留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZnZr/HZSM-5复合催化剂上CO2加氢制备C5 + 异构烷烃

马晓玲 王晓星 宋法恩 马梓轩 谭猗生

马晓玲, 王晓星, 宋法恩, 马梓轩, 谭猗生. ZnZr/HZSM-5复合催化剂上CO2加氢制备C5 + 异构烷烃[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022085
引用本文: 马晓玲, 王晓星, 宋法恩, 马梓轩, 谭猗生. ZnZr/HZSM-5复合催化剂上CO2加氢制备C5 + 异构烷烃[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022085
MA Xiao-ling, WANG Xiao-xing, SONG Fa-en, MA Zi-xuan, TAN Yi-sheng. CO2 hydrogenation to C5 + isoalkanes on ZnZr/HZSM-5 composite catalyst[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022085
Citation: MA Xiao-ling, WANG Xiao-xing, SONG Fa-en, MA Zi-xuan, TAN Yi-sheng. CO2 hydrogenation to C5 + isoalkanes on ZnZr/HZSM-5 composite catalyst[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022085

ZnZr/HZSM-5复合催化剂上CO2加氢制备C5 + 异构烷烃

doi: 10.19906/j.cnki.JFCT.2022085
基金项目: 国家自然科学基金(22172182)及山西省应用基础研究项目(202103021224441)资助
详细信息
    通讯作者:

    Tel: 0351-4044287, E-mail: wangxx@sxicc.ac.cn

    tan@sxicc.ac.cn

  • 中图分类号: O643

CO2 hydrogenation to C5 + isoalkanes on ZnZr/HZSM-5 composite catalyst

Funds: The project was financially supported by the National Natural Science Foundation of China (22172182) and the Natural Science Foundation of Shanxi Province (202103021224441)
  • 摘要: CO2催化加氢是CO2转化利用的有效途径之一。尽管目前CO2加氢在金属氧化物及分子筛复合催化剂上制备异构烷烃及汽油方面已取得显著进展,但仍存在C5 + 烃及C5 + 烃中异构烷烃选择性低,副产物CO选择性高的问题。本文中,我们将锌锆氧化物(ZnZr)与HZSM-5分子筛有效耦合制得系列ZnZr/HZSM-5复合催化剂,分别考察了HZSM-5硅铝比及Zn/Zr比例对复合催化剂上CO2加氢制备C5 + 异构烷烃性能的影响。结果表明,SiO2/Al2O3 = 130,Zn/Zr = 1∶5制得的ZnZr-4/HZSM-5复合催化剂表现出最优的CO2加氢制C5 + 异构烷烃性能,CO2转化率为17%,CO选择性抑制到25%,C5 + 烃及C5 + 烃中异构烷烃选择性分别达60%及89%。而且,该复合催化剂稳定性良好,连续运转120 h未出现失活现象。ZnZr氧化物与HZSM-5分子筛的良好匹配对CO2加氢高选择性合成C5 + 异构烷烃至关重要。
  • 图  1  不同催化剂上CO2加氢制C5 + 异构烷烃的催化性能

    Figure  1  Catalytic performances of CO2 hydrogenation to C5 + isoalkanes on different catalysts. (a) ZnZr-2/Z5 composite catalysts with different SiO2/Al2O3 molar ratios, (b) ZnZr-x oxides and (c) ZnZr-x/Z5(130) composite catalysts with different Zn/Zr molar ratios, (d) Detailed hydrocarbon product distribution obtained over ZnZr-4/Z5, (e) Stability test for ZnZr-4/Z5. Reaction conditions: 340 ℃, 5 MPa, 3750 mL/g/ h for oxides and 3000 mL/g/ h for composite catalysts, (ZnZr-x)/Z5(weight ratio) = 4∶1

    图  2  不同SiO2/Al2O3比HZSM-5分子筛的表征

    Figure  2  Characterizations of HZSM-5 zeolites with different SiO2/Al2O3 molar ratios. (a) XRD patterns, (b) NH3-TPD profiles, ((c)−(e)) SEM images

