doi: 10.1016/j.biortech.2018.03.124
    [58] OKUYAMA N, KOMATSU N, SHIGEHISA T, KANEKO T, TSURUYA S. Study on the hyper-coal process for brown coal upgrading[J]. Coal Prep,2005,25(4):295−311.
    [59] LI X, ZHANG Z, ZHANG L, ZHU X, HU Z, QIAN W, ASHIDA R, MIURA K, HU H, LUO G. Degradative solvent extraction of low-rank coals by the mixture of low molecular weight extract and solvent as recycled solvent[J]. Fuel Process Technol,2018,173:48−55. doi: 10.1016/j.fuproc.2018.01.005
    [60] JADSADAJERM S, MIURA K, WORASUWANNARAK N. Solvent recycling operation of the degradative solvent extraction of biomass to minimize the amount of solvent required[J]. Energy Fuels,2018,32(11):11555−11563.
    [61] ZHU X, XUE Y, LI X, ZHANG Z, SUN W, ASHIDA R, MIURA K, YAO H. Mechanism study of degradative solvent extraction of biomass[J]. Fuel,2016,165:10−18. doi: 10.1016/j.fuel.2015.10.021
    [62] ZHU X, TANG J, LI X, LAN W, XU K, FANG Y, ASHIDA R, MIURA K, LUO G, YAO H. Modeling and kinetic study of degradative solvent extraction of biomass wastes[J]. Energy Fuels,2017,31(5):5097−5103. doi: 10.1021/acs.energyfuels.6b03442
    [63] 汪恭二, 史世庄, 罗永辉, 鲁帅, 林志龙. 添加剂在配煤炼焦中的研究进展[J]. 燃料与化工,2015,46(5):20−22.

    WANG Gong-er, SHI Shi-zhuang, LUO Yong-hui, LU Shuai, LIN Zhi-long. Research progress on additives in coking coal blending[J]. Fuel Chem Proc,2015,46(5):20−22.
    [64] 郑明东, 水恒福, 崔平. 炼焦新工艺与技术 [M]. 北京: 化学工业出版社, 2006.

    ZHENG Ming-dong, SHUI Heng-fu, CUI Ping. New Coking Process and Technology[M]. Beijing: Chemical Industry Press, 2006.
    [65] 王晓利, 王晓翠, 张冬梅. 一种新型复合型煤粘结剂的研究[J]. 中国矿业,2004,13(10):82−83.

    WANG Xiao-li, WANG Xiao-cui, ZHANG Dong-mei. Study on a new type of composite briquette binder[J]. China Min Mag,2004,13(10):82−83.
    [66] 张钊, 周霞萍, 王杰. 复合碱型腐植酸型煤粘结剂的特性研究[J]. 洁净煤技术,2011,17(1):37−40.

    ZHANG Zhao, ZHOU Xia-ping, WANG Jie. Study on characteristics of complex alkali humic acid as a binder of coal briquette[J]. Clean Coal Technol,2011,17(1):37−40.
    [67] BURCHILL P, HALLAM G D, LOWE A J, MOON N. Studies of coals and binder systems for smokeless fuel briquettes[J]. Fuel Process Technol,1994,41(1):63−77. doi: 10.1016/0378-3820(94)90060-4
    [68] X L, J W, N W, R A, K. M. Degradative solvent extraction and fractionation of Low-Grade carbonaceous resources [C]//proceedings of The 11th China-Japan Symposium on Coal and C1 Chemistry, Yinchuan, 2011. China.
    [69] LI X W J, WORASUWANNARAK N, ASHIDA R, MIURA K. Upgrading of low grade carbonaceous resources through solvent treatment to produce solid fuels and precursors for chemicals and materials [C]//proceedings of 8th International Pittsburgh Coal Conference, Pittsburgh, 2011. USA.
    [70] 李显, 张小勇, 朱贤青, 李宇航, 张宗, 罗光前, 姚洪, 吴超. 一种将生物质萃取产物作为添加剂应用于配煤炼焦的方法: 中国, 2015100812032[P]. 2015-02-13

