留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

In2O3基催化剂在热催化二氧化碳加氢反应中的研究进展

焦春学 慕红梅 高鹏 杨星 田海锋 查飞

焦春学, 慕红梅, 高鹏, 杨星, 田海锋, 查飞. In2O3基催化剂在热催化二氧化碳加氢反应中的研究进展[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022086
引用本文: 焦春学, 慕红梅, 高鹏, 杨星, 田海锋, 查飞. In2O3基催化剂在热催化二氧化碳加氢反应中的研究进展[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022086
JIAO Chun-xue, MU Hong-mei, GAO Peng, YANG Xing, TIAN Hai-feng, ZHA Fei. Progress of In2O3-based catalysts in Thermal Catalytic CO2 hydrogenation reaction[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022086
Citation: JIAO Chun-xue, MU Hong-mei, GAO Peng, YANG Xing, TIAN Hai-feng, ZHA Fei. Progress of In2O3-based catalysts in Thermal Catalytic CO2 hydrogenation reaction[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022086

In2O3基催化剂在热催化二氧化碳加氢反应中的研究进展

doi: 10.19906/j.cnki.JFCT.2022086
基金项目: 国家自然科学基金(22268039); 甘肃省青年科技基金计划项目(20JR10RA107);甘肃省高等学校创新基金项目(2021A-254)
详细信息
    通讯作者:

    E-mail: thfnwnu@163.com

    zhafei@nwnu.edu.cn

  • 中图分类号: 0643.36;X773

Progress of In2O3-based catalysts in Thermal Catalytic CO2 hydrogenation reaction

Funds: National Natural Science Foundation (22268039); Gansu Provincial Youth Science and Technology Fund Program(20JR10RA107); Gansu Province Higher Education Innovation Fund Project(2021A-254).
  • 摘要: CO2催化加氢被认为是生产高附加值化学品和燃料最实用的途径之一。然而由于其化学惰性、C–C键偶联过程的高能垒和诸多的竞争反应,因此开发高效的催化剂以促进CO2的活化并转化为多样的化工产物显得至关重要。近年来,氧化铟因具有丰富的氧缺陷位点,在催化CO2加氢方面对甲醇的高选择性以及对CO2转化的高活性引起了人们的广泛关注。本文主要对In2O3的结构及其与氧化物负载或金属元素掺杂的复合催化剂用于催化CO2加氢制备甲醇的催化性能进行了综述。随后又探讨了In2O3与不同类型的分子筛的接近度和元素迁移在CO2加氢制烃类产物中的影响。最后对In2O3基催化剂在CO2选择性加氢方面存在的挑战和发展方向进行了总结。
  • 图  1  CO2加氢制高附加值化学品的反应示意图[9]

    Figure  1  Schematic illustration of CO2 hydrogenation reactions for the synthesis of value-added products[9]

    图  2  In2O3的三种晶体结构[28](不同的In原子用不同颜色表示)

    Figure  2  Three crystal structures of In2O3[28](different types of In atoms are marked by different colors)

    图  3  In2O3上CO2加氢制甲醇的可能反应路线[38]

    Figure  3  Possible reaction routes of CO2 hydrogenation to methanol over In2O3[38]

    图  4  合成甲醇的串联反应机理及相应的原子构型[39]

    Figure  4  Mechanism of tandem reaction of synthetic methanol and corresponding atomic configurations[39]

    图  5  (A) In2O3上CO2加氢初始步骤的示意图,In位和O位上的H原子分别呈紫色和绿色[40];(B) 当CO的吸附能为–0.1 eV时,甲醇形成的理论活性火山与OH结合能的关系(反应条件:T=300 ℃,0.5 MPaCO2和1.5 MPaH2)[42]

    Figure  5  (A) Schematic diagram of the initial steps of CO2 hydrogenation over In2O3, with the H atoms at the In and O positions in purple and green, respectively[40]; (B) Theoretical activity volcano for methanol formation as a function of the binding energy of OH for a fixed adsorption energy of CO of –0.1 eV(Reaction conditions: T = 300 ℃, 0.5 MPa of CO2, and 1.5 MPa of H2)[42]

    图  6  (A) In2O3表面氧空位催化CO2加氢制甲醇的基本步骤(红球: O原子,棕球: In原子,白球: H原子)[38];(B) In2O3表面氧空位催化CO2加氢过程中的吉布斯自由能变化[41];(C) In2O3(110)表面的构型[38];(D) 表面Zr掺杂浓度对In2O3(110)表面氧空位形成能的影响[44]

    Figure  6  (A) Basic steps for CO2 hydrogenation to methanol catalyzed by oxygen vacancy on the surface of In2O3(red ball: O atoms, brown ball: In atoms, white ball: H atoms)[38]; (B) Gibbs free energy variation during CO2 hydrogenation catalyzed by oxygen vacancies on the surface of In2O3[41]; (C) Conformation of In2O3(110) surface[38]; (D) Effect of surface Zr doping concentration on the oxygen vacancy formation energy on the surface of In2O3(110) [43]