    图  3  (a)ZnZr-x氧化物的XRD谱图及ZnZr-4的(b)EDS, (c)TEM及(d)HRTEM照片

    Figure  3  (a) XRD patterns of ZnZr-x oxides with different Zn/Zr molar ratios, and (b) EDS, (c) TEM and (d) HRTEM images of ZnZr-4

    图  4  不同Zn/Zr比例ZnZr-x氧化物的(a)N2吸-脱附等温线及(b)孔尺寸分布

    Figure  4  (a) N2 adsorption-desorption isotherms and (b) pore size distributions of ZnZr-x oxides with different Zn/Zr molar ratios

    图  5  不同Zn/Zr比例ZnZr-x氧化物的XPS谱图

    Figure  5  XPS spectra of ZnZr-x oxides with different Zn/Zr molar ratios (a) Zr 3d, (b) Zn 2p

    图  6  不同Zn/Zr比例ZnZr-x氧化物的O-1s谱图

    Figure  6  O-1s spectra of ZnZr-x oxides with different Zn/Zr molar ratios. (a) ZnZr-1, (b) ZnZr-4, (c) ZnZr-6

    图  7  不同Zn/Zr比的ZnZr-x氧化物的(a)EPR光谱及(b)CO2-TPD曲线

    Figure  7  (a) EPR spectra and (b) CO2-TPD profiles of ZnZr-x with different Zn/Zr molar ratios.

    图  8  (a,b) ZnZr-4上CO2加氢随时间变化和(c,d)不同Zn/Zr摩尔比ZnZr-x氧化物上CO2加氢60 min的原位DRIFT谱图

    Figure  8  In situ DRIFT spectra of (a,b) CO2 hydrogenation with time on stream on ZnZr-4 and (c,d) CO2 hydrogenation for 60 min on ZnO-ZrO2 with different Zn/Zr molar ratios.

    表  2  不同Zn/Zr比例ZnZr-x氧化物的结构参数及碱性

    Table  2  Textural parameters and basic sites of ZnZr-x oxides with different Zn/Zr molar ratios

    SamplesZn/Zr
    (molar ratio)
    SBET
    (m2·g−1)
    Vtotal
    (cm3·g−1)
    Basic sites
    (µmol·g−1)
    BulkaSurfacebTotalWeakStrong
    ZnZr-12.7:11.1∶1160.14826220
    ZnZr-21.3∶1240.14875928
    ZnZr-31∶2.8360.18998415
    ZnZr-41∶5.01∶4.3310.2115313221
    ZnZr-51∶7.4300.241209723
    ZnZr-61∶18.01∶5.7260.181108129
    a Analysed by ICP. b Determined by XPS.
    下载: 导出CSV

    表  1  不同SiO2/Al2O3比HZSM-5分子筛的结构性质及酸性

    Table  1  Textural properties and acid sites of HZSM-5 zeolites with different SiO2/Al2O3 ratios

    SampleSiO2/Al2O3
    molar ratioa
    SBET
    (m2·g−1)
    Vtotal
    (cm3·g−1)
    Acid sites (µmol·g−1)
    TotalWeakStrong
    HZSM-5(50)443790.18491258233
    HZSM-5(130)1283850.341739578
    HZSM-5(200)1683620.22924448
    a Determined by XRF.
    下载: 导出CSV
  • [1] CAI W J, PISCINA P R D L, TOYIR J, HOMS N. CO2 hydrogenation to methanol over CuZnGa catalysts prepared using microwave-assisted methods[J]. Catal Today,2015,242:193−199. doi: 10.1016/j.cattod.2014.06.012
    [2] STUDT F, SHARAFUTDINOV I. Abild-Pedersen F, ELKJæR C F, HUMMELSHøJ J S, DAHL S, CHORKENDORFF I, NøRSKOV J K. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol[J]. Nat Chem,2014,6(4):320−324. doi: 10.1038/nchem.1873
    [3] INUI T, YAMAMOTO T. Effective synthesis of ethanol from CO2 on polyfunctional composite catalysts[J]. Catal Today,1998,45:209−214. doi: 10.1016/S0920-5861(98)00217-X
    [4] 张鲁湘, 张永春, 陈绍云. CO2加氢制甲醇、二甲醚的研究进展 [J]. 化工进展, 2010, 29(6): 1041−1046.

