留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rh/CeOx-C3N4催化剂的制备及其催化水合肼制氢性能研究-重投

郑君宁 吴慧 刘勇 李贵 许立信 叶明富 万超

郑君宁, 吴慧, 刘勇, 李贵, 许立信, 叶明富, 万超. Rh/CeOx-C3N4催化剂的制备及其催化水合肼制氢性能研究-重投[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022082
引用本文: 郑君宁, 吴慧, 刘勇, 李贵, 许立信, 叶明富, 万超. Rh/CeOx-C3N4催化剂的制备及其催化水合肼制氢性能研究-重投[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022082
ZHENG Jun-ning, WU Hui, LIU Yong, LI Gui, XU Li-xin, YE Ming-fu, WAN Chao. Preparation of Rh/CeOx-C3N4 catalyst and its catalytic dehydrogenation of hydrazine hydrate[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022082
Citation: ZHENG Jun-ning, WU Hui, LIU Yong, LI Gui, XU Li-xin, YE Ming-fu, WAN Chao. Preparation of Rh/CeOx-C3N4 catalyst and its catalytic dehydrogenation of hydrazine hydrate[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022082

Rh/CeOx-C3N4催化剂的制备及其催化水合肼制氢性能研究-重投

doi: 10.19906/j.cnki.JFCT.2022082
基金项目: 国家自然科学基金青年基金项目(22108238)、安徽省自然科学基金青年基金项目(1908085QB68)、安徽省科技重大专项(201903a05020055)、中国博士后面上项目(2019M662060)和特别资助站中项目(2020T130580)、安徽省光电磁性功能材料重点实验室开放研究基金(ZD2021007)、江西省生态化工工程研究中心开放研究基金(STKF2109)、2022年国家级大学生创新创业训练计划项目(202210360037)
详细信息
    通讯作者:

    Corresponding auther. E-mail: wanchao@zju.edu.cn

  • 中图分类号: O643.36

Preparation of Rh/CeOx-C3N4 catalyst and its catalytic dehydrogenation of hydrazine hydrate

Funds: The project was supported by the National Natural Science Foundation of China (22108238), Anhui Provincial Natural Science Foundation (1908085QB68), Major Science and Technology Project of Anhui Province (201903a05020055), China Postdoctoral Science Foundation (2019M662060, 2020T130580), Open Research Funds of Anhui Key Laboratory of Photoelectric-Magnetic Functional Materials(ZD2021007), Open Research Funds of Jiangxi Province Engineering Research Center of Ecological Chemical Industry(STKF2109) and 2022 National Undergraduate Innovation and entrepreneurship training program (202210360037)
  • 摘要: 在温和条件下,开发一种高效、高选择性的催化剂是实现水合肼(N2H4·H2O)分解制氢应用的关键。本文将CeOx引入催化剂载体中,在N2气氛下高温焙烧制得CeOx掺杂的氮化碳材料作为载体,通过浸渍还原法将活性组分Rh负载到CeOx-C3N4载体上合成Rh/CeOx-C3N4催化剂,并探究其对催化水合肼制氢的性能的影响。探究结果表明,Rh/CeOx-C3N4催化剂中,活性组分Rh与CeOx之间存在协同效应,其中CeOx的掺杂有效地分散和稳定金属活性组分,为催化反应提供更多的活性位点。因此该催化剂对催化水合肼制氢具有良好的催化活性。所制备的Rh/CeOx-C3N4催化剂催化水合肼展现出最好的催化活性,初始转化率TOF值高达1959.24 h−1。循环5次后,催化活性依然保持良好,表明其拥有良好的稳定性。
  • 图  1  Rh/CeOx-C3N4合成示意图

    Figure  1  The synthetic schematic illustration of Rh/CeOx-C3N4

    图  2  (a, b)Rh/20%CeOx-C3N4催化剂的扫描电镜图和(c, d)透射电镜图; (e, f, g)掺杂Ce含量分别为0,10%,20%制备的Rh/CeOx-C3N4催化剂的透射电镜图和Rh的粒径分布图

    Figure  2  (a, b) SEM images and(c, d) TEM images of Rh/20%CeOx-C3N4、(e, f, g)TEM images of Rh/CeOx-C3N4 prepared with doped Ce content of 0, 10%, 20% and particle size distributions of Rh