    图  7  不同负载型催化剂的甲醇STY[44]

    Figure  7  (A) Methanol STY with different loading type catalysts[43]

    图  8  (A) 温度对甲醇选择性的影响;(B) Inx/ZrO2催化剂上CO的STY、甲醇的STY和选择性随In含量的变化(反应条件:280 ℃, 5.0 MPa, CO2∶H2∶N2=4∶1∶1.67,GHSV=24000 h–1);(C) In0.1/ZrO2和In2.5/ZrO2上CO2加氢路径及结构–性能关系[45]

    Figure  8  (A) Effect of temperature on methanol selectivity;(B) Variation of STY of CO, STY of methanol and selectivity with In content over Inx/ZrO2 catalyst (Reaction conditions: 280 ℃, 5.0 MPa, CO2∶H2∶N2=4∶1∶1.67, GHSV=24000 h–1);(C) CO2 hydrogenation pathways and structure–property relationships on In0.1/ZrO2 and In2.5/ZrO2[45]

    图  9  FSP法制备的纯In2O3和M-In2O3催化剂上甲醇的时空产率(STY,彩色条)和选择性(SMeOH,米色条)及M-In2O3催化剂的助剂形态及其相关结构-机理特征[61]

    Figure  9  Spatiotemporal yield (STY, colored bars) and selectivity (SMeOH, beige bars) of methanol over pure In2O3 and M-In2O3 catalysts prepared by the FSP method and the auxiliary morphology of M-In2O3 catalysts and their related structure-mechanism characteristics[61]

    图  10  CO2加氢合成烃类的路线[70]

    Figure  10  CO2 hydrogenation route for hydrocarbon synthesis[70]

    图  11  In2O3/HZSM-5催化剂上CO2加氢生成碳氢化合物机理图[72]

    Figure  11  Mechanistic diagram of CO2 hydrogenation to hydrocarbons over In2O3/HZSM-5 catalyst[72]

    图  12  不同的串联催化剂上CO2加氢生产芳烃的示意图[73]

    Figure  12  Schematic diagram of aromatics from CO2 hydrogenation over different tandem catalysts[73]

    图  13  (A) In2O3晶粒尺寸对In2O3/SAPO-34催化剂催化活性的影响[74];(B) In2O3、In-Zr氧化物以及金属氧化物/SAPO-34分子筛串联催化剂上烃类产物的分布和反应速率[75];(C) In-Zr/SAPO-34体系中CO2加氢制低碳烯烃反应路线示意图[76]

    Figure  13  (A) Effect of In2O3 particle size on the catalytic activity of In2O3/SAPO-34 catalyst[74]; (B) Distribution and reaction rates of hydrocarbon products over In2O3, In-Zr oxides and metal oxide/SAPO-34 tandem catalysts[75]; (C) Schematic diagram of the reaction route of CO2 hydrogenation to low carbon olefins over the In-Zr/SAPO-34 catalyst[76]

    图  14  SAPO-34分子筛粒径和孔结构对$ {\rm{C}}_2^=- {\rm{C}}_4^=$产物选择性的影响[77]

    Figure  14  Effect of particle size and pore structure of SAPO-34 zeolite on the selectivity of $ {\rm{C}}_2^=- {\rm{C}}_4^=$ products[77]

    图  15  活性组分的组装方式(In2O3/HZSM-5质量比=2∶51)对催化性能的影响[72]

    Figure  15  Effect of the assembly method of active components (In2O3/HZSM-5 mass ratio = 2∶51) on the catalytic performance[72]

    图  16  In2O3-ZrO2/SAPO-34催化剂上活性组分的组装方式对催化性能的影响[75]

    Figure  16  Effect of the assembly method of active components on In2O3-ZrO2/SAPO-34 catalysts on catalytic performance[75]

    图  17  热处理和CO2加氢反应驱动In向ZSM-5迁移的方案及其对催化性能的影响[80]

    Figure  17  Scheme of heat treatment and CO2 hydrogenation reaction to drive In migration to ZSM-5 and its effect on catalytic performance[80]