    ZHANG Lu-xiang, ZHANG Yong-chun, CHEN Shao-yun. Research progress on the hydrogenation of CO2 to methanol and dimethyl ether [J], Chem Ind Eng Prog, 2010, 29(6): 1041−1046.
    [5] FRUSTERI F, CORDARO M, CANNILLA C BONURA G. Multifunctionality of Cu–ZnO–ZrO2/H-ZSM5 catalysts for the one-step CO2-to-DME hydrogenation reaction[J]. Appl Catal B:Environ,2015,162:57−65. doi: 10.1016/j.apcatb.2014.06.035
    [6] LI C M, YUAN X D, FUJIMOTO K. Direct synthesis of LPG from carbon dioxide over hybrid catalysts comprising modified methanol synthesis catalyst and β-type zeolite[J]. Appl Catal A:General,2014,475:155−160. doi: 10.1016/j.apcata.2014.01.025
    [7] AL-DOSSARY M, ISMAIL ADEL A, FIERRO J L G, BOUZID H, AL-SAYARI S A. Effect of Mn loading onto MnFeO nanocomposites for the CO2 hydrogenation reaction[J]. Appl Catal B:Environ,2015,165:651−660. doi: 10.1016/j.apcatb.2014.10.064
    [8] FUJIWARA M, SAKURAI H, SHIOKAWA K, LIZUKA Y. Synthesis of C2 + hydrocarbons by CO2 hydrogenation over the composite catalyst of Cu–Zn–Al oxide and HB zeolite using two-stage reactor system under low pressure[J]. Catal Today,2015,242:255−260. doi: 10.1016/j.cattod.2014.04.032
    [9] GAO J J, JIA C M, LIU B. Direct and selective hydrogenation of CO2 to ethylene and propene by bifunctional catalysts[J]. Catal Sci Technol,2017,7:5602−5607. doi: 10.1039/C7CY01549F
    [10] GAO P, DANG S S, LI S G, BU X N, LIU Z Y, QIU M H, YANG C G, WANG H, ZHONG L S, HAN Y, LIU Q, WEI W, SUN Y H. Direct production of lower olefins from CO2 conversion via bifunctional catalysis[J]. ACS Catal,2018,8:571−578. doi: 10.1021/acscatal.7b02649
    [11] LI Z L, WANG J J, QU Y Z, LIU H L, TANG C Z, MIAO S, FENG Z C, AN H Y, LI C. Highly selective conversion of carbon dioxide to lower olefins[J]. ACS Catal,2017,7:8544−8548. doi: 10.1021/acscatal.7b03251
    [12] LIU X L, WANG M H, ZHOU C, ZHOU W, CHENG K, KANG J C, ZHANG Q H, DENG W P, DENG W P, WANG Y. Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa2O4 and SAPO-34[J]. Chem Commun,2018,54:140−143. doi: 10.1039/C7CC08642C
    [13] TAN Y, FUJIWARA M, ANDO H, XU Q, SOUMA Y. Syntheses of isobutane and branched higher hydrocarbons from carbon dioxide and hydrogen over composite catalysts[J]. Ind Eng Chem Res,1999,38:3225−3229. doi: 10.1021/ie980672m
    [14] BAI R, TAN Y, HAN Y. Study on the carbon dioxide hydrogenation to iso-alkanes over Fe–Zn–M/zeolite composite catalysts[J]. Fuel Process Technol,2004,86:293−301. doi: 10.1016/j.fuproc.2004.05.001
    [15] NI X, TAN Y, HAN Y, TSUBAKI N. Synthesis of isoalkanes over Fe–Zn–Zr/HY composite catalyst through carbon dioxide hydrogenation[J]. Catal Commun,2007,8:1711−1714. doi: 10.1016/j.catcom.2007.01.023
