留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZnZr/HZSM-5复合催化剂上CO2加氢制备C5+ 异构烷烃

马晓玲 王晓星 宋法恩 马梓轩 谭猗生

马晓玲, 王晓星, 宋法恩, 马梓轩, 谭猗生. ZnZr/HZSM-5复合催化剂上CO2加氢制备C5+ 异构烷烃[J]. 燃料化学学报(中英文), 2023, 51(6): 757-767. doi: 10.19906/j.cnki.JFCT.2022085
引用本文: 马晓玲, 王晓星, 宋法恩, 马梓轩, 谭猗生. ZnZr/HZSM-5复合催化剂上CO2加氢制备C5+ 异构烷烃[J]. 燃料化学学报(中英文), 2023, 51(6): 757-767. doi: 10.19906/j.cnki.JFCT.2022085
MA Xiao-ling, WANG Xiao-xing, SONG Fa-en, MA Zi-xuan, TAN Yi-sheng. CO2 hydrogenation to C5+ isoalkanes on ZnZr/HZSM-5 composite catalyst[J]. Journal of Fuel Chemistry and Technology, 2023, 51(6): 757-767. doi: 10.19906/j.cnki.JFCT.2022085
Citation: MA Xiao-ling, WANG Xiao-xing, SONG Fa-en, MA Zi-xuan, TAN Yi-sheng. CO2 hydrogenation to C5+ isoalkanes on ZnZr/HZSM-5 composite catalyst[J]. Journal of Fuel Chemistry and Technology, 2023, 51(6): 757-767. doi: 10.19906/j.cnki.JFCT.2022085

ZnZr/HZSM-5复合催化剂上CO2加氢制备C5+ 异构烷烃

doi: 10.19906/j.cnki.JFCT.2022085
基金项目: 国家自然科学基金(22172182)和山西省应用基础研究项目(202103021224441)资助
详细信息
    通讯作者:

    Tel: 0351-4044287, E-mail: wangxx@sxicc.ac.cn

    tan@sxicc.ac.cn

  • 中图分类号: O643

CO2 hydrogenation to C5+ isoalkanes on ZnZr/HZSM-5 composite catalyst

Funds: The project was supported by the National Natural Science Foundation of China (22172182) and the Natural Science Foundation of Shanxi Province (202103021224441)
  • 摘要: 本研究将锌锆氧化物(ZnZr)与HZSM-5分子筛有效耦合制得系列ZnZr/HZSM-5复合催化剂,考察了HZSM-5硅铝比及Zn/Zr比对复合催化剂上CO2加氢制备C5+ 异构烷烃性能的影响。结果表明,SiO2/Al2O3 = 130,Zn/Zr = 1∶5制得的ZnZr-4/HZSM-5复合催化剂表现出最优的CO2加氢制C5+ 异构烷烃性能,CO2转化率为17%,CO选择性抑制到25%,C5+ 烃及C5+ 烃中异构烷烃选择性分别达60%及89%。该复合催化剂稳定性良好,连续运转120 h未出现失活现象。ZnZr氧化物与HZSM-5分子筛的良好匹配对CO2加氢高选择性合成C5+ 异构烷烃至关重要。
  • FIG. 2380.  FIG. 2380.

    FIG. 2380.  FIG. 2380.

    图  1  不同催化剂上CO2加氢制C5+ 异构烷烃的催化性能

    Figure  1  Catalytic performances of CO2 hydrogenation to C5+ isoalkanes on different catalysts (a) ZnZr-2/Z5 composite catalysts with different SiO2/Al2O3 molar ratios, (b) ZnZr-x oxides and (c) ZnZr-x/Z5(130) composite catalysts with different Zn/Zr molar ratios, (d) Detailed hydrocarbon product distribution obtained over ZnZr-4/Z5, (e) Stability test for ZnZr-4/Z5

    Reaction conditions: 340 ℃, 5 MPa, 3750 mL/(g·h) for oxides and 3000 mL/(g·h) for composite catalysts, (ZnZr-x)/Z5(weight ratio) = 4∶1

    图  2  不同SiO2/Al2O3比HZSM-5分子筛的表征

    Figure  2  Characterizations of HZSM-5 zeolites with different SiO2/Al2O3 molar ratios (a): XRD patterns, (b): NH3-TPD profiles, ((c)−(e)): SEM images

