留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe/Zr-SBA-15的制备及其催化氧化脱硫性能

王好 孔黎明 曾勇平

王好, 孔黎明, 曾勇平. Fe/Zr-SBA-15的制备及其催化氧化脱硫性能[J]. 燃料化学学报(中英文), 2023, 51(6): 832-840. doi: 10.19906/j.cnki.JFCT.2022088
引用本文: 王好, 孔黎明, 曾勇平. Fe/Zr-SBA-15的制备及其催化氧化脱硫性能[J]. 燃料化学学报(中英文), 2023, 51(6): 832-840. doi: 10.19906/j.cnki.JFCT.2022088
WANG Hao, KONG Li-ming, ZENG Yong-ping. Preparation of Fe/Zr-SBA-15 catalyst and its oxidative desulfurization performance[J]. Journal of Fuel Chemistry and Technology, 2023, 51(6): 832-840. doi: 10.19906/j.cnki.JFCT.2022088
Citation: WANG Hao, KONG Li-ming, ZENG Yong-ping. Preparation of Fe/Zr-SBA-15 catalyst and its oxidative desulfurization performance[J]. Journal of Fuel Chemistry and Technology, 2023, 51(6): 832-840. doi: 10.19906/j.cnki.JFCT.2022088

Fe/Zr-SBA-15的制备及其催化氧化脱硫性能

doi: 10.19906/j.cnki.JFCT.2022088
基金项目: 国家自然科学基金(21676231)资助
详细信息
    通讯作者:

    E-mail: lmkong@yzu.edu.cn

  • 中图分类号: TE624

Preparation of Fe/Zr-SBA-15 catalyst and its oxidative desulfurization performance

Funds: The project was supported by National Natural Science Foundation of China (21676231).
  • 摘要: 为进一步提高氧化脱硫效果,采用直接水热法合成了不同Fe/Zr物质的量比改性的SBA-15分子筛(Fe/Zr-SBA-15),采用XRD、N2吸附-脱附、TEM和UV-vis等对其进行了表征。Fe/Zr-SBA-15中Zr取代Si进入了分子筛骨架,大部分Fe物种分散良好,存在少量的聚集态铁的氧化物。以Fe/Zr-SBA-15-1.0为催化剂、H2O2为氧化剂、乙腈为萃取剂,分别考察了反应温度、O/S物质的量比和催化剂用量对模拟油中二苯并噻吩(DBT)的氧化效果。在反应温度50 ℃,O/S物质的量比为4,催化剂用量6 g/L的条件下,DBT的脱除率达到97.1%,这是由于催化剂中的Fe3 + 提供氧化活性中心和Zr4 + 提供的吸附中心的双重作用,且催化剂回收利用四次后,DBT的脱除率仍可达到91.3%。
  • FIG. 2388.  FIG. 2388.

    FIG. 2388.  FIG. 2388.

    图  1  样品的小角XRD谱图

    Figure  1  Small-angle XRD patterns of samples

    图  2  样品的广角XRD谱图

    Figure  2  Wide-angle XRD patterns of samples

    图  3  样品的N2吸附-脱附等温曲线(a)和孔径分布(b)

    Figure  3  N2 adsorption-desorption isotherm (a) and pore size distribution (b) of materials

    图  4  不同材料的UV-vis谱图(a)和Fe/Zr-SBA-15-1.0的UV-vis分峰谱图(b)

    Figure  4  UV-vis spectra of different materials (a) and UV-vis peak spectra of Fe/Zr-SBA-15-1.0 (b)

    a: Zr-SBA-15; b: Fe/Zr-SBA-15-0.5; c: Fe/Zr-SBA-15-1.0; d: Fe/Zr-SBA-15-1.5; e: Fe-SBA-15

    图  5  样品的TEM照片

    Figure  5  TEM diagram of the samples

    (a): SBA-15; (b): Fe-SBA-15; (c): Zr-SBA-15; (d): Fe/Zr-SBA-15-0.5; (e): Fe/Zr-SBA-15-1.0; (f): Fe/Zr-SBA-15-1.5

    图  6  Fe/Zr-SBA-15-1.0的元素分布

    Figure  6  Elemental distribution of Fe/Zr-SBA-15-1.0

    图  7  不同反应温度对脱硫率的影响

    Figure  7  Effect of different reaction temperatures on desulfurization rate

    reaction conditions: O/S (mol ratio) =2, 10 g/L Fe/Zr-SBA-15-1.0, 60 min

    图  8  O/S物质的量比对脱硫率的影响

    Figure  8  Effect of O/S mol ratio on desulfurization rate reaction conditions: 50 ℃, 10 g/L Fe/Zr-SBA-15-1.0, 60 min

    图  9  催化剂的加入量对脱硫率的影响

    Figure  9  Effect of catalyst dosage on desulfurization rate reaction conditions: 50 ℃, O/S (mol ratio) =4, 60 min

