Correlation mechanism between structure and gasification characteristics of typical municipal solid waste (MSW) disposable bamboo chopsticks hydrochar
-
摘要: 由于城市生活垃圾(MSW)成分复杂、物料特性波动大、能量密度低,导致对其水热炭的气化特性认识不足,研究单一成分的水热炭气化特性具有重要意义。本文以MSW的典型成分一次性竹筷子(DBC)为原料,研究水热炭化(HTC)条件对DBC水热炭结构性质与气化反应特性的影响规律。结果表明,HTC提高了DBC的能量品质,水热处理后DBC-230-60的高位热值(HHV)是DBC的1.62倍,H/C和O/C从DBC的1.57和0.76下降到DBC-230-60的1和0.33。表征发现水热炭和水热炭半焦的芳构化程度比DBC原样更高,水热炭的比表面积要低于DBC原样,但水热炭半焦的比表面积却要高于DBC原样半焦。相比于水热时间,水热温度对水热炭结构和气化反应性的影响更加显著。更高的水热温度增大了水热炭的芳构化程度,降低了水热炭的气化反应性。水热炭的气化反应性要比DBC原样更差,主要是因为水热炭半焦芳构化程度增大对气化反应性的消极作用大于孔隙结构丰富的促进作用。Abstract: Due to the complex composition, large fluctuation of material characteristics and low energy density of MSW, the gasification characteristics of its hydrochars are not well understood. Therefore, it is of great significance to study the gasification characteristics of single component hydrochars. In this paper, a typical component of MSW, disposable bamboo chopsticks (DBC), was used as raw material to study the effect of hydrothermal carbonization (HTC) conditions on the structural properties and gasification reaction characteristics of DBC hydrochars. The results showed that HTC improved the energy quality of DBC, the HHV of DBC-230-60 sample was 1.62 times of that of DBC, and H/C and O/C decreased from 1.57 and 0.76 of original sample to 1 and 0.33 of DBC-230-60. The results of characterization also demonstrate that the aromatization degree of hydrochar and hydrochar semicoke is higher than that of the DBC original one. The specific surface area of hydrochar is lower than that of DBC original sample, but hydrochar semicoke is higher than that of DBC original sample semicoke Compared with hydrothermal time, hydrothermal temperature had the more significant effect on the structure and gasification reactivity of hydrochar. Higher hydrothermal temperature increases the aromatization degree of hydrochar and decreases the gasification reactivity of hydrochar. The gasification reactivity of hydrochar is worse than that of DBC original sample, mainly because the increase of the degree of semicoke arbulization of hydrochar has a greater negative effect on the gasification reactivity than the abundance of pore structure.
-
Key words:
- msw /
- hydrochar /
- gasification behavior /
- reactivity
-
图 1 (a)不同水热温度(120、150、180、200、230 ℃),水热时间为60 min条件下水热炭的收率曲线;(b)不同水热时间(30、60、90 min),水热温度为200 ℃条件下水热炭的收率曲线
Figure 1 (a) Yield curves of hydrochar under different hydrothermal temperatures (120, 150, 180, 200, 230 ℃) and hydrothermal time of 60 min; (b) Yield curves of hydrochar at 200 ℃ for different hydrothermal time (30, 60, 90 min)
图 11 DBC-900、DBC-120-60-900、DBC-230-60-900半焦的扫描电镜图。(a, c, e)为三个样品在1K放大倍率下的扫描电镜图;(b, d, f)为三个样品在10K放大倍率下的扫描电镜图。
Figure 11 SEM images of DBC-900, DBC-120-60-900, DBC-230-60-900 pyrolysis semi-coke. (a, c, e) are SEM images of three samples at 1 K magnification; (b, d, f) are SEM images of three samples at 10 K magnification
表 1 DBC的基本性质
Table 1 Basic properties of DBC
Sample Ultimate analysis wd/% Proximate analysis wd/% Atomic ratio HHV(MJ/kg) C H O N S A V FC O/C H/C DBC 45.85 6.01 46.43 0.6 0.36 0.75 85.48 13.76 0.76 1.57 14.63 表 2 水热炭制备的工况参数
Table 2 Operating parameters of hydrochar preparation
Sample Hydrothermal temperature (℃) Hydrothermal time (time) Stirring speed (r/min) Heating rate (℃/min) Solid-liquid ratio DBC-120-60 120 60 150 3 1∶10 DBC-180-60 180 60 150 3 1∶10 DBC-200-30 200 30 150 3 1∶10 DBC-200-60 200 60 150 3 1∶10 DBC-200-90 200 90 150 3 1∶10 DBC-230-60 230 60 150 3 1∶10 表 3 DBC水热炭的元素分析、原子比和C回收率