    表  1  CO2加氢制甲醇的催化性能

    Table  1  Catalytic properties of CO2 hydrogenation to methanol

    CatalystT/℃P/MPaSpace velocityH2/CO2 ratioCO2 conv.(%)MeOH sel.(%)STYRef.
    c-In2O3-S30059000 mL·gcat–1·h–1312.071.98.3 mmol·gcat–1·h–134
    h-In2O3-R300520000 mL·gcat–1·h–146.799.511.4 mmol·gcat–1·h–134
    black In2O3250349.2339
    Bulk In2O3300543.4>99.543
    In2O3300521000 mL·h–1·gcat–18.271.20.352 gMeOH·h–1·gcat–150
    In2O340039000 mL·gcat–1·h–1331.51.274
    9 In2O3/ZrO2300516000 h–145.299.80.295 gMeOH·gcat–1·h–143
    In5/ZrO2250524000 h–140.677.90.024 gMeOH·gcat–1·h–145
    1.5Y In2O3/ZrO2300452000 mL·h–1·gcat–147.6690.420 gMeOH·gcat–1·h–146
    3La10In/ZrO2300452000 mL·h–1·gcat–147.7660.420 gMeOH·gcat–1·h–146
    In2O3/m-ZrO2(redox)300 48000 mL·gcat–1·h–13332.20 gMeOH·gIn2O3–1·h–147
    In2O3/t-ZrO2(redox)300 48000 mL·gcat–1·h–13310.49 gMeOH·gIn2O3–1·h–147
    In2O3/am-ZrO2(redox)300 48000 mL·gcat–1·h–13290.37 gMeOH·gIn2O3–1·h–147
    Pd/In2O3300521000 mL·h–1·gcat–120.572.10.885 gMeOH·gcat–1·h–150
    0.58 wt.% Pt/In2O3300224000 mL·gcat–1·h–136.3560.482 gMeOH·gcat–1·h–154
    Rh/In2O3300521000 mL·h–1·gcat–1417.156.10.5448 gMeOH·gcat–1·h–155
    Au/In2O3300521000 mL·h–1·gcat–1411.767.80.470 gMeOH·gcat–1·h–157
    In@Co-13005419690.480 gMeOH·gcat–1·h–158
    Ag/In2O3300521000 mL·h–1·gcat–1413.658.20.453 gMeOH·gcat–1·h–159
    CuIn@SiO228037500 mL·gcat–1·h–112.578.26.55 mmol·gcat–1·h–162
    下载: 导出CSV

    表  2  不同串联催化剂在CO2加氢制烃类反应中的催化性能

    Table  2  Catalytic performance of different tandem catalysts in CO2 hydrogenation to hydrocarbon reactions

    CatalystReaction conditionsSelectivity/%Hydrocarbon distribution/%Ref.
    T/℃P/MPaGHSV
    mL·gcat–1·h–1
    H2/CO2 ratioCOCHCH4$ {\rm{C}}_2^=- {\rm{C}}_4^=$$ {\rm{C}}_2^0- {\rm{C}}_4^0 $C5 +
    In2O3/HZSM-5340390003 44.855.2120.478.672
    InZnZrOx/NZ532034000319.88.073
    In2O3-SAPO-343503900031.874
    In2O3-SAPO-3438039000368.331.72.781.913.71.744
    In-Zr(4∶1)/SAPO-3438039000363.936.12.074.521.52.044
    In-Zr(1∶1)/SAPO-3438039000368.631.42.967.225.04.944
    In-Zr(1∶4)/SAPO-3438039000370.429.62.665.129.62.744
    In2O3-SAPO-34(2/1)40039000385.914.175
    In-Zr/SAPO-34(1/2)40039000384.215.875
    In-Zr/SAPO-34(1/1)40039000385.314.775
    In-Zr/SAPO-34(2/1)40039000385.015.04.376.416.52.875
    In-Zr/SAPO-34(4/1)40039000389.210.675
    In2O3/ZnZrOx/SAPO-3438039000355.844.21.68511.12.377
    In2O3/ZrO2-SAPO-53003400033831779
    下载: 导出CSV
  • [1] 王晗, 樊升, 王森, 董梅, 秦张峰, 樊卫斌, 王建国. 二氧化碳加氢制一些烃类化合物的研究进展[J]. 燃料化学学报,2021,49(11):1609−1619. doi: 10.1016/S1872-5813(21)60122-6