    图  3  (a)ZnZr-x氧化物的XRD谱图及ZnZr-4的(b)EDS和 ( (c)、(d))HRTEM照片

    Figure  3  (a) XRD patterns of ZnZr-x oxides with different Zn/Zr molar ratios, and (b) EDS and ((c), (d)) HRTEM images of ZnZr-4

    图  4  不同Zn/Zr比ZnZr-x氧化物的(a)N2吸附-脱附等温线及(b)孔尺寸分布

    Figure  4  (a) N2 adsorption-desorption isotherms and (b) pore size distributions of ZnZr-x oxides with different Zn/Zr molar ratios

    图  5  不同Zn/Zr比ZnZr-x氧化物的XPS谱图

    Figure  5  XPS spectra of ZnZr-x oxides with different Zn/Zr molar ratios (a) Zr 3d, (b) Zn 2p

    图  6  不同Zn/Zr比ZnZr-x氧化物的O 1s谱图

    Figure  6  O 1s spectra of ZnZr-x oxides with different Zn/Zr molar ratios (a): ZnZr-1; (b): ZnZr-4; (c): ZnZr-6

    图  7  不同Zn/Zr比的ZnZr-x氧化物的(a)EPR光谱及(b)CO2-TPD谱图

    Figure  7  (a) EPR spectra and (b) CO2-TPD profiles of ZnZr-x with different Zn/Zr molar ratios

    图  8  ((a)、(b)) ZnZr-4上CO2加氢随时间变化和((c)、(d))不同Zn/Zr物质的量比ZnZr-x氧化物上CO2加氢60 min的原位DRIFT谱图

    Figure  8  In situ DRIFT spectra of ((a), (b)) CO2 hydrogenation with time on stream on ZnZr-4 and ((c)、(d)) CO2 hydrogenation for 60 min on ZnO-ZrO2 with different Zn/Zr molar ratios

    表  2  不同Zn/Zr比ZnZr-x氧化物的结构参数及碱性

    Table  2  Textural parameters and basic sites of ZnZr-x oxides with different Zn/Zr molar ratios

    SampleZn/Zr (molar ratio)SBET /
    (m2·g−1)
    vtotal /
    (cm3·g−1)
    Basic sites /(µmol·g−1)
    bulkasurfacebtotalweakstrong
    ZnZr-12.7:11.1∶1160.14826220
    ZnZr-21.3∶1240.14875928
    ZnZr-31∶2.8360.18998415
    ZnZr-41∶5.01∶4.3310.2115313221
    ZnZr-51∶7.4300.241209723
    ZnZr-61∶18.01∶5.7260.181108129
    a: Analysed by ICP, b: Determined by XPS
    下载: 导出CSV

    表  1  不同SiO2/Al2O3比HZSM-5分子筛的结构性质及酸性

    Table  1  Textural properties and acid sites of HZSM-5 zeolites with different SiO2/Al2O3 ratios

    SampleSiO2/Al2O3
    (molar ratio)a
    SBET /
    (m2·g−1)
    vtotal /
    (cm3·g−1)
    Acid sites /(µmol·g−1)
    totalweakstrong
    HZSM-5(50)443790.18491258233
    HZSM-5(130)1283850.341739578
    HZSM-5(200)1683620.22924448
    a Determined by XRF
    下载: 导出CSV
  • [1] CAI W J, PISCINA P R D L, TOYIR J, HOMS N. CO2 hydrogenation to methanol over CuZnGa catalysts prepared using microwave-assisted methods[J]. Catal Today,2015,242:193−199. doi: 10.1016/j.cattod.2014.06.012
    [2] STUDT F, SHARAFUTDINOV I, ABILD-PEDERSEN F, ELKJÆR C F, HUMMELSHØJ J S, DAHL S, CHORKENDORFF I, NØRSKOV J K. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol[J]. Nat Chem,2014,6(4):320−324. doi: 10.1038/nchem.1873
    [3] INUI T, YAMAMOTO T. Effective synthesis of ethanol from CO2 on polyfunctional composite catalysts[J]. Catal Today,1998,45:209−214. doi: 10.1016/S0920-5861(98)00217-X
    [4] 张鲁湘, 张永春, 陈绍云. CO2加氢制甲醇、二甲醚的研究进展 [J]. 化工进展, 2010, 29(6): 1041−1046.