    图  3  Rh/20%CeOx-C3N4催化剂的HADDF-STEM图和对应的C、N、Ce、Rh元素映射图

    Figure  3  HADDF-STEM and the corresponding elemental mapping of C, N, Ce, Rh in Rh/CeOx-C3N4

    图  4  不同CeOx掺杂量的Rh/CeOx-C3N4催化剂的XRD谱图

    Figure  4  The X-ray diffraction (XRD) patterns of Rh/CeOx-C3N4 catalysts with different CeOx doping amounts

    图  5  (a) Rh/CeOx-C3N4样品中Rh 3d的XPS谱图;(b) Rh/CeOx-C3N4样品中Ce 3d的XPS谱图

    Figure  5  (a) XPS spectra of Rh 3d in Rh/CeOx-C3N4 samples; (b) XPS spectra of Ce 3d in Rh/CeOx-C3N4 samples

    图  6  (a) 不同CeOx掺杂量的Rh/CeOx-C3N4催化水合肼分解产氢反应中的制氢速率曲线;(b) 不同CeOx掺杂量的Rh/CeOx-C3N4催化水合肼分解产氢所对应的TOF值

    Figure  6  (a) Dehydrogenation rate curves of Rh/CeOx-C3N4 with different CeOx doping in the catalytic decomposition of N2H4·H2O to produce hydrogen; (b) TOF values of Rh/CeOx-C3N4 with different CeOx doping catalyzed the decomposition of N2H4·H2O to produce hydrogen

    图  7  Rh/CeOx-C3N4催化剂在不同浓度的氢氧化钠溶液中催化水合肼分解的速率曲线

    Figure  7  The rate curves of Rh/CeOx-C3N4 catalyzing the decomposition of N2H4·H2O in NaOH solutions with different concentrations

    图  8  (a) 不同温度下Rh/CeOx-C3N4催化剂催化水合肼分解制氢的速率曲线;(b) 反应速率的对数与温度倒数的关系曲线

    Figure  8  (a) Rate curves of hydrolysis and decomposition of N2H4·H2O catalyzed by Rh/CeOx-C3N4 at different temperatures; (b) Relationship curve between logarithm of reaction rate and reciprocal temperature

    图  9  Rh/CeOx-C3N4催化水合肼分解反应的循环性能图

    Figure  9  Cycle stability test of Rh/CeOx-C3N4 for hydrogen generation from the hydrolysis of N2HH2O

  • [1] 邹爱华, 徐晓梅, 周浪, 林路贺, 康志兵. 石墨烯负载Co-CeOx纳米复合物的制备及其对氨硼烷水解产氢的催化性能[J]. 燃料化学学报,2021,49(9):1371−1378. doi: 10.1016/S1872-5813(21)60085-3

    ZOU Ai-hua, XU Xiao-mei, ZHOU Lang, LIN Lu-he, KANG Zhi-bing. Preparation of graphene-supported Co-CeOx nanocomposites as a catalyst for the hydrolytic dehydrogenation of ammonia borane[J]. J Fuel Chem Technol,2021,49(9):1371−1378. doi: 10.1016/S1872-5813(21)60085-3
    [2] ZHANG Z J, ZHANG S L, YAO Q L, FENG G, ZHU M H, LU Z H. Metal-organic framework immobilized RhNi alloy nanoparticles for complete H2 evolution from hydrazine borane and hydrous hydrazine[J]. Inorg Chem Front,2018,5(2):370−377. doi: 10.1039/C7QI00555E
    [3] ASCHLAPBACH L, ZUTTEL A. Hydrogen-storage materials for mobile applications[J]. Nature,2001,414(6861):353−358. doi: 10.1038/35104634
    [4] 姜伟丽, 何利梅, 黄斌, 陈雅琪, 周广林, 周红军. Rh-BIPHEPHOS催化剂作用下的丁烯异构与氢甲酰化反应[J]. 燃料化学学报,2021,49(8):1173−1180. doi: 10.1016/S1872-5813(21)60126-3