    WANG Han, FAN Sheng, WANG Sen, DONG Mei, QIN Zhang-feng, FAN Wei-bin, WANG Jian-guo. Research progresses in the hydrogenation of carbon dioxide to certain hydrocarbon products[J]. J Fuel Chem Technol,2021,49(11):1609−1619. doi: 10.1016/S1872-5813(21)60122-6
    [2] EBI K L. Key themes in the Working Group II contribution to the Intergovernmental Panel on Climate Change 5th assessment report[J]. Clim Change,2012,114(3):417−426.
    [3] PECHENKIN A, POTEMKIN D, BADMAEV S, SMIRNOVA E, CHEREDNICHENKO K, VINOKUROV V, GLOTOV A. CO2 hydrogenation to dimethyl ether over In2O3 catalysts supported on aluminosilicate halloysite nanotubes[J]. Green Process Synth,2021,10(1):594−605. doi: 10.1515/gps-2021-0058
    [4] NOCITO F, DIBENEDETTO A. Atmospheric CO2 mitigation technologies: carbon capture utilization and storage[J]. Current Opinion in Green and Sustainable Chemistry,2020,21:34−43. doi: 10.1016/j.cogsc.2019.10.002
    [5] MEYLAN F D, MOREAU V, ERKMAN S. CO2 utilization in the perspective of industrial ecology, an overview[J]. J CO2 Util,2015,12:101−108. doi: 10.1016/j.jcou.2015.05.003
    [6] POROSOFF M D, YAN B, CHEN J G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities[J]. Energy Environ Sci,2016,9(1):62−73. doi: 10.1039/C5EE02657A
    [7] BANERJEE A, DICK G R, YOSHINO T, KANAN M W. Carbon dioxide utilization via carbonate-promoted C–H carboxylation[J]. Nature,2016,531(7593):215−219. doi: 10.1038/nature17185
    [8] ZHOU C, SHI J Q, ZHOU W, CHENG K, ZHANG Q Q, KANG J C, WANG Y. Highly active ZnO-ZrO2 aerogels integrated with H-ZSM-5 for aromatics synthesis from carbon dioxide[J]. ACS Catal,2019,10(1):302−310.
    [9] NIE X W, LI W H, JIANG X, GUO X W, SONG C S. Recent advances in catalytic CO2 hydrogenation to alcohols and hydrocarbons[J]. Adv Catal,2019,65:121−233.
    [10] POROSOFF M D, YANG X F, BOSCOBOINIK J A, CHEN J G G. Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO[J]. Angew Chem Int Ed,2014,53(26):6705−6709. doi: 10.1002/anie.201404109
    [11] JANKE C, DUYAR M S, HOSKINS M, FARRAUTO R. Catalytic and adsorption studies for the hydrogenation of CO2 to methane[J]. Appl Catal B,2014,152:184−191.
    [12] JIANG X, NIE X W, GUO X W, SONG C S, CHEN J G. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J]. Chem Rev,2020,120(15):7984−8034. doi: 10.1021/acs.chemrev.9b00723
    [13] MENG C, ZHAO G F, SHI X R, CHEN P J, LIU Y, LU Y. Oxygen-deficient metal oxides supported nano-intermetallic InNi3C0.5 toward efficient CO2 hydrogenation to methanol[J]. Sci Adv,2021,7(32):eabi6012. doi: 10.1126/sciadv.abi6012
    [14] MORET S, DYSON P J, LAURENCZY G. Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media[J]. Nat Commun,2014,5(1):1−7.
    [15] ZHANG W N, WEI Y X. Regulation of product distribution in CO2 hydrogenation to light olefins[J]. Chem,2022,8(5):1170−1173. doi: 10.1016/j.chempr.2022.04.024
    [16] WANG X X, YANG G H, ZHANG J F, CHEN S Y, WU Y Q, ZHANG Q D, WANG J W, HAN Y Z, TAN Y S. Synthesis of isoalkanes over a core (Fe-Zn-Zr)-shell (zeolite) catalyst by CO2 hydrogenation[J]. Chem Comm,2016,52(46):7352−7355. doi: 10.1039/C6CC01965J
    [17] CHOI Y H, JANG Y J, PARK H, KIM W Y, LEE Y H, CHOI S H, LEE J S. Carbon dioxide Fischer-Tropsch synthesis: A new path to carbon-neutral fuels[J]. Appl Catal B,2017,202:605−610. doi: 10.1016/j.apcatb.2016.09.072
    [18] 郭晓明, 毛东森, 卢冠忠, 王嵩. CO2加氢合成甲醇催化剂的研究进展[J]. 化工进展,2012,31(3):477−488.

    GUO Xiao-ming, MAO Dong-sen, LU Guan-zhong, WANG Song. Progress in catalysts for methanol synthesis from CO2 hydrogenation[J]. Chem Ind Eng Prog,2012,31(3):477−488.
    [19] ÁLVAREZ A, BANSODE A, URAKAWA A, BAVYKINA A V, WEZENDONK T A, MAKKEE M, GASCON J, KAPTEIJN F. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes[J]. Chem Rev,2017,117(14):9804−9838. doi: 10.1021/acs.chemrev.6b00816
    [20] HARTADI Y, WIDMANN D, BEHM R J. Methanol formation by CO2 hydrogenation on Au/ZnO catalysts-Effect of total pressure and influence of CO on the reaction characteristics[J]. J Catal,2016,333:238−250. doi: 10.1016/j.jcat.2015.11.002
    [21] TADA S, WATANABE F, KIYOTA K, SHIMODA N, HAYASHI R, TAKAHASHI M, NARIYUKI A, LGARASHI A, SATOKAWA S. Ag addition to CuO-ZrO2 catalysts promotes methanol synthesis via CO2 hydrogenation[J]. J Catal,2017,351:107−118. doi: 10.1016/j.jcat.2017.04.021
    [22] SUN K H, FAN Z G, YE J Y, YAN J M, GE Q F, LI Y N, HE W J, YANG W M, LIU C J. Hydrogenation of CO2 to methanol over In2O3 catalyst[J]. J CO2 Util,2015,12:1−6. doi: 10.1016/j.jcou.2015.09.002
    [23] WANG J J, LI G N, Li Z L, TANG C Z, FENG Z C, AN H Y, LIU H L, LIU T F, LI C. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol[J]. Sci Adv,2017,3(10):e1701290. doi: 10.1126/sciadv.1701290
    [24] WANG J J, TANG C Z, LI G N, HAN Z, LI Z L, LIU H L, CHENG F, LI C. High-performance MaZrOx (Ma=Cd, Ga) solid solution catalysts for CO2 hydrogenation to methanol[J]. ACS Catal,2019,9(11):10253−10259. doi: 10.1021/acscatal.9b03449
    [25] WANG J Y, ZHANG G H, ZHU J, ZHANG X B, DING F S, ZHANG A F, GUO X W, SONG C S. CO2 hydrogenation to methanol over In2O3-based catalysts: From mechanism to catalyst development[J]. ACS Catal,2021,11(3):1406−1423. doi: 10.1021/acscatal.0c03665
    [26] KATTEL S, YAN B H, CHEN J G, LIU P. CO2 hydrogenation on Pt, Pt/SiO2 and Pt/TiO2: Importance of synergy between Pt and oxide support[J]. J Catal,2016,343:115−126. doi: 10.1016/j.jcat.2015.12.019
    [27] 李龙泰, 张春杰, 罗学彬, 杨彬, 郭利民. 用于CO2催化加氢In2O3基催化剂的研究进展[J]. 材料导报,2021,35(21):21071−21078.

