留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

十氢萘在酸性催化剂上的反应路径及生焦研究

王永超 严加松 王若瑜 李蕊 王仕豪

王永超, 严加松, 王若瑜, 李蕊, 王仕豪. 十氢萘在酸性催化剂上的反应路径及生焦研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022081
引用本文: 王永超, 严加松, 王若瑜, 李蕊, 王仕豪. 十氢萘在酸性催化剂上的反应路径及生焦研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022081
WANG Yong-chao, YAN Jia-song, WANG Ruo-yu, Li Rui, WANG Shi-hao. Study on reaction path and coke formation of decalin on acid catalyst[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022081
Citation: WANG Yong-chao, YAN Jia-song, WANG Ruo-yu, Li Rui, WANG Shi-hao. Study on reaction path and coke formation of decalin on acid catalyst[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022081

十氢萘在酸性催化剂上的反应路径及生焦研究

doi: 10.19906/j.cnki.JFCT.2022081
基金项目: 国家自然科学基金资助项目(22205261)
详细信息
    通讯作者:

    Tel:010-82368418;E-mail: yanjs.ripp@sinopec.com

  • 中图分类号: TQ031.9

Study on reaction path and coke formation of decalin on acid catalyst

Funds: The project was supported by National Natural Science Foundation of China (22205261)
  • 摘要: 采用小型固定流化床装置(ACE Model C),研究了反应温度460 ~ 540 ℃范围内,模型化合物十氢萘在Y分子筛催化剂上的裂化的反应路径及生焦机理。结果表明,十氢萘裂化的初始阶段,H + 进攻十氢萘上与叔碳原子相连的C—H键和C—C键形成非经典五配位叔正碳离子是其最主要的引发反应;十氢萘裂化产物主要是丙烯、丙烷、异丁烷、异戊烷、甲基环戊烷、甲苯、二甲基苯等;产物的收率在催化剂上由大到小为:非芳烃、单环芳烃、双环芳烃;十氢萘催化生焦的机理是碳正离子机理,随反应温度和分子筛酸量的升高,双分子氢转移以及脱氢缩合能力增强,焦炭产率和转化率也随之升高。
  • 图  1  十氢萘分子的三维结构

    Figure  1  3D structure of decalin molecule

    图  2  十氢萘C−H键的键能

    Figure  2  Bond energy of C−H bond of decalin

    图  3  十氢萘C—C键的键能

    Figure  3  Bond energy of C—C bond of decalin

    图  4  H + 进攻十氢萘叔碳上的C−H键

    Figure  4  H + attacking the C−H bond on the tertiary decalin carbon

    图  5  H + 进攻十氢萘叔碳上的C−C键

    Figure  5  H + attacking C−C bonds on tertiary decalin carbons

    图  6  十氢萘电子云密度分布剖面图

    Figure  6  Profile of decalin electron cloud density distribution

    图  7  十氢萘催化裂化主要反应路径

    Figure  7  Main reaction paths of decalin catalytic cracking

    图  8  十氢萘在催化剂USY-C与REY-C上的裂化产物分布

    Figure  8  Distribution of Decalin Cracking Products on Catalysts USY-C and REY-C

    图  9  十氢萘生焦的主要反应路径

    Figure  9  Main reaction pathways of decahydronaphthalene

    表  1  2种分子筛催化剂的物化性质

    Table  1  Main physicochemical properties of the two catalysts

    Catalystn(SiO2)/n(Al2O3)SBET/
    (m2·g−1)
    V/
    (mL·g−1)
    Smicro/
    (m2· g−1)
    Vmicro/
    (mL·g−1)
    Acidity amount/
    (µmol·g−1)
    USY-C8.8177.40.221115.60.04665.2
    REY-C4.8160.30.193109.80.044102.1
    下载: 导出CSV

    表  2  老化后催化剂的吡啶红外表征结果

    Table  2  Pyridine red appearance characteristics of the catalyst after aging

    CatalystAcidity(200 ℃)/
    (µmol·g−1)
    Acidity(350 ℃)/
    (µmol·g−1)
    LB LB
    USY-C164177110127
    REY-C256642175358
    下载: 导出CSV

    表  3  H + 三种进攻反应的能垒

    Table  3  Energy barrier of H + three attack reactions

    Offensive positionEnergy barrier/(kJ·mol−1
    C−H键203.7
    C−C键1162.8
    C−C键2238.5
    下载: 导出CSV