Table 3 Elemental analysis, atomic ratio and C recovery of DBC hydrocar
Sample Ultimate analysis wd/% Atomic ratio C recovery rate/% C H O N S O/C H/C DBC 45.85 6.01 46.43 0.60 0.36 0.76 1.57 100.00 DBC-120-60 48.41 6.10 44.92 0.46 0.08 0.72 1.51 82.55 DBC-180-60 52.29 6.10 41.03 0.54 0.02 0.59 1.40 65.86 DBC-200-30 52.98 5.86 40.59 0.54 0.02 0.58 1.33 66.12 DBC-200-60 54.79 5.85 38.76 0.58 0.01 0.53 1.28 67.41 DBC-200-90 53.90 5.96 39.51 0.58 0.04 0.55 1.32 67.97 DBC-230-60 65.25 5.43 28.64 0.67 0.00 0.33 1.00 60.68 表 4 DBC水热炭的工业分析、热值、能量密度和能量回收率
Table 4 Industrial analysis, HHV, energy density and energy recovery of DBC hydrochar
Sample Proximate analysis wd/% Atomic ratio HHV(MJ/kg) ED/% ERE/% A V FC O/C H/C DBC 0.75 85.48 13.76 0.76 1.57 14.63 100.00 100.00 DBC-120-60 0.03 91.09 8.88 0.72 1.51 15.88 108.54 84.86 DBC-180-60 0.02 87.29 12.70 0.59 1.40 17.90 122.35 65.10 DBC-200-30 0.01 83.60 16.39 0.58 1.33 17.91 122.42 57.25 DBC-200-60 0.01 81.00 18.99 0.53 1.28 18.85 128.84 59.37 DBC-200-90 0.01 83.07 16.93 0.55 1.32 18.55 126.79 56.90 DBC-230-60 0.01 65.35 34.64 0.33 1.00 23.70 162.00 54.48 表 5 XRD的结构参数
Table 5 Structural parameters of XRD
Sample Lc/nm Iπ/Iγ Aromaticity DBC 0.22 0.68 0.38 DBC-180-60 0.50 2.01 0.60 DBC-200-60 0.60 1.79 0.46 DBC-230-60 0.61 1.98 0.53 表 6 水热炭的比表面积及平均孔径
Table 6 Specific surface area and average pore size of hydrochar
Sample SBET/(m2·g−1) Average pore size(nm) DBC 94.14 15.09 DBC-120-60 18.28 39.46 DBC-180-60 13.43 65.34 DBC-200-60 21.94 34.56 DBC-230-60 10.94 47.02 表 7 水热炭热解半焦的比表面积及平均孔径
Table 7 Specific surface area and average pore size of pyrolysis semi-coke of hydrochar
Sample SBET/(m2·g−1) Average pore size(nm) DBC-900 117.80 2.50 DBC-120-60-900 540.60 1.65 DBC-180-60-900 510.71 1.59 DBC-200-60-900 515.29 1.60 DBC-230-60-900 475.74 1.61 -
[1] Kaza S, Yao L C, Bhada Tata P, Van Woerden F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050[M]. Washington D. C: World Bank, 2018. [2] RENOU S, GIVAUDAN J G, POULAIN S, DIRASSOUYAN F, MOULIN P. Landfill leachate treatment: Review and opportunity[J]. J Hazard Mater,2008,150(3):468−493. doi: 10.1016/j.jhazmat.2007.09.077 [3] 竹涛, 种旭阳, 王若男, 薛泽宇, 陈苗苗, 叶泽甫, 朱竹军. 生活垃圾焚烧飞灰处理技术研究进展[J]. 洁净煤技术,2022,28(7):189−201. doi: 10.13226/j.issn.1006-6772.21080202ZHU Tao, ZHONG Xu-yang, WANG Ruo-nan, XUE Ze-yu, CHEN Miao-miao, YE Ze-fu, ZHU Zhu-jun. Research progress on the treatment technology of municipal solid waste incineration fly ash[J]. Clean Coal Technol,2022,28(7):189−201. doi: 10.13226/j.issn.1006-6772.21080202 [4] LI Y, ZHAO X, LI Y, LI X. Waste incineration industry and development policies in China[J]. Waste Manage,2016,46:234−241. [5] 马盛伟, 朱磊, 李彬, 施沈杰. 城市生活垃圾生产现状及处置方式的研究进展[J]. 四川建材,2020,46(7):24−25. doi: 10.3969/j.issn.1672-4011.2020.07.012MA Sheng-wei, ZHU Lei, LI Bin, SHI Shen-jie. The research progress on the production status and disposal methods of municipal solid waste[J]. Sichuan Build Mater,2020,46(7):24−25. doi: 10.3969/j.issn.1672-4011.2020.07.012 [6] 杨华, 薛东卫, 赵运武, 任志宏. 浅论垃圾焚烧烟气处理技术[J]. 