    LI Long-tai, ZHANG Chun-jie, LUO Xue-bin, YANG Bin, GUO Li-min. Recent Advances in In2O3-based Catalysts for CO2 Hydrogenation[J]. Mater Rev,2021,35(21):21071−21078.
    [28] KARAZHANOV S Z, RAVINDRAN P, VAJEESTON P, ULYASHIN A, FINSTAD T G, FJELLVÅG H. Phase stability, electronic structure, and optical properties of indium oxide polytypes[J]. Phys Rev B,2007,76(7):075129. doi: 10.1103/PhysRevB.76.075129
    [29] DE BOER T, BEKHEET M F, GURLO A, RIEDEL R, MOEWES A. Band gap and electronic structure of cubic, rhombohedral, and orthorhombic In2O3 polymorphs: Experiment and theory[J]. Phys Rev B,2016,93(15):155205. doi: 10.1103/PhysRevB.93.155205
    [30] YANG B, LI L T, JIA Z Y, LIU X P, ZHANG C J, GUO L M. Comparative study of CO2 hydrogenation to methanol on cubic bixbyite-type and rhombohedral corundum-type indium oxide[J]. Chin Chem Lett,2020,31(10):2627−2633. doi: 10.1016/j.cclet.2020.05.031
    [31] GUNJI T, NAKAMURA K, HAYAMI R, AIMI A, FUJIMOTO K, YAMAMOYO K. Synthesis of indium tin oxide films from ethyl acetoacetonato complexes at low temperatures[J]. J Solgel Sci Technol,2021,100(1):68−73. doi: 10.1007/s10971-021-05618-7
    [32] QIN B, ZHOU Z M, LI S G. Reaction pathways and the role of the carbonates during CO2 hydrogenation over hexagonal In2O3 catalysts[J]. Appl Surf Sci,2021,542:148591. doi: 10.1016/j.apsusc.2020.148591
    [33] NIELSEN I G, SOMMER S, IVERSEN B B. Phase control for indium oxide nanoparticles[J]. Nanoscale,2021,13(7):4038−4050. doi: 10.1039/D0NR08587A
    [34] Dang S S, QIN B, YANG Y, WANG H, CAI J, HAN Y, LI S G, GAO P, SUN Y H. Rationally designed indium oxide catalysts for CO2 hydrogenation to methanol with high activity and selectivity[J]. Sci Adv,2020,6(25):eaaz2060. doi: 10.1126/sciadv.aaz2060
    [35] WANG J Y, LIU C Y, SENFTLE T P, ZHU J, ZHANG G H, GUO X W, SONG C S. Variation in the In2O3 crystal phase alters catalytic performance toward the reverse water gas shift reaction[J]. ACS Catal,2020,10(5):3264−3273. doi: 10.1021/acscatal.9b04239
    [36] UMEGAKI T, KURATANI K, YAMADA Y, UEDA A, KURIYAMA N, KOBAYASHI T, XU Q. Hydrogen production via steam reforming of ethyl alcohol over nano-structured indium oxide catalysts[J]. J Power Sources,2008,179(2):566−570. doi: 10.1016/j.jpowsour.2008.01.010
    [37] LORENZ H, JOCHUM W, KLÖTZER B, STÖGER-POLLACH M, SCHWARZ S, PFALLRE K, PENNER S. Novel methanol steam reforming activity and selectivity of pure In2O3[J]. Appl Catal A-Gen,2008,347(1):34−42. doi: 10.1016/j.apcata.2008.05.028
    [38] YE J Y, LIU C J, MEI D H, GE Q F. Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3 (110): a DFT study[J]. ACS Catal,2013,3(6):1296−1306. doi: 10.1021/cs400132a
    [39] ZHANG Z S, MAO C L, MEIRA D M, DUCHESNE P N, TOUNTAS A A, LI Z, QIU C Y, TANG S L, SONG R, DING X, SUN J C, YU J F, HOWE J Y, TU W G, WANG L, OZIN G A. New black indium oxide-tandem photothermal CO2-H2 methanol selective catalyst[J]. Nat Commun,2022,13(1):1−8. doi: 10.1038/s41467-021-27699-2
    [40] YE J Y, LIU C J, GE Q F. DFT study of CO2 adsorption and hydrogenation on the In2O3 surface[J]. J Phys Chem C,2012,116(14):7817−7825. doi: 10.1021/jp3004773
    [41] FREI M S, CAPDEVILA-CORTADA M, GARCÍA-MUELAS R, MONDELLI C, LÓPEZ N, STEWART J A, FERRÉ D C, PÉREZ-RAMÍREZ J. Mechanism and microkinetics of methanol synthesis via CO2 hydrogenation on indium oxide[J]. J Catal,2018,361:313−321. doi: 10.1016/j.jcat.2018.03.014
    [42] CAO A, WANG Z B, LI H, NØRSKOV J K. Relations between surface oxygen vacancies and activity of methanol formation from CO2 hydrogenation over In2O3 surfaces[J]. ACS Catal,2021,11(3):1780−1786. doi: 10.1021/acscatal.0c05046