    表  4  十氢萘催化裂化的主要产物质量分数w/%

    Table  4  Mass fraction of main products of catalytic cracking of decalin W /%

    CatalystUSY-CREY-CCatalystUSY-CREY-C
    Hydrogen 0.026 0.021 Methyl hexane 0.480 0.448
    Methane 0.061 0.153 Heptane 0.045 0.026
    Ethane 0.041 0.182 Heptene 0.100 0.062
    Ethylene 0.394 0.775 Methylcyclohexane 1.332 1.042
    Propane 1.573 4.432 Trimethylcyclopentane 0.182 0.191
    Propylene 2.352 1.993 Dimethylhexane 0.475 0.460
    N-Butane 1.338 3.200 Toluene 2.077 7.214
    Isobutane 7.111 10.409 Methylheptane 0.065 0.047
    1-Butene 0.325 0.229 Dimethylcyclohexane 0.176 0.135
    Isobutylene 0.378 0.152 Isopropylcyclopentane 0.028 0.020
    Cis-2-butene 0.407 0.287 Ethyl cyclohexane 0.033 0.030
    Trans-2-butene 0.578 0.408 Ethylbenzene 0.370 1.410
    Isopentane 4.222 6.900 Xylene 1.932 6.519
    Pentane 0.236 0.475 Propylbenzene 0.054 0.088
    Cyclopentane 0.202 0.192 Dimethyl octane 0.132 0.112
    Methamene 0.719 0.462 Methylethylbenzene 0.721 1.711
    Trans-2-pentene 0.066 0.035 Trimethylbenzene 1.611 2.545
    1-Pentene 0.038 0.034 Methylnonane 0.488 0.254
    Cis-2-pentene 0.040 0.036 N-decane 0.338 0.170
    Cyclopentene 0.072 0.023 Butylbenzene 0.163 0.073
    Methyl pentene 1.076 0.942 Methylpropylbenzene 2.322 2.347
    Isomerhexene 2.282 2.913 Indan 0.554 0.895
    Cyclohexane 0.318 0.377 Diethylbenzene 0.253 0.191
    Malehexene 0.094 0.098 Ethyl,dimethylbenzene 0.478 0.563
    Hexane 1.035 2.091 Methylindan 5.467 4.818
    Methylpentane 0.477 0.760 Tetramethyl benzene 3.312 5.148
    Methylcyclopentane 4.217 3.866 N-undecane 0.027 0.032
    Methylcyclohexane 0.284 0.275 Methyl undecane 0.245 0.421
    Benzene 0.971 2.337 Naphthalene 2.865 2.672
    Dimethylpentane 0.141 0.166 Dimethylindan 0.334 0.322
    Dimethylcyclopentane 1.584 1.321 Coke 0.305 1.522
    Cyclohexene 0.021 0.029 Conversion/% 72.039 87.940
    Conditions: mass ratio of catalyst to oil is 6, 8 h−1, 500 ℃.
    下载: 导出CSV

    表  5  十氢萘在不同反应温度下的生焦产率和转化率

    Table  5  Coke yield and conversion of decalin at different reaction temperatures


    Catalyst
    Reaction temperature/℃
    460 ℃ 500 ℃ 540 ℃
    Coke/%Conversion/%Coke/%Conversion/%Coke/%Conversion/%
    USY-C0.2966.96 0.3172.04 0.3475.82
    REY-C1.4085.981.5287.941.5488.63
    Conditions: mass ratio of catalyst to oil is 6, 8 h−1.
    下载: 导出CSV
  • [1] 杜岩. 柴油芳烃加氢饱和及环烷烃开环的研究[D]. 天津大学, 2007.1.

    DU Yan. Aromatics hydrogenation saturation and naphthene ring opening in diesel [D] Tianjin University, 2007.1.
    [2] ZHANG S, LIU D, DENG W, QUE G. A review of slurry-phase hydrocracking heavy oil technology[J]. Energy & Fuels,2009,21(6):3057−3062.
    [3] CHAREONPANICH M, ZHANG Z G, TOMITA A. Hydrocracking of aromatic hydrocarbons over USY-Zeolite[J]. Energy & Fuels,1996,10(4):927−931.
    [4] WANG Q, FAN H, WU S. Water as an additive to enhance the ring opening of naphthalene[J]. Green Chemistry and Engineering,2012,14(4):1152−1158. doi: 10.1039/c2gc16554f
    [5] ARDAKANI S J, LIU X, SMITH K J. Hydrogenation and ring opening of naphthalene on bulk and supported Mo2C catalysts[J]. Applied Catalysis A General,2007,324(none):9−19.
    [6] 鲁旭, 赵秦峰, 兰玲. 催化裂化轻循环油(LCO)加氢处理多产高辛烷值汽油技术研究进展[J]. 化工进展,2017,36(1):114−120.