    图  10  Fe/Zr-SBA-15-1.0的循环使用性能

    Figure  10  Recycling performance of Fe/Zr-SBA-15-1.0

    reaction conditions: 50 ℃, O/S (mol ratio) =4, 6 g/L Fe/Zr-SBA-15-1.0, 60 min

    图  11  反应前(a)和反应后(b)的Fe/Zr-SBA-15-1.0的FT-IR谱图

    Figure  11  FT-IR spectra of Fe/Zr-SBA-15-1.0 catalyst before (a) and after ODS reaction (b)

    图  12  Fe/Zr-SBA-15氧化脱硫机理示意图

    Figure  12  Oxidative desulfurization mechanism over Fe/Zr-SBA-15 catalyst

    表  1  样品的主要结构参数

    Table  1  Structure characteristics of samples

    SampleFe w/%Zr w/%SBET /(m2·g−1)vp /
    (cm3·g−1)
    dp /nm
    SBA-150.000.00907.711.235.43
    Fe-SBA-153.4800.00954.161.395.84
    Zr-SBA-150.008.75975.421.526.22
    Fe/Zr-SBA-15-0.53.177.381023.241.516.02
    Fe/Zr-SBA-15-1.03.487.011001.981.576.13
    Fe/Zr-SBA-15-1.53.816.161152.831.846.47
    note: Fe and Zr contents are analyzed by ICP
    下载: 导出CSV

    表  2  不同催化剂的脱硫性能

    Table  2  Performance of different catalysts on oxidation desulfurization

    CatalystAmount of acetonitrile
    /(mg·L−1)
    O/SAmount of catalyst
    /(g·L−1)
    Desulfurization rate
    /%
    SBA-15521056.3
    Fe-SBA-15521073.4
    Fe-SBA-15102.75
    Zr-SBA-15521070.9
    Zr-SBA-151010.4
    Fe/Zr-SBA-15-0.5521085.2
    Fe/Zr-SBA-15-1.0521092.7
    Fe/Zr-SBA-15-1.5521084.2
    Fe/Zr-SBA-15-1.01015.3
    Fe/Zr-SBA-15-1.02.521077.7
    下载: 导出CSV

    表  3  不同催化剂对DBT的脱硫活性对比

    Table  3  Comparison of desulfurization activities of different catalysts for DBT

    CatalystInitial sulfur
    /
    (mg·L−1)
    OxidantAmount of catalyst
    /
    (g·L−1)
    O/STemp.
    /℃
    Time
    /h
    Desulfurization
    rate /%
    Ref.
    Sn-KIT-6100H2O2104602.599.7[31]
    C9H10O2-0.5ZnCl2/Al2O3500H2O240860399.2[32]
    UiO-66(Zr)-NO2320H2O26.671260297[33]
    Mo-Al2O3-1-1320H2O26.67460193.99[34]
    W/Fe@Si-500500H2O23.25845198.7[35]
    Mo/g-C3N4500H2O24580299[36]
    Fe/Zr-SBA-15-1.0500H2O26450197.1this work
    下载: 导出CSV
  • [1] 付琦, 赵荣祥, 李秀萍. C8H16O2-ZnCl2/Al2O3负载型催化剂的制备及其脱硫性能研究[J]. 现代化工,2019,39(10):119−127.

    FU Qi, ZHAO Rong-xiang, LI Xiu-ping. Preparation of supported catalyst C8H16O2-ZnCl2/Al2O3 and its desulfurization properties[J]. Mod Chem Ind,2019,39(10):119−127.
    [2] 刘菊荣, 宋绍富. 我国车用汽油质量标准升级特征与国VI汽油生产对策[J]. 石油化工应用,2018,37(12):1−6. doi: 10.3969/j.issn.1673-5285.2018.12.001