    [43] DANG S S, GAO P, LIU Z Y, CHEN X Q, YANG C G, WANG H, ZHONG L S, LI S G, SUN Y H. Role of zirconium in direct CO2 hydrogenation to lower olefins on oxide/zeolite bifunctional catalysts[J]. J Catal,2018,364:382−393. doi: 10.1016/j.jcat.2018.06.010
    [44] MARTIN O, MARTÍN A J, MONDELLI C, MITCHELL S, SEGAWA T F, HAUERT R, DROUILLY C, CURULLA-FERRÉ D, PÉREZ-RAMÍREZ J. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation[J]. Angew Chem Int Ed,2016,55(21):6261−6265. doi: 10.1002/anie.201600943
    [45] CHEN T Y, CAO C X, CHEN T B, DING X X, HUANG H, SHEN L, CAO X Y, ZHU M H, XU J, GAO J, HAN Y F. Unraveling highly tunable selectivity in CO2 hydrogenation over bimetallic In-Zr oxide catalysts[J]. ACS Catal,2019,9(9):8785−8797. doi: 10.1021/acscatal.9b01869
    [46] CHOU C Y, LOBO R F. Direct conversion of CO2 into methanol over promoted indium oxide-based catalysts[J]. Appl Catal A-Gen,2019,583:117144−117153. doi: 10.1016/j.apcata.2019.117144
    [47] TSOUKALOU A, SERYKH A I, WILLINGER E, KIERZKOWSKA A, ABDALA P M, FEDOROV A, MÜLLER C R. Hydrogen dissociation sites on indium-based ZrO2-supported catalysts for hydrogenation of CO2 to methanol[J]. Catal Today,2022,387:38−46. doi: 10.1016/j.cattod.2021.04.010
    [48] TSOUKALOU A, BUSHKOV N S, DOCHERTY S R, MANCE D, SERYKH A I, ABDALA P M, COPÉRET C, FEDOROV A, MÜLLER C R. Surface Intermediates in In-Based ZrO2-Supported Catalysts for Hydrogenation of CO2 to Methanol[J]. J Phys Chem C,2022,126(4):1793−1799. doi: 10.1021/acs.jpcc.1c08814
    [49] YE J Y, LIU C J, MEI D H, GE Q F. Methanol synthesis from CO2 hydrogenation over a Pd4/In2O3 model catalyst: A combined DFT and kinetic study[J]. J Catal,2014,317:44−53. doi: 10.1016/j.jcat.2014.06.002
    [50] RUI N, WANG Z Y, SUN K H, YE J Y, GE Q F, LIU C J. CO2 hydrogenation to methanol over Pd/In2O3: effects of Pd and oxygen vacancy[J]. Appl Catal B,2017,218:488−497. doi: 10.1016/j.apcatb.2017.06.069
    [51] Snider J L, Streibel V, Hubert M K A, et al. Revealing the synergy between oxide and alloy phases on the performance of bimetallic In-Pd catalysts for CO2 hydrogenation to methanol[J]. ACS Catal,2019,9(4):3399−3412. doi: 10.1021/acscatal.8b04848
    [52] TIAN P, CAI Z J, ZHAN G W, HUANG J L, LI Q B. Preparation of supported In2O3/Pd nanocatalysts using natural pollen as bio-templates for CO2 hydrogenation to methanol: Effect of acid-etching on template[J]. Mol Catal,2021,516:111945. doi: 10.1016/j.mcat.2021.111945
    [53] CAI Z J, HUANG M, DAI J J, ZHAN G W, SUN F L, ZHUANG G L, WANG Y Y, TIAN P, CHEN B, ULLAH S, HUANG J L, LI Q B. Fabrication of Pd/In2O3 Nanocatalysts Derived from MIL-68 (In) Loaded with Molecular Metalloporphyrin (TCPP(Pd)) Toward CO2 Hydrogenation to Methanol[J]. ACS Catal,2021,12(1):709−723.
    [54] HAN Z, TANG C Z, WANG J J, LI L D, LI C. Atomically dispersed Ptn + species as highly active sites in Pt/In2O3 catalysts for methanol synthesis from CO2 hydrogenation[J]. J Catal,2021,394:236−244. doi: 10.1016/j.jcat.2020.06.018
    [55] WANG J, SUN K H, JIA X Y, LIU C J. CO2 hydrogenation to methanol over Rh/In2O3 catalyst[J]. Catal Today,2021,365:341−347. doi: 10.1016/j.cattod.2020.05.020
    [56] ZHANG Z T, SHEN C Y, SUN K H, JIA X Y, YE J Y, LIU C J. Advances in Studies of Structural Effect of the Supported Ni Catalyst for CO2 Hydrogenation: from Nanoparticle to Single Atom Catalyst[J]. J Mater Chem A,2022,10:5792−5812. doi: 10.1039/D1TA09914K