    JIANG Wei-li, HE Li-mei, HUANG Bin, CHEN Ya-qi, ZHOU Guang-lin, ZHOU Hong-jun. Isomerization and hydroformylation of butenes under the catalysis of Rh-BIPHEPHOS[J]. J Fuel Chem Technol,2021,49(8):1173−1180. doi: 10.1016/S1872-5813(21)60126-3
    [5] VALERO-PEDRAZA M J, COT D, PETIT E, AGUEY-ZINSOU K F, ALAUZUN J G, DEMIRCI U B. Ammonia borane nanospheres for hydrogen storage[J]. ACS Appl Nano Mater,2019,2(2):1129−1138. doi: 10.1021/acsanm.9b00176
    [6] SEMIZ L. Hydrogen generation from ammonia borane by polymer supported platinum films[J]. Chem Phys Lett,2021,767:138365. doi: 10.1016/j.cplett.2021.138365
    [7] GUO F, ZOU H, YAO Q, HUANG B, LU Z H. Monodispersed bimetallic nanoparticles anchored on TiO2-decorated titanium carbide MXene for efficient hydrogen production from hydrazine in aqueous solution[J]. Renewable Energy,2020,155:1293−1301. doi: 10.1016/j.renene.2020.04.047
    [8] 郭淼鑫, 杜君臣, 李红, 张秀娟, 张爱敏, 赵云昆. 甲烷燃烧贵金属催化剂研究新进展[J]. 稀有金属,2021,45(9):1133−1147. doi: 10.13373/j.cnki.cjrm.XY19110015

    GUO Miao-xin, DU Jun-chen, LI Hong, ZHANG Xiu-juan, ZHANG Ai-min, ZHAO Yun-kun. New research progress on precious metal catalysts for methane combustion. chinese journal of rare metals[J]. Chin J Rare Met,2021,45(9):1133−1147. doi: 10.13373/j.cnki.cjrm.XY19110015
    [9] MOTTA D, BARLOCCO I, BELLOMI S, VILLA A, DIMITRATOS N. Hydrous hydrazine decomposition for hydrogen production using of Ir/CeO2: Effect of reaction parameters on the activity[J]. Nanomaterials,2021,11(5):1340. doi: 10.3390/nano11051340
    [10] HE L, LIANG B, HUANG Y, ZHANG T. Design strategies of highly selective nickel catalysts for H2 production via hydrous hydrazine decomposition: a review[J]. Natl Sci Rev,2018,5(3):356−364. doi: 10.1093/nsr/nwx123
    [11] WAN C, SUN L, XU L X, CHENG D G, CHEN F Q, ZHAN X L, YANG Y R. Novel NiPt alloy nanoparticle decorated 2D layered g-C3N4 nanosheets: a highly efficient catalyst for hydrogen generation from hydrous hydrazine[J]. J Mater Chem A,2019,7(15):8798−8804. doi: 10.1039/C9TA01535C
    [12] WANG J, LI W, WEN Y, ZHAO X C, ZHOU Y L, LI Y T, YANG L J. Rh-Ni-B nanoparticles as highly efficient catalysts for hydrogen generation from hydrous hydrazine[J]. Adv Energy Mater,2015,5(10):1401879. doi: 10.1002/aenm.201401879
    [13] ARANISHI K, SINGH A K, XU, Q. Dendrimer-encapsulated bimetallic Pt-Ni nanoparticles as highly efficient catalysts for hydrogen generation from chemical hydrogen storage materials[J]. ChemCatChem,2013,5(8):2248−2252. doi: 10.1002/cctc.201300143
    [14] ZHOU L, LUO X J, XU L X, WAN C, YE M F. Pt-Ni nanoalloys for H2 generation from hydrous hydrazine[J]. Catalysts,2020,10(8):930. doi: 10.3390/catal10080930
    [15] WAN C, ZHOU L, SUN L, XU L X, CHENG D G, CHEN F Q, ZHAN X L, YANG Y R. Boosting visible-light-driven hydrogen evolution from formic acid over AgPd/2D g-C3N4 nanosheets Mott-Schottky photocatalyst[J]. Chem Eng J,2020,396:125229. doi: 10.1016/j.cej.2020.125229
    [16] DU X, CAI P, LUO W, CHENG G Z. Facile synthesis of P-doped Rh nanoparticles with superior catalytic activity toward dehydrogenation of hydrous hydrazine[J]. Int J Hydrogen Energy,2017,42(9):6137−6143. doi: 10.1016/j.ijhydene.2016.12.049
    [17] 王辉, 李士君, 王梅, 裴彦博 胡绍争. 载银g-C3N4(Ⅰ)/g-C3N4(Ⅱ)同素异质结催化剂的制备及光催化固氮产氨性能[J]. 材料导报,2018,32(20):3496−3503. doi: 10.11896/j.issn.1005-023X.2018.20.002

