CO2 hydrogenation to C5 + isoalkanes on ZnZr/HZSM-5 composite catalyst
-
摘要: CO2催化加氢是CO2转化利用的有效途径之一。尽管目前CO2加氢在金属氧化物及分子筛复合催化剂上制备异构烷烃及汽油方面已取得显著进展,但仍存在C5 + 烃及C5 + 烃中异构烷烃选择性低,副产物CO选择性高的问题。本文中,我们将锌锆氧化物(ZnZr)与HZSM-5分子筛有效耦合制得系列ZnZr/HZSM-5复合催化剂,分别考察了HZSM-5硅铝比及Zn/Zr比例对复合催化剂上CO2加氢制备C5 + 异构烷烃性能的影响。结果表明,SiO2/Al2O3 = 130,Zn/Zr = 1∶5制得的ZnZr-4/HZSM-5复合催化剂表现出最优的CO2加氢制C5 + 异构烷烃性能,CO2转化率为17%,CO选择性抑制到25%,C5 + 烃及C5 + 烃中异构烷烃选择性分别达60%及89%。而且,该复合催化剂稳定性良好,连续运转120 h未出现失活现象。ZnZr氧化物与HZSM-5分子筛的良好匹配对CO2加氢高选择性合成C5 + 异构烷烃至关重要。Abstract: CO2 hydrogenation into value-added chemicals or liquid fuels is one of the effective ways to reduce its greenhouse effect. Although most of the efforts have been made in the preparation of isoalkanes and gasoline by CO2 hydrogenation on composite catalysts of metal oxides and zeolites, there are still problems in the selectivity of products, such as low selectivity of C5 + hydrocarbons and isoalkanes in C5 + hydrocarbons and high selectivity of by-product CO. Herein, we report an efficient strategy that zinc-zirconium oxide (ZnZr) is effectively coupled with HZSM-5 zeolite . The effects of SiO2/Al2O3 ratio of HZSM-5 zeolite and Zn/Zr ratio on the performance of CO2 hydrogenation to C5 + isoalkanes over the composite catalyst were investigated, respectively. The results show that ZnZr-4/HZSM-5 prepared by SiO2/Al2O3 = 130 and Zn/Zr = 1∶5 manifests the optimal performance of CO2 hydrogenation to C5 + isoalkanes, with CO2 conversion of 17% and CO selectivity of 25%, as well as the selectivity of C5 + hydrocarbons and isoalkanes in C5 + hydrocarbons up to 60% and 89%. Moreover, ZnZr/HZSM-5 composite catalyst shows excellent stability with time on stream for 120 h without losing activity. A suitable coupling between ZnZr and HZSM-5 zeolite is critical for highly selective synthesis of C5 + isoalkanes by CO2 hydrogenation.
-
Key words:
- co2 hydrogenation /
- c5 + isoalkanes /
- znzr oxides /
- hzsm-5 zeolite /
- zn/zr ratio
-
图 1 不同催化剂上CO2加氢制C5 + 异构烷烃的催化性能
Figure 1 Catalytic performances of CO2 hydrogenation to C5 + isoalkanes on different catalysts. (a) ZnZr-2/Z5 composite catalysts with different SiO2/Al2O3 molar ratios, (b) ZnZr-x oxides and (c) ZnZr-x/Z5(130) composite catalysts with different Zn/Zr molar ratios, (d) Detailed hydrocarbon product distribution obtained over ZnZr-4/Z5, (e) Stability test for ZnZr-4/Z5. Reaction conditions: 340 ℃, 5 MPa, 3750 mL/g/ h for oxides and 3000 mL/g/ h for composite catalysts, (ZnZr-x)/Z5(weight ratio) = 4∶1
表 2 不同Zn/Zr比例ZnZr-x氧化物的结构参数及碱性
Table 2 Textural parameters and basic sites of ZnZr-x oxides with different Zn/Zr molar ratios
Samples Zn/Zr
(molar ratio)SBET
(m2·g−1)Vtotal
(cm3·g−1)Basic sites
(µmol·g−1)Bulka Surfaceb Total Weak Strong ZnZr-1 2.7:1 1.1∶1 16 0.14 82 62 20 ZnZr-2 1.3∶1 − 24 0.14 87 59 28 ZnZr-3 1∶2.8 − 36 0.18 99 84 15 ZnZr-4 1∶5.0 1∶4.3 31 0.21 153 132 21 ZnZr-5 1∶7.4 − 30 0.24 120 97 23 ZnZr-6 1∶18.0 1∶5.7 26 0.18 110 81 29 a Analysed by ICP. b Determined by XPS. 表 1 不同SiO2/Al2O3比HZSM-5分子筛的结构性质及酸性
Table 1 Textural properties and acid sites of HZSM-5 zeolites with different SiO2/Al2O3 ratios