    [57] RUI N, ZHANG F, SUN K H, LIU Z Y, XU W Q, STAVITSKI E, SENANAYAKE S D, RODRIGUEZ J A, LIU C J. Hydrogenation of CO2 to methanol on a Auδ + -In2O3-x catalyst[J]. ACS Catal,2020,10(19):11307−11317. doi: 10.1021/acscatal.0c02120
    [58] LIN D F, ZHANG Z, CHEN Y Y, ZENG L X, CHEN X C, YANG X H, HUANG B Q, LUO Y J, QIAN Q R, CHEN Q H. The Co-In2O3 interaction concerning the effect of amorphous Co metal on CO2 hydrogenation to methanol[J]. J CO2 Util,2022,65:102209. doi: 10.1016/j.jcou.2022.102209
    [59] SUN K H, ZHANG Z T, SHEN C Y, RUI N, LIU C J. The feasibility study of the indium oxide supported silver catalyst for selective hydrogenation of CO2 to methanol[J]. Green Energy Environ,2022,7(4):807−817. doi: 10.1016/j.gee.2021.05.004
    [60] SHEN C Y, SUN K H, ZHANG Z T, RUI N, JIA X Y, MEI D H, LIU C-J. Highly active Ir/In2O3 catalysts for selective hydrogenation of CO2 to methanol: experimental and theoretical studies[J]. ACS Catal,2021,11(7):4036−4046. doi: 10.1021/acscatal.0c05628
    [61] ARAÚJO T P, MORALES‐VIDAL J, ZOU T S, GARCÍA-MUELAS R, WILLI P O, ENGEL K M, SAFONOVA O V, AKL D F, KRUMEICH F, GRASS R N, MONDELLI C, LÓPEZ N, PÉREZ-RAMÍREZ J. Flame Spray Pyrolysis as a Synthesis Platform to Assess Metal Promotion in In2O3‐Catalyzed CO2 Hydrogenation[J]. Adv Energy Mater,2022,12(14):2103707. doi: 10.1002/aenm.202103707
    [62] SHI Z S, TAN Q Q, WU D F. A novel Core-Shell structured CuIn@SiO2 catalyst for CO2 hydrogenation to methanol[J]. AIChE J,2019,65(3):1047−1058. doi: 10.1002/aic.16490
    [63] PUSTOVARENKO A, DIKHTIARENKO A, BAVYKINA A, GEVERS L, RAMÍREZ A, RUSSKIKH A, TELALOVIC S, AGUILAR A, HAZEMANN J L, OULD-CHIKH S, GASCON J. Metal-organic framework-derived synthesis of cobalt indium catalysts for the hydrogenation of CO2 to methanol[J]. ACS Catal,2020,10(9):5064−5076. doi: 10.1021/acscatal.0c00449
    [64] WANG D, XIE Z H, POROSOFF M D, CHEN J G. Recent advances in carbon dioxide hydrogenation to produce olefins and aromatics[J]. Chem,2021,7(9):2277−2311. doi: 10.1016/j.chempr.2021.02.024
    [65] YE R P, DING J, GONG W B, ARGYLE M D, ZHONG Q, WANG Y J, RUSSELL C K, XU Z H, RUSSELL A G, LI Q H, FAN M H, YAO Y G. CO2 hydrogenation to high-value products via heterogeneous catalysis[J]. Nat Commun,2019,10(1):1−15. doi: 10.1038/s41467-018-07882-8
    [66] GAO P, ZHANG L N, Li S G, ZHOU Z X, SUN Y H. Novel heterogeneous catalysts for CO2 hydrogenation to liquid fuels[J]. ACS Cent Sci,2020,6(10):1657−1670. doi: 10.1021/acscentsci.0c00976
    [67] GARBA M D, USMAN M, KHAN S, SHEHZAD F, GALADIMA A, EHSAN M F, GHANEM A S, HUMAYUN M. CO2 towards fuels: A review of catalytic conversion of carbon dioxide to hydrocarbons[J]. J Environ Chem Eng,2021,9(2):104756. doi: 10.1016/j.jece.2020.104756
    [68] YU H L, WANG C Q, LIN T J, AN Y L, WANG Y C, CHANG Q Y, YU F, WEI Y, SUN F F, JIANG Z, LI S G, ZHONG L S. Direct production of olefins from syngas with ultrahigh carbon efficiency[J]. Nat Commun,2022,13(1):1−10. doi: 10.1038/s41467-021-27699-2
    [69] LI W H, ZHANG J X, JIANG X, MU M C, ZHANG A F, SONG C S, GUO X W. Co-Promoted In2O3/ZrO2 Integrated with Ultrathin Nanosheet HZSM-5 as Efficient Catalysts for CO2 Hydrogenation to Gasoline[J]. Ind Eng Chem Res,2022,61:6322−6332. doi: 10.1021/acs.iecr.2c00460
    [70] WEI J, YAO R W, HAN Y, GE Q J, SUN J. Towards the development of the emerging process of CO2 heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons[J]. Chem Soc Rev,2021,50(19):10764−10805. doi: 10.1039/D1CS00260K
    [71] 耿蕊, 董梅, 王浩, 牛宪军, 樊卫斌, 王建国, 秦张峰. 十元环分子筛在甲醇芳构化反应中催化性能的研究[J]. 燃料化学学报,2014,(9):1119−1127. doi: 10.3969/j.issn.0253-2409.2014.09.013