    LU XU, ZHAO Qin-feng, LAN Ling. Research progress on producing more high octane gasoline through hydrogenation from FCC light cycle oil (LCO)[J]. Chemical Industry and Engineering Progress,2017,36(1):114−120.
    [7] 张奇, 许友好. 加氢柴油催化裂化反应中芳烃生成及转化规律研究[J]. 石油炼制与化工,2014,45(2):8−12. doi: 10.3969/j.issn.1005-2399.2014.02.002

    ZHANG Qi, XU You-hao. Study on aromatics balance in hydrotreated diesel catalytic cracking process[J]. Petroleum Processing and Petrochemicals,2014,45(2):8−12. doi: 10.3969/j.issn.1005-2399.2014.02.002
    [8] 林世雄. 石油炼制工程 (第三版)[M]. 石油工业出版社, 2000.

    LIN Shi-xiong Petroleum refining engineering (Third Edition) [M]. Petroleum Industry Press, 2000.
    [9] DU H, FAIRBRIDGE C, HONG Y, RING Z. The chemistry of selective ring-opening catalysts[J]. Applied Catalysis A General,2005,294(1):1−21. doi: 10.1016/j.apcata.2005.06.033
    [10] 宋海涛, 达志坚, 朱玉霞, 田辉平. 不同类型VGO的烃类组成及其催化裂化反应性能研究[J]. 石油炼制与化工,2012,43(2):1−8. doi: 10.3969/j.issn.1005-2399.2012.02.001

    SONG Hai-tao, DA Zhi-jian, ZHU Yu-xia, TIAN Hui-ping. A study of the hydrocarbon composition and catalytic cracking performance of different VGO[J]. Petroleum Processing and Petrochemicals,2012,43(2):1−8. doi: 10.3969/j.issn.1005-2399.2012.02.001
    [11] ALZAID A H . A kinetic study of decalin selective ring opening reactions over Iridium supported on H-Beta zeolite catalyst. 2011.
    [12] Al-SABAWI M N . Heterogeneous kinetic modeling of the catalytic conversion of cycloparaffins. [D]. The University of Western Ontario (Canada). 2009.
    [13] KANGAS M, KUBICKA D, SALMI T. Reaction routes in selective ring opening of naphthenes[J]. Topics in Catalysis,2010,53(15-18):1172−1175. doi: 10.1007/s11244-010-9556-y
    [14] CORMA A, ORCHILLES A V. Current views on the mechanism of catalytic cracking[J]. Microporous & Mesoporous Materials,2000,35:21−30.
    [15] DAVID KUBICKA, KUMAR N, PAIVI MAKI-ARVELA. Ring opening of decalin over zeolites[J]. Journal of Catalysis,2004,222(1):65−79. doi: 10.1016/j.jcat.2003.10.027
    [16] CORMA A, V GONZALEZ-ALFARO, AV ORCHILLES. Decalin and tetralin as probe molecules for cracking and hydrotreating the light cycle oil[J]. Journal of Catalysis,2001,200(1):34−44. doi: 10.1006/jcat.2001.3181
    [17] VOGE H H, GOOD G M, GREENSFELDER B S. Catalytic cracking of pure hydrocarbons[J]. Industrial & Engineering Chemistry,1946,38(10):1033−1040.
    [18] MALEE, JOSE E H, SIRIPORN J. Ring opening of decalin and tetralin on HY and Pt/HY zeolite catalysts[J]. Journal of Catalysis,2004,228(1):100−113. doi: 10.1016/j.jcat.2004.08.030
    [19] MOSTAD H B, RIIS T U, ELLESTAD O H. Catalytic cracking of naphthenes and naphtheno-aromatics in fixed bed micro reactors[J]. Applied Catalysis,1990,63(1):345−364. doi: 10.1016/S0166-9834(00)81724-8
    [20] CHAREONPANICH M, ZHANG Z G, TOMITA A. Hydrocracking of aromatic hydrocarbons over USY-Zeolite[J]. Energy & Fuels,1996,10(4):927−931.
    [21] GALPERIN L B, BRICKER J C, HOLMGREN J R. Effect of support acid–basic properties on activity and selectivity of Pt catalysts in reaction of methylcyclopentane ring opening[J]. Applied Catalysis A General,2003,239(1):297−304.
    [22] 杨光福. 典型石油加工工艺过程中结焦形态及其危害[J]. 安全,2011,(10):19−21. doi: 10.3969/j.issn.1002-3631.2011.10.006

    YANG Guang-fu. Coking form and its harm in typical petroleum processing process[J]. Safety,2011,(10):19−21. doi: 10.3969/j.issn.1002-3631.2011.10.006
    [23] CERQUEIRA H S, CAEIRO G, COSTA L. Deactivation of FCC catalysts[J]. Journal of Molecular Catalysis A:Chemical,2008,292(1-2):1−13. doi: 10.1016/j.molcata.2008.06.014
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  7
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-19
  • 录用日期:  2022-10-30
  • 修回日期:  2022-10-27
  • 网络出版日期:  2022-11-16

目录

    /

    返回文章
    返回