    ZHANG Lu-xiang, ZHANG Yong-chun, CHEN Shao-yun. Research progress on the hydrogenation of CO2 to methanol and dimethyl ether [J], Chem Ind Eng Prog, 2010, 29(6): 1041−1046.
    [5] FRUSTERI F, CORDARO M, CANNILLA C, BONURA G. Multifunctionality of Cu-ZnO-ZrO2/H-ZSM5 catalysts for the one-step CO2-to-DME hydrogenation reaction[J]. Appl Catal B: Environ,2015,162:57−65. doi: 10.1016/j.apcatb.2014.06.035
    [6] LI C M, YUAN X D, FUJIMOTO K. Direct synthesis of LPG from carbon dioxide over hybrid catalysts comprising modified methanol synthesis catalyst and β-type zeolite[J]. Appl Catal A: General,2014,475:155−160. doi: 10.1016/j.apcata.2014.01.025
    [7] AL-DOSSARY M, ISMAIL ADEL A, FIERRO J L G, BOUZID H, AL-SAYARI S A. Effect of Mn loading onto MnFeO nanocomposites for the CO2 hydrogenation reaction[J]. Appl Catal B: Environ,2015,165:651−660. doi: 10.1016/j.apcatb.2014.10.064
    [8] FUJIWARA M, SAKURAI H, SHIOKAWA K, LIZUKA Y. Synthesis of C2 + hydrocarbons by CO2 hydrogenation over the composite catalyst of Cu-Zn-Al oxide and HB zeolite using two-stage reactor system under low pressure[J]. Catal Today,2015,242:255−260. doi: 10.1016/j.cattod.2014.04.032
    [9] GAO J J, JIA C M, LIU B. Direct and selective hydrogenation of CO2 to ethylene and propene by bifunctional catalysts[J]. Catal Sci Technol,2017,7:5602−5607. doi: 10.1039/C7CY01549F
    [10] GAO P, DANG S S, LI S G, BU X N, LIU Z Y, QIU M H, YANG C G, WANG H, ZHONG L S, HAN Y, LIU Q, WEI W, SUN Y H. Direct production of lower olefins from CO2 conversion via bifunctional catalysis[J]. ACS Catal,2018,8:571−578. doi: 10.1021/acscatal.7b02649
    [11] LI Z L, WANG J J, QU Y Z, LIU H L, TANG C Z, MIAO S, FENG Z C, AN H Y, LI C. Highly selective conversion of carbon dioxide to lower olefins[J]. ACS Catal,2017,7:8544−8548. doi: 10.1021/acscatal.7b03251
    [12] LIU X L, WANG M H, ZHOU C, ZHOU W, CHENG K, KANG J C, ZHANG Q H, DENG W P, DENG W P, WANG Y. Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa2O4 and SAPO-34[J]. Chem Commun,2018,54:140−143. doi: 10.1039/C7CC08642C
    [13] TAN Y, FUJIWARA M, ANDO H, XU Q, SOUMA Y. Syntheses of isobutane and branched higher hydrocarbons from carbon dioxide and hydrogen over composite catalysts[J]. Ind Eng Chem Res,1999,38:3225−3229. doi: 10.1021/ie980672m
    [14] BAI R, TAN Y, HAN Y. Study on the carbon dioxide hydrogenation to iso-alkanes over Fe-Zn-M/zeolite composite catalysts[J]. Fuel Process Technol,2004,86:293−301. doi: 10.1016/j.fuproc.2004.05.001
    [15] NI X, TAN Y, HAN Y, TSUBAKI N. Synthesis of isoalkanes over Fe-Zn-Zr/HY composite catalyst through carbon dioxide hydrogenation[J]. Catal Commun,2007,8:1711−1714. doi: 10.1016/j.catcom.2007.01.023