机械,2003,(5):4−6. doi: 10.3969/j.issn.1006-0316.2003.05.003YANG Hua, XUE Dong-wei, ZHAO Yun-wu, REN Zhi-hong. Discussion on waste incineration flue gas treatment technology[J]. Machinery,2003,(5):4−6. doi: 10.3969/j.issn.1006-0316.2003.05.003 [7] DIGMAN B, JOO H S, KIM D. RECENT Progress in Gasification/ Pyrolysis Technologies for Biomass Conversion to Energy: Sustainable Energy[J]. Environ Prog Sustain,2009,28(1):47−51. doi: 10.1002/ep.10336 [8] AKBARIAN A, ANDOOZ A, KOWSARI E, RAMAKRISHNA S, ASGARI S, CHESHMEH Z A. Challenges and opportunities of lignocellulosic biomass gasification in the path of circular bioeconomy[J]. Bioresour Technol,2022,362:127774. doi: 10.1016/j.biortech.2022.127774 [9] SALMAN S, KALOGIROU S A, RANJBARI M, AMIRI H, MAHIAN O, BENYAMIN K, JAFARY T, NIZAMI A, GUPTA V K, AGHAEI S, PENG W, TABATABAEI M, AGHBASHLO M. Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review[J]. Renew Sust Energ Rev,2022,156:111975. doi: 10.1016/j.rser.2021.111975 [10] IRFAN M, LI A, ZHANG L, WANG M, CHEN C, KHUSHK S. Production of hydrogen enriched syngas from municipal solid waste gasification with waste marble powder as a catalyst[J]. Int J Hydrogen Energ,2019,44(16):8051−8061. doi: 10.1016/j.ijhydene.2019.02.048 [11] HU M, GUO D, MA C, HU Z, ZHANG B, XIAO B, LUO S, WANG J. Hydrogen-rich gas production by the gasification of wet MSW (municipal solid waste) coupled with carbon dioxide capture[J]. Energy,2015,90:857−863. doi: 10.1016/j.energy.2015.07.122 [12] AYAS G, OZTOP HF. Thermal analysis of different Refuse Derived Fuels samples[J]. Therm Sci,2021,6(25):4395−4406. [13] TIAN W, WEI X, WU D, LI J, SHENG HZ. Analysis of ingredient and heating value of municipal solid waste[J]. J Environ Sci,2001,1(13):87−91. [14] ZHAO P, SHEN Y, GE S, CHEN Z, YOSHIKAWA K. Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment[J]. Appl Energ,2014,131:345−367. doi: 10.1016/j.apenergy.2014.06.038 [15] PENG C, ZHAI Y, ZHU Y, XU B, WANG T, LI C, ZENG G. Production of char from sewage sludge employing hydrothermal carbonization: Char properties, combustion behavior and thermal characteristics[J]. Fuel,2016,176:110−118. doi: 10.1016/j.fuel.2016.02.068 [16] ZHENG X, CHEN W, YING Z, JIANG Z, YE Y, WANG B, FENG Y, DOU B. Structure–Reactivity Correlations in Pyrolysis and Gasification of Sewage Sludge Derived Hydrochar: Effect of Hydrothermal Carbonization[J]. Energy Fuels,2020,34(2):1965−1976. doi: 10.1021/acs.energyfuels.9b04275 [17] XIAO K, LIU H, LI Y, YI L, ZHANG X, HU H, YAO H. Correlations between hydrochar properties and chemical constitution of orange peel waste during hydrothermal carbonization[J]. Bioresour Technol,2018,265:432−436. doi: 10.1016/j.biortech.2018.06.014 [18] WEI J, GUO Q, DING L, YOSHIKAWA K, YU G. Synergy mechanism analysis of petroleum coke and municipal solid waste (MSW)-derived hydrochar co-gasification[J]. Appl Energ,2017,206:1354−1363. doi: 10.1016/j.apenergy.2017.10.005 [19] KANG S, LI X, FAN J, CHANG J. Characterization of Hydrochars Produced by Hydrothermal Carbonization of Lignin, Cellulose, D-Xylose, and Wood Meal[J]. Ind Eng Chem Res,2012,51(26):9023−9031. doi: 10.1021/ie300565d [20] GAO Y, WANG X, WANG J, LI X, CHENG J, YANG H, CHEN H. Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth[J]. Energy,2013,58:376−383. doi: 10.1016/j.energy.2013.06.023 [21] GULEC F, RIESCO L M G, WILLIAMS O, KOSTAS E T, SAMSON A, LESTER E. Hydrothermal conversion of different lignocellulosic biomass feedstocks – Effect of the process conditions on hydrochar structures[J]. Fuel,2021,302:121166. doi: 10.1016/j.fuel.2021.121166 [22] ZHENG X, CHEN W, YING Z, HUANG J, JI S, WANG B. Thermodynamic investigation on gasification performance of sewage sludge-derived hydrochar: Effect of hydrothermal carbonization[J]. Int J Hydrogen Energ,2019,44(21):10374−10383. doi: 10.1016/j.ijhydene.2019.02.200 [23] MOSQUEDA A, WEI J, MEDRANO K, GONZALES H, DING L, YU