Sample SiO2/Al2O3
molar ratioaSBET
(m2·g−1)Vtotal
(cm3·g−1)Acid sites (µmol·g−1) Total Weak Strong HZSM-5(50) 44 379 0.18 491 258 233 HZSM-5(130) 128 385 0.34 173 95 78 HZSM-5(200) 168 362 0.22 92 44 48 a Determined by XRF. -
[1] CAI W J, PISCINA P R D L, TOYIR J, HOMS N. CO2 hydrogenation to methanol over CuZnGa catalysts prepared using microwave-assisted methods[J]. Catal Today,2015,242:193−199. doi: 10.1016/j.cattod.2014.06.012 [2] STUDT F, SHARAFUTDINOV I. Abild-Pedersen F, ELKJæR C F, HUMMELSHøJ J S, DAHL S, CHORKENDORFF I, NøRSKOV J K. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol[J]. Nat Chem,2014,6(4):320−324. doi: 10.1038/nchem.1873 [3] INUI T, YAMAMOTO T. Effective synthesis of ethanol from CO2 on polyfunctional composite catalysts[J]. Catal Today,1998,45:209−214. doi: 10.1016/S0920-5861(98)00217-X [4] 张鲁湘, 张永春, 陈绍云. CO2加氢制甲醇、二甲醚的研究进展 [J]. 化工进展, 2010, 29(6): 1041−1046.ZHANG Lu-xiang, ZHANG Yong-chun, CHEN Shao-yun. Research progress on the hydrogenation of CO2 to methanol and dimethyl ether [J], Chem Ind Eng Prog, 2010, 29(6): 1041−1046. [5] FRUSTERI F, CORDARO M, CANNILLA C BONURA G. Multifunctionality of Cu–ZnO–ZrO2/H-ZSM5 catalysts for the one-step CO2-to-DME hydrogenation reaction[J]. Appl Catal B:Environ,2015,162:57−65. doi: 10.1016/j.apcatb.2014.06.035 [6] LI C M, YUAN X D, FUJIMOTO K. Direct synthesis of LPG from carbon dioxide over hybrid catalysts comprising modified methanol synthesis catalyst and β-type zeolite[J]. Appl Catal A:General,2014,475:155−160. doi: 10.1016/j.apcata.2014.01.025 [7] AL-DOSSARY M, ISMAIL ADEL A, FIERRO J L G, BOUZID H, AL-SAYARI S A. Effect of Mn loading onto MnFeO nanocomposites for the CO2 hydrogenation reaction[J]. Appl Catal B:Environ,2015,165:651−660. doi: 10.1016/j.apcatb.2014.10.064 [8] FUJIWARA M, SAKURAI H, SHIOKAWA K, LIZUKA Y. Synthesis of C2 + hydrocarbons by CO2 hydrogenation over the composite catalyst of Cu–Zn–Al oxide and HB zeolite using two-stage reactor system under low pressure[J]. Catal Today,2015,242:255−260. doi: 10.1016/j.cattod.2014.04.032 [9] GAO J J, JIA C M, LIU B. Direct and selective hydrogenation of CO2 to ethylene and propene by bifunctional catalysts[J]. Catal Sci Technol,2017,7:5602−5607. doi: 10.1039/C7CY01549F [10] GAO P, DANG S S, LI S G, BU X N, LIU Z Y, QIU M H, YANG C G, WANG H, ZHONG L S, HAN Y, LIU Q, WEI W, SUN Y H. Direct production of lower olefins from CO2 conversion via bifunctional catalysis[J]. ACS Catal,2018,8:571−578. doi: 10.1021/acscatal.7b02649 [11] LI Z L, WANG J J, QU Y Z, LIU H L, TANG C Z, MIAO S, FENG Z C, AN H Y, LI C. Highly selective conversion of carbon dioxide to lower olefins[J]. ACS Catal,2017,7:8544−8548. doi: 10.1021/acscatal.7b03251 [12] LIU X L, WANG M H, ZHOU C, ZHOU W, CHENG K, KANG J C, ZHANG Q H, DENG W P, DENG W P, WANG Y. Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa2O4 and SAPO-34[J]. Chem Commun,2018,54:140−143. doi: 10.1039/C7CC08642C [13] TAN Y, FUJIWARA M, ANDO H, XU Q, SOUMA Y. Syntheses of isobutane and branched higher hydrocarbons from carbon dioxide and hydrogen over composite catalysts[J]. Ind Eng Chem Res,1999,38:3225−3229. doi: 10.1021/ie980672m [14] BAI R, TAN Y, HAN Y. Study on the carbon dioxide hydrogenation to iso-alkanes over Fe–Zn–M/zeolite composite catalysts[J]. Fuel Process Technol,2004,86:293−301. doi: 10.1016/j.fuproc.2004.05.001 [15] NI X, TAN Y, HAN Y, TSUBAKI N. Synthesis of isoalkanes over Fe–Zn–Zr/HY composite catalyst through carbon dioxide hydrogenation[J]. Catal Commun,2007,8:1711−1714. doi: 10.1016/j.catcom.2007.01.023 [16] WANG X X, YANG G H, ZHANG J F, CHEN S Y, WU Y Q, ZHANG Q D, WANG J W, HAN Y Z, TAN Y S. Synthesis of isoalkanes over a core (Fe–Zn–Zr)–shell (zeolite) catalyst by CO2 hydrogenation[J]. Chem Commun,2016,52:7352−7355. doi: 10.1039/C6CC01965J [17] NI Y M, CHEN Z Y, FU Y, Y LIU, ZHU W L, LIU Z M. Selective conversion of CO2 and H2 into aromatics[J]. Nat Commun,2018,9:3457−3463. doi: 10.1038/s41467-018-05880-4 [18] ZHANG J F, ZHANG M, CHEN S Y, WANG X X, ZHOU Z L, WU Y Q, ZHANG T, YANG G H, HAN Y Z, TAN Y S. Hydrogenation of CO2 into aromatics over a ZnCrOx–zeolite composite catalyst[J]. Chem Commun,2019,55:973−976. doi: 10.1039/C8CC09019J [19] WANG Y, TAN L, TAN M H, ZHANG P P, FANG Y, YONEYAMA Y, YANG G, TSUBAKI N. Rationally designing bifunctional catalysts as an efficient strategy to boost CO2 hydrogenation producing value-added aromatics[J]. ACS Catal,2019,9:895−901. doi: 10.1021/acscatal.8b01344 [20] ZHANG X B, ZHANG A F, JIANG X, ZHU J, LIU J H, LI J J, ZHANG G H, SONG C S, GUO X W. Utilization of CO2 for aromatics production over ZnO/ZrO2-ZSM-5 tandem catalyst[J]. J CO2 Util,2019,29:140−145. doi: 10.1016/j.jcou.2018.12.002 [21] LI Z L, QU Y Z, WANG J J, LIU H L, LI M R, MIAO S, LI C. Highly selective conversion of carbon dioxide to aromatics over tandem catalysts[J]. Joule,2019,3:570−583. doi: 10.1016/j.joule.2018.10.027 [22] WEI J, GE Q J, YAO R W, WEN Z Y, FANG C Y, GUO L S, XU H Y, SUN J. Directly converting CO2 into a gasoline fuel[J]. Nat Commun,2017,8:15174−15181. doi: 10.1038/ncomms15174 [23] WEI J, YAO R W, GE Q J, WEN Z Y, JI X W, FANG C Y, ZHANG J X, XU H Y, SUN J. Catalytic hydrogenation of CO2 to isoparaffins over Fe−based multifunctional catalysts[J]. ACS Catal,2018,8:9958−9967. doi: 10.1021/acscatal.8b02267 [24] GENG S S, JIANG F, XU Y B, LIU X H. Iron–based Fischer–Tropsch synthesis for the efficient conversion of carbon dioxide into isoparaffins[J]. ChemCatChem,2016,8:1303−1307. doi: 10.1002/cctc.201600058 [25] GAO P, LI S G, BU X N, DANG S S, LIU Z Y, WANG H, ZHONG L S, QIU M H, YANG C G, CAI J, WEI W, SUN Y H. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst[J]. Nat Chem,2017,9:1019−1024. doi: 10.1038/nchem.2794 [26] DORNER R W, HARDY D R, WILLIAMS F W, Willauer H D. Heterogeneous catalytic CO2 conversion to value-added hydrocarbons[J]. Energy & Environ Sci,2010,3(7):884−890. [27] RODEMERCK U, HOLEŇA M, WAGNER E, SMEJKAL Q, BARKSCHAT A, BAERNS M. Catalyst development for CO2 hydrogenation to fuels[J]. ChemCatChem,2013,5(7):1948−1955. doi: 10.1002/cctc.201200879 [28] 白荣献, 谭猗生, 韩怡卓. Fe-Zn-Zr/分子筛复合催化剂上CO2加氢合成异构烷烃Ⅰ. 不同分子筛对催化剂性能的影响[J]. 