    [16] WANG X X, YANG G H, ZHANG J F, CHEN S Y, WU Y Q, ZHANG Q D, WANG J W, HAN Y Z, TAN Y S. Synthesis of isoalkanes over a core (Fe–Zn–Zr)–shell (zeolite) catalyst by CO2 hydrogenation[J]. Chem Commun,2016,52:7352−7355. doi: 10.1039/C6CC01965J
    [17] NI Y M, CHEN Z Y, FU Y, Y LIU, ZHU W L, LIU Z M. Selective conversion of CO2 and H2 into aromatics[J]. Nat Commun,2018,9:3457−3463. doi: 10.1038/s41467-018-05880-4
    [18] ZHANG J F, ZHANG M, CHEN S Y, WANG X X, ZHOU Z L, WU Y Q, ZHANG T, YANG G H, HAN Y Z, TAN Y S. Hydrogenation of CO2 into aromatics over a ZnCrOx–zeolite composite catalyst[J]. Chem Commun,2019,55:973−976. doi: 10.1039/C8CC09019J
    [19] WANG Y, TAN L, TAN M H, ZHANG P P, FANG Y, YONEYAMA Y, YANG G, TSUBAKI N. Rationally designing bifunctional catalysts as an efficient strategy to boost CO2 hydrogenation producing value-added aromatics[J]. ACS Catal,2019,9:895−901. doi: 10.1021/acscatal.8b01344
    [20] ZHANG X B, ZHANG A F, JIANG X, ZHU J, LIU J H, LI J J, ZHANG G H, SONG C S, GUO X W. Utilization of CO2 for aromatics production over ZnO/ZrO2-ZSM-5 tandem catalyst[J]. J CO2 Util,2019,29:140−145. doi: 10.1016/j.jcou.2018.12.002
    [21] LI Z L, QU Y Z, WANG J J, LIU H L, LI M R, MIAO S, LI C. Highly selective conversion of carbon dioxide to aromatics over tandem catalysts[J]. Joule,2019,3:570−583. doi: 10.1016/j.joule.2018.10.027
    [22] WEI J, GE Q J, YAO R W, WEN Z Y, FANG C Y, GUO L S, XU H Y, SUN J. Directly converting CO2 into a gasoline fuel[J]. Nat Commun,2017,8:15174−15181. doi: 10.1038/ncomms15174
    [23] WEI J, YAO R W, GE Q J, WEN Z Y, JI X W, FANG C Y, ZHANG J X, XU H Y, SUN J. Catalytic hydrogenation of CO2 to isoparaffins over Fe−based multifunctional catalysts[J]. ACS Catal,2018,8:9958−9967. doi: 10.1021/acscatal.8b02267
    [24] GENG S S, JIANG F, XU Y B, LIU X H. Iron–based Fischer–Tropsch synthesis for the efficient conversion of carbon dioxide into isoparaffins[J]. ChemCatChem,2016,8:1303−1307. doi: 10.1002/cctc.201600058
    [25] GAO P, LI S G, BU X N, DANG S S, LIU Z Y, WANG H, ZHONG L S, QIU M H, YANG C G, CAI J, WEI W, SUN Y H. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst[J]. Nat Chem,2017,9:1019−1024. doi: 10.1038/nchem.2794
    [26] DORNER R W, HARDY D R, WILLIAMS F W, Willauer H D. Heterogeneous catalytic CO2 conversion to value-added hydrocarbons[J]. Energy & Environ Sci,2010,3(7):884−890.
    [27] RODEMERCK U, HOLEŇA M, WAGNER E, SMEJKAL Q, BARKSCHAT A, BAERNS M. Catalyst development for CO2 hydrogenation to fuels[J]. ChemCatChem,2013,5(7):1948−1955. doi: 10.1002/cctc.201200879
    [28] 白荣献, 谭猗生, 韩怡卓. Fe-Zn-Zr/分子筛复合催化剂上CO2加氢合成异构烷烃Ⅰ. 不同分子筛对催化剂性能的影响[J]. 催化学报,2004,25(3):223−226. doi: 10.3321/j.issn:0253-9837.2004.03.013