    WANG Hui, LI Shi-jun, WANG Mei, PEI Yan-bo, HU Shao-zheng. Ag-loaded g-C3N4(Ⅰ)/g-C3N4(Ⅱ) isotype heterojunction catalysts with an application to photocatalytic N2 fixation[J]. Materials Review,2018,32(20):3496−3503. doi: 10.11896/j.issn.1005-023X.2018.20.002
    [18] QIU Y, SHI Q, ZHOU L, CHEN M H, CHEN C, TANG P P, WALKER G S, WANG P. NiPt nanoparticles anchored onto hierarchical nanoporous N-doped carbon as an efficient catalyst for hydrogen generation from hydrazine monohydrate[J]. ACS Appl Mater Interfaces,2020,12(16):18617−18624. doi: 10.1021/acsami.0c03096
    [19] 石张平, 祁晓岚, 李旭光, 李华英, 李经球, 孔德金, 俞俊. La2O3助剂对Rh/SiO2催化CO加氢反应性能的影响[J]. 燃料化学学报,2020,48(4):483−489. doi: 10.3969/j.issn.0253-2409.2020.04.012

    SHI Zhang-ping, QI Xiao-lan, LI Xu-guang, LI Hua-ying, LI Jing-qiu, KONG De-jin, YU Jun. Effect of La2O3 addition on the catalytic performance of Rh/SiO2 for CO hydrogenation[J]. J Fuel Chem Technol,2020,48(4):483−489. doi: 10.3969/j.issn.0253-2409.2020.04.012
    [20] WU D, WEN M, LIN X, WU Q S, GU C, CHEN H X. A NiCo/NiO-CoOx ultrathin layered catalyst with strong basic sites for high-performance H2 generation from hydrous hydrazine[J]. J Mater Chem A,2016,4(17):6595−6602. doi: 10.1039/C6TA01092J
    [21] WANG Q, GUAN S Y, LI B. 2D graphitic-C3N4 hybridized with 1D flux-grown Na-modified K2Ti6O13 nanobelts for enhanced simulated sunlight and visible-light photocatalytic performance[J]. Catal Sci Technol, 7(18): 4064–4078.
    [22] QING S, QIU Y P, DAI H, WANG P. Study of formation mechanism of Ni-Pt/CeO2 catalyst for hydrogen generation from hydrous hydrazine[J]. Catal Sci Technol,2019,787:1187−1194.
    [23] SONG F Z, YANG X, XU Q. Ultrafine bimetallic Pt-Ni nanoparticles achieved by metal-organic framework templated zirconia/porous carbon/reduced graphene oxide: remarkable catalytic activity in dehydrogenation of hydrous hydrazine[J]. Small Methods,2020,4(1):1900707. doi: 10.1002/smtd.201900707
    [24] MEN Y, SU J, WANG X, CAI P, CHENG G Z, LUO W. NiPt nanoparticles supported on CeO2 nanospheres for efficient catalytic hydrogen generation from alkaline solution of hydrazine[J]. Chin Chem Lett,2019,30(3):634−637. doi: 10.1016/j.cclet.2018.11.010
    [25] ZOU H T, ZHANG S L, HONG X L, YAO Q L, LUO Y, LU Z H. Immobilization of Ni-Pt nanoparticles on MIL-101/rGO composite for hydrogen evolution from hydrous hydrazine and hydrazine borane[J]. J Alloys Compd,2020,835:155426. doi: 10.1016/j.jallcom.2020.155426
    [26] YAO Q L, LU Z H, JIA Y S, CHEN X S, LIU X. In situ facile synthesis of Rh nanoparticles supported on carbon nanotubes as highly active catalysts for H2 generation from NH3BH3 hydrolysis[J]. Int J Hydrogen Energy,2014,40(5):2207−2215.
    [27] SHEN J, YANG L, HU K, LUO W, CHENG G Z. Rh nanoparticles supported on graphene as efficient catalyst for hydrolytic dehydrogenation of amine boranes for chemical hydrogen storage[J]. Int J Hydrogen Energy,2015,40(2):1062−1070. doi: 10.1016/j.ijhydene.2014.11.031
    [28] LU R, HU M, XU C L, WANG Y, ZHANG Y, XU B, GAO D J, BI J, FAN G Y. Hydrogen evolution from hydrolysis of ammonia borane catalyzed by Rh/g-C3N4 under mild conditions[J]. Int J Hydrogen Energy,2018,43(14):7038−7045. doi: 10.1016/j.ijhydene.2018.02.148
    [29] ALSAWAT M, ALTALHI T, SANTOS A, LOSIC D. Facile and controllable route for nitrogen doping of carbon nanotubes composite membranes by catalyst-free chemical vapour deposition[J]. Carbon,2016,106:295−305. doi: 10.1016/j.carbon.2016.05.043
    [30] CHANDRA M, XU Q. Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts[J]. J Power Sources,2007,168(1):135−142. doi: 10.1016/j.jpowsour.2007.03.015
    [31] SOARES O S G P, ROCHA R P, GONCALVES A G, FIGUEIREDO J L, ÓRFÃO J J M, PEREIRA M F R. Highly active N-doped carbon nanotubes prepared by an easy ball milling method for advanced oxidation processes[J]. Appl Catal B,2016,192:296−303. doi: 10.1016/j.apcatb.2016.03.069
    [32] AKBAYRAK S, TONBUL Y, ÖZKAR S. Ceria Supported Rhodium Nanoparticles: Superb Catalytic Activity in Hydrogen Generation from the Hydrolysis of Ammonia Borane[J]. Appl Catal B,2016,198:162−170. doi: 10.1016/j.apcatb.2016.05.061
    [33] YU H, WANG Z, TIAN W, DAI Z, XU Y, LI X, L WANG, H WANG. Boosting electrochemical nitrogen fixation by mesoporous Rh film with boron and sulfur co-doping[J]. Mater Today Energy,2021,20:100681. doi: 10.1016/j.mtener.2021.100681
    [34] 祝清超, 陈宇圣, 李建统, 代东辉, 黄江予, 焦毅, 王健礼, 陈耀强. Rh价态调控对Rh/Al2O3三效催化剂催化活性的影响[J]. 化学研究与应用,2020,32(11):2020−2027. doi: 10.3969/j.issn.1004-1656.2020.11.012