催化学报,2004,25(3):223−226. doi: 10.3321/j.issn:0253-9837.2004.03.013BAI Rong-xian, TAN Yi-sheng, HAN Yi-zhuo. Hydrogenation of carbon dioxide to isoalkanes over Fe−Zn−Zr/Zeolite composite catalystsⅠ. Effects of zeolites on catalytic performance of the catalysts[J]. Chin J Catal,2004,25(3):223−226. doi: 10.3321/j.issn:0253-9837.2004.03.013 [29] WANG X X, ZENG C Y, GONG N N, ZHANG T, WU Y Q, ZHANG J F, SONG F E, YANG G H, TAN Y S. Effective suppression of CO selectivity for CO2 hydrogenation to high-quality gasoline[J]. ACS Catal,2021,11(3):1528−1547. doi: 10.1021/acscatal.0c04155 [30] WANG J J, LI G N, LI Z L, TANG C Z, FENG Z C, AN H Y, LIU H L, LIU T F, LI C. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol[J]. Sci adv,2017,3(10):e1701290. doi: 10.1126/sciadv.1701290 [31] WANG M H, WANG Z W, LIU S H, GAO R T, CHENG K, ZHANG L, ZHANG G Q, MIN X J, KANG J C, ZHANG Q H, WANG Y. Synthesis of hierarchical SAPO-34 to improve the catalytic performance of bifunctional catalysts for syngas-to-olefins reactions[J]. J Catal,2021,394:181−192. doi: 10.1016/j.jcat.2020.08.020 [32] LIU X L, ZHOU W, YANG Y D, CHENG K, KANG J C, ZHANG L, ZHANG G Q, MIN X J, ZHANG Q H, WANG Y. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates[J]. Chem Sci,2018,9(20):4708−4718. doi: 10.1039/C8SC01597J [33] CHENG K, GU B, LIU X L, KANG J C, ZHANG Q H, WANG Y. Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon–carbon coupling[J]. Angew Chem Int Edit,2016,128(15):4803−4806. doi: 10.1002/ange.201601208 [34] Wang X X, Yang G H, Zhang J F, Song F E, Wu Y Q, Zhang T, Zhang Q D, Tsubaki N, Tan Y S. Macroscopic assembly style of catalysts significantly determining their efficiency for converting CO2 to gasoline[J]. Catal Sci Technol,2019,9:5401−5412. doi: 10.1039/C9CY01470E [35] ANDERSON A B, NICHOLS J A. Hydrogen on zinc oxide. Theory of its heterolytic adsorption[J]. J Am Chem Soc,1986,108(16):4742−4746. doi: 10.1021/ja00276a010 [36] EISCHENS R P, PLISKIN W A, LOW M J D. The infrared spectrum of hydrogen chemisorbed on zinc oxide[J]. J Catal,1962,1(2):180−191. doi: 10.1016/0021-9517(62)90022-2 [37] GRIFFIN G L, YATES JR J T. Combined temperature-programmed desorption and infrared study of H2 chemisorption on ZnO[J]. J Catal,1982,73(2):396−405. doi: 10.1016/0021-9517(82)90112-9 [38] MARTÍNEZ-ESPÍN J S, WISPELAERE K D, JANSSENS T V W, SVELLE S, LILLERUD K P, BEATO P, SPEYBROECK V V, OLSBYE U. Hydrogen transfer versus methylation: on the genesis of aromatics formation in the methanol-to-hydrocarbons reaction over H-ZSM-5[J]. ACS Catal,2017,7(9):5773−5780. doi: 10.1021/acscatal.7b01643 [39] MÜLLER S, LIU Y, KIRCHBERGER F M, TONIGOLD M, SANCHEZ-SANCHEZ M, LERCHER J A. Hydrogen transfer pathways during zeolite catalyzed methanol conversion to hydrocarbons[J]. J Am Chem Soc,2016,138(49):15994−16003. doi: 10.1021/jacs.6b09605 [40] MÜLLER S, LIU Y, VISHNUVARTHAN M, SUN X Y, VAN VEEN A C, HALLER G L, SANCHEZ-SANCHEZ M, LERCHER J A. Coke formation and deactivation pathways on H-ZSM-5 in the conversion of methanol to olefins[J]. J Catal,2015,325:48−59. doi: 10.1016/j.jcat.2015.02.013 [41] CHENG K, ZHOU W, KANG J C, HE S, SHI S L, ZHANG Q H, PAN Y, WEN W, WANG Y. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J]. Chem,2017,3(2):334−347. doi: 10.1016/j.chempr.2017.05.007 [42] LIU R L, ZHU H Q, WU Z W, QIN Z F, FAN W B, WANG J G. Aromatization of propane over Ga-modified ZSM-5 catalysts[J]. J Fuel Chem and Tech,2015,43(8):961−969. doi: 10.1016/S1872-5813(15)30027-X [43] VIEIRA S S, MAGRIOTIS Z M, GRAÇA I, FERNANDES A, RIBEIRO M F, LOPES J M F M, COELHO S M, SANTOS N A V, SACZK A A. Production of biodiesel using HZSM-5 zeolites modified with citric acid and SO42−/La2O3[J]. Catal Today,2017,279:267−273. doi: 10.1016/j.cattod.2016.04.014 [44] LÓNYI F, VALYON J. On the interpretation of the NH3-TPD patterns of H-ZSM-5 and H-mordenite[J]. Micropor Mesopor Mater,2001,47(2-3):293−301. doi: 10.1016/S1387-1811(01)00389-4 [45] TAN W, LIU M, ZHAO Y, HOU K K, WU H Y, ZHANG A F, LIU H O, WANG Y R, SONG C S, GUO X W. Para-selective methylation of toluene with methanol over nano-sized ZSM-5 catalysts: Synergistic effects of surface modifications with SiO2, P2O5 and MgO[J]. Micropor Mesopor Mater,2014,196:18−30. doi: 10.1016/j.micromeso.2014.04.050 [46] CIMINO A, STONE F S. Oxide solid solutions as catalysts [J]. 2002: 141−306. [47] ZHOU C, SHI J Q, ZHOU W, CHENG K, ZHANG Q H, KANG J C, WANG Y. Highly active ZnO-ZrO2 aerogels integrated with H-ZSM-5 for aromatics synthesis from carbon dioxide[J]. ACS Catal,2019,10(1):302−310. [48] WANG Y J, ZHAN W T, CHEN Z J, CHEN J M, LI X G, LI Y W. Advanced 3D hollow-out ZnZrO@C combined with hierarchical zeolite for highly active and selective CO hydrogenation to aromatics[J]. ACS Catal,2020,10(13):7177−7187. doi: 10.1021/acscatal.0c01418 [49] WANG T, YANG C G, GAO P, ZHOU S J, LI S G, WANG H, SUN Y H. ZnZrOx integrated with chain-like nanocrystal HZSM-5 as efficient catalysts for aromatics synthesis from CO2 hydrogenation[J]. Appl Catal B:Environ,2021,286:119929. doi: 10.1016/j.apcatb.2021.119929 [50] OU G, XU Y S, WEN B, LIN R, GE B H, TANG Y, LIANG Y W, YANG C, HUANG K, ZU D, YU R, CHEN W X, LI J, WU H, LIU L M, LI Y D. Tuning defects in oxides at room temperature by lithium reduction[J]. Nat Commun,2018,9(1):1−9. doi: 10.1038/s41467-017-02088-w [51] ZHANG M, ZHANG J F, WU Y Q, PAN J X, ZHANG Q D, TAN Y S, & HAN Y Z. Insight into the effects of the oxygen species over Ni/ZrO2 catalyst surface on methane reforming with carbon dioxide[J]. Appl Catal B:Environ,2019,244:427−437. doi: 10.1016/j.apcatb.2018.11.068 [52] PALMQVIST A E C, WIRDE M, GELIUS U, MUHAMMED M. Surfaces of doped nanophase cerium oxide catalysts[J]. Nanostruct Mater,1999,11(8):995−1007. doi: 10.1016/S0965-9773(00)00431-1 [53] XIN C Y, HU M C, WANG K, WANG X T. Significant enhancement of photocatalytic reduction of CO2 with H2O over ZnO by the formation of basic zinc carbonate[J]. Langmuir,2017,33(27):6667−6676. doi: 10.1021/acs.langmuir.7b00620 [54] RUI N, WANG Z Y, SUN K H, YE J Y, GE Q F, LIU C J. CO2 hydrogenation to methanol over Pd/In2O3: effects of Pd and oxygen vacancy[J]. Appl Catal B:Environ,2017,218:488−497. doi: 10.1016/j.apcatb.2017.06.069 -