    LIU Ju-rong, SONG Shao-fu. Upgrading of vehicle gasoline quality and the production technology of China VI gasoline[J]. Petrochem Ind Appl,2018,37(12):1−6. doi: 10.3969/j.issn.1673-5285.2018.12.001
    [3] TU Y M, LI T H, YU G J, WEI L, ZHOU Z Y, REN Z Q. Study on modification and desulfurization performance of a molybdenum-based catalyst[J]. Energy Fuels,2019,33(9):8503−8510. doi: 10.1021/acs.energyfuels.9b02132
    [4] MA R, GUO J, WANG D H, HE M Q, XUN S H, GU J Y, ZHU W S, LI H M. Preparation of highly dispersed WO3/few layer g-C3N4 and its enhancement of catalytic oxidative desulfurization activity[J]. Colloids Surf,2019,572:250−258. doi: 10.1016/j.colsurfa.2019.04.006
    [5] YANG Q F, WANG J S, WANG W H, BAO M. Room temperature oxidative desulfurization with MoO3 subnanoclusters supported on MCM-41[J]. RSC Adv,2019,9(37):21473−21477. doi: 10.1039/C9RA03049B
    [6] GONZÁLEZ J, WANG J A, CHEN L F, LIMAS R, MANZO R, VÁZQUEZ RODRÍGUEZ J T, GONZÁLEZ VARGAS O A. New insights into oxygen defects, Lewis acidity and catalytic activity of vanadia hybrid nanomaterials[J]. Mater Lett.,2018,220:70−73. doi: 10.1016/j.matlet.2018.02.111
    [7] DENG C, LI J, KANG L H, ZHU M Y. Efficient Co/SBA-15 catalyst for aerobic oxidative desulfurization at mild reaction temperature[J]. Mol Catal,2022,530:112567−1125773. doi: 10.1016/j.mcat.2022.112567
    [8] WANG G J, ZHANG J K, LIU Y. Catalytic oxidative desulfurization of benzothiophene with hydrogen peroxide over Fe/AC in a biphasic model diesel-acetonitrile system[J]. Korean J Chem Eng,2013,30(8):1559−1565. doi: 10.1007/s11814-013-0052-5
    [9] ZHENG H Q, ZENG Y N, CHEN J, LIN R G, ZHUANG W, CAO R, LIN Z J. Zr-based metal-organic frameworks with intrinsic peroxidase-like activity for ultradeep oxidative desulfurization: Mechanism of H2O2 decomposition[J]. Inorg Chem,2019,58(10):6983−6992. doi: 10.1021/acs.inorgchem.9b00604
    [10] PIVA D H, PIVA R H, PEREIRA C A, SILVA D S A, MONTEDO O R K, MORELLI M R, URQUIETA-GONZÁLEZ E A. Facile synthesis of WOx/ZrO2 catalysts using WO3·H2O precipitate as synthetic precursor of active tungsten species[J]. Mater Today Chem,2020,18:100367−100381. doi: 10.1016/j.mtchem.2020.100367
    [11] KOOHSARYAN E, ANBIA M, HEYDAR K T. Mo-modified hierarchical FAU zeolite: A catalyst-adsorbent for oxidative desulfurization of fuel oil[J]. J Solid State Chem,2022,312:123218−123230. doi: 10.1016/j.jssc.2022.123218
    [12] RIVOIRA L, JUÁREZ J, MARTíNEZ M L, BELTRAMONE A. Iron-modified mesoporous materials as catalysts for ODS of sulfur compounds[J]. Catal Today,2020,349:98−105. doi: 10.1016/j.cattod.2018.05.030
    [13] WAFAA A K, MOHD A D, SYAMSUL B A, SAIFUL N T, MASHITAH M Y, YUN H T Y, MOHD H A R. Efficient and reusable iron-zinc oxide catalyst for oxidative desulfurization of model fuel[J]. J Environ Chem Eng,2017,5:1645−1656. doi: 10.1016/j.jece.2017.03.001
    [14] LU C Z, FU H, LI H P, ZHAO H, CAI T F. Oxidation-extraction desulfurization of model oil over Zr-ZSM-5/SBA-15 and kinetic study[J]. Front Chem Sci Eng,2014,8(2):203−211. doi: 10.1007/s11705-014-1420-3
    [15] RAMOS J M, WANG J A, FLORES S O, CHEN L F, ARELLANO U, NOREÑA L E, GONZÁLEZ J, NAVARRETE J. Ultrasound-assisted hydrothermal synthesis of V2O5/Zr-SBA-15 catalysts for production of ultralow sulfur fuel[J]. Catalysts,2021,11:408−428. doi: 10.3390/catal11040408
    [16] MA Z X, ZHOU C L, WANG D M, WANG Y X, HE W X, TAN Y S, LIU Q S. Co-precipitated Fe-Zr catalysts for the Fischer-Tropsch synthesis of lower olefins (C2 O−C4 O): Synergistic effects of Fe and Zr[J]. J Catal,2019,378:209−219. doi: 10.1016/j.jcat.2019.08.037
    [17] ALI M K, ALI A, TAHEREH R B, MAHBOUBE G. Deep oxidative desulfurization of dibenzothiophene with {Mo132} nanoballs supported on activated carbon as an efficient catalyst at room temperature[J]. New J Chem,2018,42(14):12188−12197. doi: 10.1039/C8NJ01735B
    [18] ALEXANDRE M V, DIANA J, FÁTIMA M, RUI G F, BALTAZAR D C, SALETE S B, LUÍS C S. Straightforward activation of metal-organic framework UiO-66 for oxidative desulfurization processes[J]. Catal Today,2021,362:28−34. doi: 10.1016/j.cattod.2020.05.026
    [19] LORENA R, MARíA L M, OSCAR A, ANDREA B. Vanadium oxide supported on mesoporous SBA-15 modified with Al and Ga as a highly active catalyst in the ODS of DBT[J]. Microporous Mesoporous Mater,2017,254:96−113. doi: 10.1016/j.micromeso.2017.04.019
    [20] SANDRA M L D S, KARINA A B N, MARLON D S G, JEANN D F L, ICANILDO J D S J, DIANA C S D A. Synthesis and characterization of ordered mesoporous silica (SBA-15 and SBA-16) for adsorption of biomolecules[J]. Microporous Mesoporous Mater,2013,180:284−292. doi: 10.1016/j.micromeso.2013.06.043
    [21] IMRAN G, MAHESWARI R. Mn-incorporated SBA-1 cubic mesoporous silicates: Synthesis and characterization[J]. Mater Chem Phys,2015,161:237−242. doi: 10.1016/j.matchemphys.2015.05.043
    [22] YOKOGAWA Y, YAMAUCHI R, SAITO A, YAMATO Y, TOMA T. Kinetic modelling of cytochrome c adsorption on SBA-15[J]. Biomed Mater Eng,2017,28(1):37−46.
    [23] 任倩茹, 张泽凯, 徐摇彪, 陈银飞. 负载型钙钛矿La0.8Sr0.2MnO3/SBA-15催化燃烧甲苯的研究[J]. 燃料化学学报,2012,40(9):1142−1146. doi: 10.3969/j.issn.0253-2409.2012.09.019