    ZHU Qing-chao, CHEN Yu-sheng, LI Jian-tong, DAI Dong-hui, HUANG Jiang-yu, JIAO Yi, WANG Jian-li, CHEN Yao-qiang. Effect of Rh valence regulation on catalytic activity of Rh/Al2O3 three-way catalysts[J]. Chem Res Appl.,2020,32(11):2020−2027. doi: 10.3969/j.issn.1004-1656.2020.11.012
    [35] 王东哲, 王丽宝, 张磊, 庆绍军, 韩蛟, 张财顺, 高志贤, 冯旭浩. Cr掺杂对Cu-Ce复合催化剂催化甲醇水蒸气重整制氢的影响[J]. 燃料化学学报,2020,48(5):619−625. doi: 10.3969/j.issn.0253-2409.2020.05.013

    WANG Dong-zhe, WANG Li-bao, ZHANG Lei, QING Shao-jun, HAN Jiao, ZHANG Cai-shun, GAO Zhi-xian, FENG Xu-hao. Effect of Cr doping on hydrogen production via methanol steam reforming over Cu-Ce composite catalysts[J]. J Fuel Chem Technol,2020,48(5):619−625. doi: 10.3969/j.issn.0253-2409.2020.05.013
    [36] ROSCA V, DUCA M, DEGROOT M, KOPER M T M. Nitrogen cycle electrocatalysis[J]. Chem Rev,2009,109(6):2209−2244. doi: 10.1021/cr8003696
    [37] ZHOU L, SUN L, XU L X, WAN C, AN Y, YE M F. Recent developments of effective catalysts for hydrogen storage technology using N-Ethylcarbazole[J]. Catalysts,2020,10(6):648. doi: 10.3390/catal10060648
    [38] DAI H, QIU Y P, DAI H B, WANG P. A study of degradation phenomenon of Ni-Pt/CeO2 catalyst towards hydrogen generation from hydrous hydrazine[J]. Int J Hydrogen Energy,2017,42(26):16355−16361. doi: 10.1016/j.ijhydene.2017.05.086
  • 加载中
图(9)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  6
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-11
  • 录用日期:  2022-11-01
  • 修回日期:  2022-10-31
  • 网络出版日期:  2022-11-16

目录

    /

    返回文章
    返回