    BAI Rong-xian, TAN Yi-sheng, HAN Yi-zhuo. Hydrogenation of carbon dioxide to isoalkanes over Fe−Zn−Zr/Zeolite composite catalystsⅠ. Effects of zeolites on catalytic performance of the catalysts[J]. Chin J Catal,2004,25(3):223−226. doi: 10.3321/j.issn:0253-9837.2004.03.013
    [29] WANG X X, ZENG C Y, GONG N N, ZHANG T, WU Y Q, ZHANG J F, SONG F E, YANG G H, TAN Y S. Effective suppression of CO selectivity for CO2 hydrogenation to high-quality gasoline[J]. ACS Catal,2021,11(3):1528−1547. doi: 10.1021/acscatal.0c04155
    [30] WANG J J, LI G N, LI Z L, TANG C Z, FENG Z C, AN H Y, LIU H L, LIU T F, LI C. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol[J]. Sci adv,2017,3(10):e1701290. doi: 10.1126/sciadv.1701290
    [31] WANG M H, WANG Z W, LIU S H, GAO R T, CHENG K, ZHANG L, ZHANG G Q, MIN X J, KANG J C, ZHANG Q H, WANG Y. Synthesis of hierarchical SAPO-34 to improve the catalytic performance of bifunctional catalysts for syngas-to-olefins reactions[J]. J Catal,2021,394:181−192. doi: 10.1016/j.jcat.2020.08.020
    [32] LIU X L, ZHOU W, YANG Y D, CHENG K, KANG J C, ZHANG L, ZHANG G Q, MIN X J, ZHANG Q H, WANG Y. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates[J]. Chem Sci,2018,9(20):4708−4718. doi: 10.1039/C8SC01597J
    [33] CHENG K, GU B, LIU X L, KANG J C, ZHANG Q H, WANG Y. Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon–carbon coupling[J]. Angew Chem Int Edit,2016,128(15):4803−4806. doi: 10.1002/ange.201601208
    [34] Wang X X, Yang G H, Zhang J F, Song F E, Wu Y Q, Zhang T, Zhang Q D, Tsubaki N, Tan Y S. Macroscopic assembly style of catalysts significantly determining their efficiency for converting CO2 to gasoline[J]. Catal Sci Technol,2019,9:5401−5412. doi: 10.1039/C9CY01470E
    [35] ANDERSON A B, NICHOLS J A. Hydrogen on zinc oxide. Theory of its heterolytic adsorption[J]. J Am Chem Soc,1986,108(16):4742−4746. doi: 10.1021/ja00276a010
    [36] EISCHENS R P, PLISKIN W A, LOW M J D. The infrared spectrum of hydrogen chemisorbed on zinc oxide[J]. J Catal,1962,1(2):180−191. doi: 10.1016/0021-9517(62)90022-2
    [37] GRIFFIN G L, YATES JR J T. Combined temperature-programmed desorption and infrared study of H2 chemisorption on ZnO[J]. J Catal,1982,73(2):396−405. doi: 10.1016/0021-9517(82)90112-9
    [38] MARTÍNEZ-ESPÍN J S, WISPELAERE K D, JANSSENS T V W, SVELLE S, LILLERUD K P, BEATO P, SPEYBROECK V V, OLSBYE U. Hydrogen transfer versus methylation: on the genesis of aromatics formation in the methanol-to-hydrocarbons reaction over H-ZSM-5[J]. ACS Catal,2017,7(9):5773−5780. doi: 10.1021/acscatal.7b01643
    [39] MÜLLER S, LIU Y, KIRCHBERGER F M, TONIGOLD M, SANCHEZ-SANCHEZ M, LERCHER J A. Hydrogen transfer pathways during zeolite catalyzed methanol conversion to hydrocarbons[J]. J Am Chem Soc,2016,138(49):15994−16003. doi: 10.1021/jacs.6b09605
    [40] MÜLLER S, LIU Y, VISHNUVARTHAN M, SUN X Y, VAN VEEN A C, HALLER G L, SANCHEZ-SANCHEZ M, LERCHER J A. Coke formation and deactivation pathways on H-ZSM-5 in the conversion of methanol to olefins[J]. J Catal,2015,325:48−59. doi: 10.1016/j.jcat.2015.02.013
    [41] CHENG K, ZHOU W, KANG J C, HE S, SHI S L, ZHANG Q H, PAN Y, WEN W, WANG Y. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J]. Chem,2017,3(2):334−347. doi: 10.1016/j.chempr.2017.05.007