    [16] WANG X X, YANG G H, ZHANG J F, CHEN S Y, WU Y Q, ZHANG Q D, WANG J W, HAN Y Z, TAN Y S. Synthesis of isoalkanes over a core (Fe-Zn-Zr)-shell (zeolite) catalyst by CO2 hydrogenation[J]. Chem Commun,2016,52:7352−7355. doi: 10.1039/C6CC01965J
    [17] NI Y M, CHEN Z Y, FU Y, Y LIU, ZHU W L, LIU Z M. Selective conversion of CO2 and H2 into aromatics[J]. Nat Commun,2018,9:3457−3463. doi: 10.1038/s41467-018-05880-4
    [18] ZHANG J F, ZHANG M, CHEN S Y, WANG X X, ZHOU Z L, WU Y Q, ZHANG T, YANG G H, HAN Y Z, TAN Y S. Hydrogenation of CO2 into aromatics over a ZnCrOx-zeolite composite catalyst[J]. Chem Commun,2019,55:973−976. doi: 10.1039/C8CC09019J
    [19] WANG Y, TAN L, TAN M H, ZHANG P P, FANG Y, YONEYAMA Y, YANG G, TSUBAKI N. Rationally designing bifunctional catalysts as an efficient strategy to boost CO2 hydrogenation producing value-added aromatics[J]. ACS Catal,2019,9:895−901. doi: 10.1021/acscatal.8b01344
    [20] ZHANG X B, ZHANG A F, JIANG X, ZHU J, LIU J H, LI J J, ZHANG G H, SONG C S, GUO X W. Utilization of CO2 for aromatics production over ZnO/ZrO2-ZSM-5 tandem catalyst[J]. J CO2 Util,2019,29:140−145. doi: 10.1016/j.jcou.2018.12.002
    [21] LI Z L, QU Y Z, WANG J J, LIU H L, LI M R, MIAO S, LI C. Highly selective conversion of carbon dioxide to aromatics over tandem catalysts[J]. Joule,2019,3:570−583. doi: 10.1016/j.joule.2018.10.027
    [22] WEI J, GE Q J, YAO R W, WEN Z Y, FANG C Y, GUO L S, XU H Y, SUN J. Directly converting CO2 into a gasoline fuel[J]. Nat Commun,2017,8:15174−15181. doi: 10.1038/ncomms15174
    [23] WEI J, YAO R W, GE Q J, WEN Z Y, JI X W, FANG C Y, ZHANG J X, XU H Y, SUN J. Catalytic hydrogenation of CO2 to isoparaffins over Fe−based multifunctional catalysts[J]. ACS Catal,2018,8:9958−9967. doi: 10.1021/acscatal.8b02267
    [24] GENG S S, JIANG F, XU Y B, LIU X H. Iron-based Fischer-Tropsch synthesis for the efficient conversion of carbon dioxide into isoparaffins[J]. ChemCatChem,2016,8:1303−1307. doi: 10.1002/cctc.201600058
    [25] GAO P, LI S G, BU X N, DANG S S, LIU Z Y, WANG H, ZHONG L S, QIU M H, YANG C G, CAI J, WEI W, SUN Y H. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst[J]. Nat Chem,2017,9:1019−1024. doi: 10.1038/nchem.2794
    [26] DORNER R W, HARDY D R, WILLIAMS F W, Willauer H D. Heterogeneous catalytic CO2 conversion to value-added hydrocarbons[J]. Energy Environ Sci,2010,3(7):884−890.
    [27] RODEMERCK U, HOLEŇA M, WAGNER E, SMEJKAL Q, BARKSCHAT A, BAERNS M. Catalyst development for CO2 hydrogenation to fuels[J]. ChemCatChem,2013,5(7):1948−1955. doi: 10.1002/cctc.201200879
    [28] 白荣献, 谭猗生, 韩怡卓. Fe-Zn-Zr/分子筛复合催化剂上CO2加氢合成异构烷烃Ⅰ. 不同分子筛对催化剂性能的影响[J]. 催化学报,2004,25(3):223−226. doi: 10.3321/j.issn:0253-9837.2004.03.013