    GENG Rui, DONG Mei, WANG Hao, NIU Xian-jun, FAN Wei-bin, WANG Jian-guo, QIN Zhang-feng. An investigation on the catalytic performance of 10 MR zeolites in methanol aromatization reaction[J]. J Fuel Chem Technol,2014,(9):1119−1127. doi: 10.3969/j.issn.0253-2409.2014.09.013
    [72] GAO P, LI S G, BU X N, DANG S S, LIU Z Y, WANG H, ZHONG L S, QIU M H, YANG C G, CAI J, WEI W, SUN Y H. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst[J]. Nat chem,2017,9(10):1019−1024. doi: 10.1038/nchem.2794
    [73] XIN Q, GUO H Y, WANG Y C, XIAO L F, WANG W, WU W. Indium-Promoted ZnZrOx/nano-ZSM-5 for Efficient Conversion of CO2 to Aromatics with High Selectivity[J]. J Environ Chem Eng,2022,10(3):108032. doi: 10.1016/j.jece.2022.108032
    [74] LU S Y, YANG H Y, ZHOU Z X, ZHONG L S, LI S G, GAO P, SUN Y H. Effect of In2O3 particle size on CO2 hydrogenation to lower olefins over bifunctional catalysts[J]. Chinese J Catal,2021,42(11):2038−2048. doi: 10.1016/S1872-2067(21)63851-2
    [75] GAO P, DANG S S, LI S G, BU X N, LIU Z Y, QIU M H, YANG C G, WANG H, ZHONG L S, HAN Y, LIU Q, WEI W, SUN Y H. Direct production of lower olefins from CO2 conversion via bifunctional catalysis[J]. ACS Catal,2018,8(1):571−578. doi: 10.1021/acscatal.7b02649
    [76] TAN L, ZHANG P P, CUI Y, SUZUKI Y, LI H J, GUO L S, YANG G H, TSUBAKI N. Direct CO2 hydrogenation to light olefins by suppressing CO by-product formation[J]. Fuel Process Technol,2019,196:106174. doi: 10.1016/j.fuproc.2019.106174
    [77] DANG S S, LI S G, YANG C G, CHEN X Q, LI X P, ZHONG L S, GAO P, SUN Y H. Selective transformation of CO2 and H2 into lower olefins over In2O3-ZnZrOx/SAPO-34 bifunctional catalysts[J]. ChemSusChem,2019,12(15):3582−3591. doi: 10.1002/cssc.201900958
    [78] LIU Z C, XU S M, HAO J, SONG L N, CHONG M B, CHENG D-G, CHEN F Q. Bifunctional catalysts composed of low silicon‐content SAPO‐34 nanosheets and In2O3/ZrO2 with improved performance for CO2 hydrogenation[J]. Greenhouse Gas Sci Technol,2022,12(2):305−320. doi: 10.1002/ghg.2147
    [79] WANG J Y, ZHANG A F, JIANG X, SONG C S, GUO X W. Highly selective conversion of CO2 to lower hydrocarbons (C2–C4) over bifunctional catalysts composed of In2O3-ZrO2 and zeolite[J]. J CO2 Util,2018,27:81−88. doi: 10.1016/j.jcou.2018.07.006
    [80] WANG Y H, WANG G Y, WAL L I V D, CHENG K, ZHANG Q H, JONG K P D, WANG Y. Visualizing Element Migration over Bifunctional Metal-Zeolite Catalysts and its Impact on Catalysis[J]. Angew Chem Int Ed,2021,60(32):17735−17743. doi: 10.1002/anie.202107264
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  11
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-16
  • 录用日期:  2022-11-11
  • 修回日期:  2022-11-02
  • 网络出版日期:  2022-11-16

目录

    /

    返回文章
    返回