    LI Xian, ZHANG Xiao-yong, ZHU Xian-qing, LI Yu-hang, ZHANG Zong, LUO Guang-qian, YAO Hong, WU Chao. A method for applying biomass extraction product as additive to coal blending and coking: CN, 2015100812032[P]. 2015-02-13.
    [71] XIANQING Z, XIAN L, MIURA. KOUICHI, ASHIDA. RYUICHI, WENQIANG L. Novel carbon-rich additives preparation by degradative solvent extraction of biomass wastes for coke-making[J]. Bioresour Technol,2016,207:85−91. doi: 10.1016/j.biortech.2016.01.105
    [72] ZHU X G J, TONG S, GAO Y, CHANG C, WU C. Novel additives obtained from low grade biomasses for coke-making. [R]. Saint-Petersburg, Russia, 2016.
    [73] LI X, PRIYANTO D E, ASHIDA R, MIURA K. Two-stage conversion of low-rank coal or biomass into liquid fuel under mild conditions[J]. Energy Fuels,2015,29(5):3127−3133.
    [74] 朱贤青, 李显, 姚洪, 徐凯, 胡振中, 任杰, 王睿. 一种耦合热溶萃取和热解制备高品质生物油和气体的方法: 中国, 2016108343757[P]. 2016-09-20

    ZHU Xian-qing, LI Xian, YAO Hong, XU Kai, HU Zhen-zhong, REN Jie, WANG Rui. A method for preparing high-quality bio-oil and gas by coupling thermal extraction and pyrolysis: CN, 2016108343757[P]. 2016-09-20.
    [75] ZHU X, TONG S, LI X, GAO Y, XU Y, DACRES O D, ASHIDA R, MIURA K, LIU W, YAO H. Conversion of biomass into high-quality Bio-oils by degradative solvent extraction combined with subsequent pyrolysis[J]. Energy Fuels,2017,31(4):3987−3994. doi: 10.1021/acs.energyfuels.6b03162
    [76] WU C, QIAN W, LI X, ZHU X, YAO H. Preparation of carbon nanofiber with specific features by degradative solvent extraction product from biomass wastes[J]. Fuel,2019,258:116149. doi: 10.1016/j.fuel.2019.116149
    [77] 李显, 吴超, 朱贤青, 钱玮翔, 胡振中, 姚洪, 汪峰, 张旭, 聂帅, 熊钊. 生物质萃取物与聚丙烯腈共纺制备碳纤维的方法及碳纤维: 中国, 2017114534525[P]. 2017-12-28

    LI Xian, WU Chao, ZHU Xian-qing, QIAN Wei-xiang, HU Zhen-zhong, YAO Hong, WANG Feng, ZHANG Xu, NIE Shuai, XIONG Zhao. Method for preparing carbon fiber by co-spinning of biomass extract and polyacrylonitrile and carbon fiber: CN, 2017114534525[P]. 2017-12-28.
    [78] 吴超. 农林废弃物热溶富碳萃取物制备碳纤维研究[D]. 武汉: 华中科技大学, 2019.

    WU Chao. Carbon fiber preparation from extracts obtained by carbon enrichment of agriculture and forestry wastes[D]. Wuhan: Huazhong University of Science and Technology, 2019.
    [79] LI X, ZHU X Q, OKUDA K, ZHANG Z, ASHIDA R, YAO H, MIURA K. Preparation of carbon fibers from low-molecular-weight compounds obtained from low-rank coal and biomass by solvent extraction[J]. New Carbon Mater,2017,32(1):41−47. doi: 10.1016/S1872-5805(17)60106-9
    [80] 李显, 胡振中, 姚洪, 朱贤青, 徐凯, 吴超, 钱玮翔. 基于生物质热溶萃取物制备超级电容器电极材料的方法: 中国, 2018101135841[P]. 2018-02-05

    LI Xian, HU Zhen-zhong, YAO Hong, ZHU Xian-qing, XU Kai, WU Chao, QIAN Wei-xiang. Method for preparing supercapacitor electrode material based on biomass hot-melt extract: CN, 2018101135841[P]. 2018-02-05.
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  29
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-22
  • 录用日期:  2022-05-26
  • 修回日期:  2022-05-20
  • 网络出版日期:  2022-10-17
  • 刊出日期:  2023-01-18

目录

    /

    返回文章
    返回