    BAI Rong-xian, TAN Yi-sheng, HAN Yi-zhuo. Hydrogenation of carbon dioxide to isoalkanes over Fe-Zn-Zr/zeolite composite catalystsⅠ. Effects of zeolites on catalytic performance of the catalysts[J]. Chin J Catal,2004,25(3):223−226. doi: 10.3321/j.issn:0253-9837.2004.03.013
    [29] WANG X X, ZENG C Y, GONG N N, ZHANG T, WU Y Q, ZHANG J F, SONG F E, YANG G H, TAN Y S. Effective suppression of CO selectivity for CO2 hydrogenation to high-quality gasoline[J]. ACS Catal,2021,11(3):1528−1547. doi: 10.1021/acscatal.0c04155
    [30] WANG J J, LI G N, LI Z L, TANG C Z, FENG Z C, AN H Y, LIU H L, LIU T F, LI C. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol[J]. Sci adv,2017,3(10):e1701290. doi: 10.1126/sciadv.1701290
    [31] WANG M H, WANG Z W, LIU S H, GAO R T, CHENG K, ZHANG L, ZHANG G Q, MIN X J, KANG J C, ZHANG Q H, WANG Y. Synthesis of hierarchical SAPO-34 to improve the catalytic performance of bifunctional catalysts for syngas-to-olefins reactions[J]. J Catal,2021,394:181−192. doi: 10.1016/j.jcat.2020.08.020
    [32] LIU X L, ZHOU W, YANG Y D, CHENG K, KANG J C, ZHANG L, ZHANG G Q, MIN X J, ZHANG Q H, WANG Y. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates[J]. Chem Sci,2018,9(20):4708−4718. doi: 10.1039/C8SC01597J
    [33] CHENG K, GU B, LIU X L, KANG J C, ZHANG Q H, WANG Y. Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angew Chem Int Edit,2016,128(15):4803−4806. doi: 10.1002/ange.201601208
    [34] WANG X X, YANG G H, ZHANG J F, SONG F E, WU Y Q, ZHANG T, ZHANG Q D, TSUBAKI N, TAN Y S. Macroscopic assembly style of catalysts significantly determining their efficiency for converting CO2 to gasoline[J]. Catal Sci Technol,2019,9:5401−5412. doi: 10.1039/C9CY01470E
    [35] ANDERSON A B, NICHOLS J A. Hydrogen on zinc oxide. Theory of its heterolytic adsorption[J]. J Am Chem Soc,1986,108(16):4742−4746. doi: 10.1021/ja00276a010
    [36] EISCHENS R P, PLISKIN W A, LOW M J D. The infrared spectrum of hydrogen chemisorbed on zinc oxide[J]. J Catal,1962,1(2):180−191. doi: 10.1016/0021-9517(62)90022-2
    [37] GRIFFIN G L, YATES JR J T. Combined temperature-programmed desorption and infrared study of H2 chemisorption on ZnO[J]. J Catal,1982,73(2):396−405. doi: 10.1016/0021-9517(82)90112-9
    [38] MARTÍNEZ-ESPÍN J S, WISPELAERE K D, JANSSENS T V W, SVELLE S, LILLERUD K P, BEATO P, SPEYBROECK V V, OLSBYE U. Hydrogen transfer versus methylation: on the genesis of aromatics formation in the methanol-to-hydrocarbons reaction over H-ZSM-5[J]. ACS Catal,2017,7(9):5773−5780. doi: 10.1021/acscatal.7b01643
    [39] MÜLLER S, LIU Y, KIRCHBERGER F M, TONIGOLD M, SANCHEZ-SANCHEZ M, LERCHER J A. Hydrogen transfer pathways during zeolite catalyzed methanol conversion to hydrocarbons[J]. J Am Chem Soc,2016,138(49):15994−16003. doi: 10.1021/jacs.6b09605
    [40] MÜLLER S, LIU Y, VISHNUVARTHAN M, SUN X Y, VAN VEEN A C, HALLER G L, SANCHEZ-SANCHEZ M, LERCHER J A. Coke formation and deactivation pathways on H-ZSM-5 in the conversion of methanol to olefins[J]. J Catal,2015,325:48−59. doi: 10.1016/j.jcat.2015.02.013
    [41] CHENG K, ZHOU W, KANG J C, HE S, SHI S L, ZHANG Q H, PAN Y, WEN W, WANG Y. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J]. Chem,2017,3(2):334−347. doi: 10.1016/j.chempr.2017.05.007