G, YOSHIKAWA K. Co-gasification reactivity and synergy of banana residue hydrochar and anthracite coal blends[J]. Appl Energ,2019,250:92−97. doi: 10.1016/j.apenergy.2019.05.008 [24] GUDUCU I, ALPER K, EVCIL T, TEKIN K, OHTANI H, KARAGOZ S. Effects of hydrothermal carbonization on products from fast pyrolysis of cellulose[J]. J Energy Inst,2021,99:299−306. doi: 10.1016/j.joei.2021.10.004 [25] LU X, PELLECHIA P J, FLORA J R V, BERGE N D. Influence of reaction time and temperature on product formation and characteristics associated with the hydrothermal carbonization of cellulose[J]. Bioresour Technol,2013,138:180−190. doi: 10.1016/j.biortech.2013.03.163 [26] SONIBARE O O, HAEGER T, FOLEY S F. Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy[J]. Energy,2010,35(12):5347−5353. doi: 10.1016/j.energy.2010.07.025 [27] SADEZKY A, MUCKENHUBER H, GROTHE H, NIESSNER R, PÖSCHL U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information[J]. Carbon,2005,43(8):1731−1742. doi: 10.1016/j.carbon.2005.02.018 [28] ZHUANG X, ZHAN H, SONG Y, YIN X, WU C. Structure-reactivity relationships of biowaste-derived hydrochar on subsequent pyrolysis and gasification performance[J]. Energ Convers,2019,199:112014. doi: 10.1016/j.enconman.2019.112014 [29] CAO X, PENG X, SUN S, ZHONG L, SUN R. Hydrothermal Conversion of Bamboo: Identification and Distribution of the Components in Solid Residue, Water-Soluble and Acetone-Soluble Fractions[J]. J Agric Food Chem,2014,62(51):12360−12365. doi: 10.1021/jf505074d [30] BACH Q, SKREIBERG Ø. Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction[J]. Renew Sust Energ Rev,2016,54:665−677. doi: 10.1016/j.rser.2015.10.014 [31] 林有胜. 基于组分基团的城市生活垃圾水热碳化机理及其应用基础研究[D]. 广东: 华南理工大学, 2018.LIN You-sheng. The research on the mechanism of high-grade fuel from municipal solid waste by hydrothermal carbonization and application studies of hydrochars[D]. Guangdong: SCUT, 2018. [32] JAMARI S S, HOWSE J R. The effect of the hydrothermal carbonization process on palm oil empty fruit bunch[J]. Biomass Bioenerg,2012,47:82−90. doi: 10.1016/j.biombioe.2012.09.061 [33] 胡志锋. 微波预处理驱动下化学链气化小球藻制取合成气的机理研究[D]. 广东: 华南理工大学, 2016.HU Zhi-feng. The study on mechanism of chemical looping gasification of Chlorella vulgaris based on microwave pretreatment[D]. Guangdong: SCUT, 2016. [34] HASHAIKEH R, FANG Z, BUTLER I S, HAWARI J, KOZINSKI J A. Hydrothermal dissolution of willow in hot compressed water as a model for biomass conversion[J]. Fuel,2007,86(10-11):1614−1622. doi: 10.1016/j.fuel.2006.11.005 [35] GUO S, DONG X, WU T, SHI F, ZHU C. Characteristic evolution of hydrochar from hydrothermal carbonization of corn stalk[J]. J Anal Appl Pyrol,2015,116:1−9. doi: 10.1016/j.jaap.2015.10.015 [36] LI X, HAYASHI J, LI C. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel,2006,85(12-13):1700−1707. doi: 10.1016/j.fuel.2006.03.008 [37] XIN S, YANG H, CHEN Y, YANG M, CHEN L, WANG X, CHEN H. Chemical structure evolution of char during the pyrolysis of cellulose[J]. J Anal Appl Pyrol,2015,116:263−271. doi: 10.1016/j.jaap.2015.09.002 [38] SEVILLA M, FUERTES A B. The production of carbon materials by hydrothermal carbonization of cellulose[J]. Carbon,2009,47(9):2281−2289. doi: 10.1016/j.carbon.2009.04.026 [39] BOURAOUI Z, JEGUIRIM M, GUIZANI C, LIMOUSY L, DUPONT C, GADIOU R. Thermogravimetric study on the influence of structural, textural and chemical properties of biomass chars on CO2 gasification reactivity[J]. Energy,2015,88:703−710. doi: 10.1016/j.energy.2015.05.100 -