    [42] LIU R L, ZHU H Q, WU Z W, QIN Z F, FAN W B, WANG J G. Aromatization of propane over Ga-modified ZSM-5 catalysts[J]. J Fuel Chem and Tech,2015,43(8):961−969. doi: 10.1016/S1872-5813(15)30027-X
    [43] VIEIRA S S, MAGRIOTIS Z M, GRAÇA I, FERNANDES A, RIBEIRO M F, LOPES J M F M, COELHO S M, SANTOS N A V, SACZK A A. Production of biodiesel using HZSM-5 zeolites modified with citric acid and SO42−/La2O3[J]. Catal Today,2017,279:267−273. doi: 10.1016/j.cattod.2016.04.014
    [44] LÓNYI F, VALYON J. On the interpretation of the NH3-TPD patterns of H-ZSM-5 and H-mordenite[J]. Micropor Mesopor Mater,2001,47(2-3):293−301. doi: 10.1016/S1387-1811(01)00389-4
    [45] TAN W, LIU M, ZHAO Y, HOU K K, WU H Y, ZHANG A F, LIU H O, WANG Y R, SONG C S, GUO X W. Para-selective methylation of toluene with methanol over nano-sized ZSM-5 catalysts: Synergistic effects of surface modifications with SiO2, P2O5 and MgO[J]. Micropor Mesopor Mater,2014,196:18−30. doi: 10.1016/j.micromeso.2014.04.050
    [46] CIMINO A, STONE F S. Oxide solid solutions as catalysts [J]. 2002: 141−306.
    [47] ZHOU C, SHI J Q, ZHOU W, CHENG K, ZHANG Q H, KANG J C, WANG Y. Highly active ZnO-ZrO2 aerogels integrated with H-ZSM-5 for aromatics synthesis from carbon dioxide[J]. ACS Catal,2019,10(1):302−310.
    [48] WANG Y J, ZHAN W T, CHEN Z J, CHEN J M, LI X G, LI Y W. Advanced 3D hollow-out ZnZrO@C combined with hierarchical zeolite for highly active and selective CO hydrogenation to aromatics[J]. ACS Catal,2020,10(13):7177−7187. doi: 10.1021/acscatal.0c01418
    [49] WANG T, YANG C G, GAO P, ZHOU S J, LI S G, WANG H, SUN Y H. ZnZrOx integrated with chain-like nanocrystal HZSM-5 as efficient catalysts for aromatics synthesis from CO2 hydrogenation[J]. Appl Catal B:Environ,2021,286:119929. doi: 10.1016/j.apcatb.2021.119929
    [50] OU G, XU Y S, WEN B, LIN R, GE B H, TANG Y, LIANG Y W, YANG C, HUANG K, ZU D, YU R, CHEN W X, LI J, WU H, LIU L M, LI Y D. Tuning defects in oxides at room temperature by lithium reduction[J]. Nat Commun,2018,9(1):1−9. doi: 10.1038/s41467-017-02088-w
    [51] ZHANG M, ZHANG J F, WU Y Q, PAN J X, ZHANG Q D, TAN Y S, & HAN Y Z. Insight into the effects of the oxygen species over Ni/ZrO2 catalyst surface on methane reforming with carbon dioxide[J]. Appl Catal B:Environ,2019,244:427−437. doi: 10.1016/j.apcatb.2018.11.068
    [52] PALMQVIST A E C, WIRDE M, GELIUS U, MUHAMMED M. Surfaces of doped nanophase cerium oxide catalysts[J]. Nanostruct Mater,1999,11(8):995−1007. doi: 10.1016/S0965-9773(00)00431-1
    [53] XIN C Y, HU M C, WANG K, WANG X T. Significant enhancement of photocatalytic reduction of CO2 with H2O over ZnO by the formation of basic zinc carbonate[J]. Langmuir,2017,33(27):6667−6676. doi: 10.1021/acs.langmuir.7b00620
    [54] RUI N, WANG Z Y, SUN K H, YE J Y, GE Q F, LIU C J. CO2 hydrogenation to methanol over Pd/In2O3: effects of Pd and oxygen vacancy[J]. Appl Catal B:Environ,2017,218:488−497. doi: 10.1016/j.apcatb.2017.06.069
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  6
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-12
  • 录用日期:  2022-11-09
  • 修回日期:  2022-11-09
  • 网络出版日期:  2022-11-16

目录

    /

    返回文章
    返回