    [42] LIU R L, ZHU H Q, WU Z W, QIN Z F, FAN W B, WANG J G. Aromatization of propane over Ga-modified ZSM-5 catalysts[J]. J Fuel Chem and Tech,2015,43(8):961−969. doi: 10.1016/S1872-5813(15)30027-X
    [43] VIEIRA S S, MAGRIOTIS Z M, GRAÇA I, FERNANDES A, RIBEIRO M F, LOPES J M F M, COELHO S M, SANTOS N A V, SACZK A A. Production of biodiesel using HZSM-5 zeolites modified with citric acid and SO4 2−/La2O3[J]. Catal Today,2017,279:267−273. doi: 10.1016/j.cattod.2016.04.014
    [44] LÓNYI F, VALYON J. On the interpretation of the NH3-TPD patterns of H-ZSM-5 and H-mordenite[J]. Microporous Mesoporous Mater,2001,47(2-3):293−301. doi: 10.1016/S1387-1811(01)00389-4
    [45] TAN W, LIU M, ZHAO Y, HOU K K, WU H Y, ZHANG A F, LIU H O, WANG Y R, SONG C S, GUO X W. Para-selective methylation of toluene with methanol over nano-sized ZSM-5 catalysts: Synergistic effects of surface modifications with SiO2, P2O5 and MgO[J]. Microporous Mesoporous Mater,2014,196:18−30. doi: 10.1016/j.micromeso.2014.04.050
    [46] CIMINO A, STONE F S. Oxide solid solutions as catalysts [J]. 2002: 141−306.
    [47] ZHOU C, SHI J Q, ZHOU W, CHENG K, ZHANG Q H, KANG J C, WANG Y. Highly active ZnO-ZrO2 aerogels integrated with H-ZSM-5 for aromatics synthesis from carbon dioxide[J]. ACS Catal,2019,10(1):302−310.
    [48] WANG Y J, ZHAN W T, CHEN Z J, CHEN J M, LI X G, LI Y W. Advanced 3D hollow-out ZnZrO@C combined with hierarchical zeolite for highly active and selective CO hydrogenation to aromatics[J]. ACS Catal,2020,10(13):7177−7187. doi: 10.1021/acscatal.0c01418
    [49] WANG T, YANG C G, GAO P, ZHOU S J, LI S G, WANG H, SUN Y H. ZnZrOx integrated with chain-like nanocrystal HZSM-5 as efficient catalysts for aromatics synthesis from CO2 hydrogenation[J]. Appl Catal B: Environ,2021,286:119929. doi: 10.1016/j.apcatb.2021.119929
    [50] OU G, XU Y S, WEN B, LIN R, GE B H, TANG Y, LIANG Y W, YANG C, HUANG K, ZU D, YU R, CHEN W X, LI J, WU H, LIU L M, LI Y D. Tuning defects in oxides at room temperature by lithium reduction[J]. Nat Commun,2018,9(1):1−9. doi: 10.1038/s41467-017-02088-w
    [51] ZHANG M, ZHANG J F, WU Y Q, PAN J X, ZHANG Q D, TAN Y S, HAN Y Z. Insight into the effects of the oxygen species over Ni/ZrO2 catalyst surface on methane reforming with carbon dioxide[J]. Appl Catal B: Environ,2019,244:427−437. doi: 10.1016/j.apcatb.2018.11.068
    [52] PALMQVIST A E C, WIRDE M, GELIUS U, MUHAMMED M. Surfaces of doped nanophase cerium oxide catalysts[J]. Nanostruct Mater,1999,11(8):995−1007. doi: 10.1016/S0965-9773(00)00431-1
    [53] XIN C Y, HU M C, WANG K, WANG X T. Significant enhancement of photocatalytic reduction of CO2 with H2O over ZnO by the formation of basic zinc carbonate[J]. Langmuir,2017,33(27):6667−6676. doi: 10.1021/acs.langmuir.7b00620
    [54] RUI N, WANG Z Y, SUN K H, YE J Y, GE Q F, LIU C J. CO2 hydrogenation to methanol over Pd/In2O3: Effects of Pd and oxygen vacancy[J]. Appl Catal B: Environ,2017,218:488−497. doi: 10.1016/j.apcatb.2017.06.069
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  366
  • HTML全文浏览量:  102
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-12
  • 修回日期:  2022-11-09
  • 录用日期:  2022-11-09
  • 网络出版日期:  2022-11-16
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回