    REN Qian-ru, ZHANG Ze-kai, XU Yao-biao, CHEN Yin-fei. Research on the supported perovskite La0.8Sr0.2MnO3/SBA-15 catalyst for toluene combustion[J]. J Fuel Chem Technol,2012,40(9):1142−1146. doi: 10.3969/j.issn.0253-2409.2012.09.019
    [24] ZHANG Y H, GAO F, WAN H Q, WU C, KONG Y, WU X C, ZHAO B, DONG L, CHEN Y. Synthesis, characterization of bimetallic Ce-Fe-SBA-15 and its catalytic performance in the phenol hydroxylation[J]. Microporous Mesoporous Mater,2008,113(1/3):393−401. doi: 10.1016/j.micromeso.2007.11.039
    [25] 胡嘉, 刘昕, 苏伟康, 孙梦晗, 王兰英, 唐彤, 张秋林, 宁平. PVP辅助分散对Pd/SBA-15催化剂上甲苯催化燃烧性能的影响[J]. 环境工程学报,2018,12(11):3116−2123. doi: 10.12030/j.cjee.201802093

    HU Jia, LIU Xin, SU Wei-kang, SUN Meng-han, WANG Lan-ying, TANG Tong, ZHANG Qiu-ping, NING Ping. Effect of PVP-assisted dispersion on catalytic combustion of toluene over Pd/SBA-15 catalyst[J]. Chin J Environ Eng,2018,12(11):3116−2123. doi: 10.12030/j.cjee.201802093
    [26] RAMOS J M, WANG J A, FLORES S O, CHEN L F, NAVA N, NAVARRETE J, DOMíNGUEZ J M, SZPUNAR J A. Ultrasound-assisted synthesis and catalytic activity of mesostructured FeOx/SBA-15 and FeOx/Zr-SBA-15 catalysts for the oxidative desulfurization of model diesel[J]. Catal Today,2020,349:198−209. doi: 10.1016/j.cattod.2018.04.059
    [27] LI Y, FENG Z C, LIAN Y X, SUN K Q, ZHANG L, JIA G Q, YANG Q H, LI C. Direct synthesis of highly ordered Fe-SBA-15 mesoporous materials under weak acidic conditions[J]. Microporous Mesoporous Mater,2005,84(1-3):41−49. doi: 10.1016/j.micromeso.2005.05.021
    [28] 李剑, 王雪莹, 黄鑫, 洪帅领, 杨丽娜. CuWO4/SBA-15催化剂的制备及其光催化氧化脱硫性能[J]. 燃料化学学报,2020,48(5):632−640. doi: 10.3969/j.issn.0253-2409.2020.05.015

    LI Jian, WANG Xue-ying, HUANG Xin, HONG Shuai-ling, YANG Li-na. Preparation of the CuWO4/SBA-15 catalyst and its performance in the photocataigtic oxidation desulfurization[J]. J Fuel Chem Technol,2020,48(5):632−640. doi: 10.3969/j.issn.0253-2409.2020.05.015
    [29] MAHBOUBE G, ALI A. A new simple protocol for the synthesis of nanohybrid catalyst for oxidative desulfurization of dibenzothiophene[J]. Environ Sci Pollut Res Int,2020,27(4):4104−4114. doi: 10.1007/s11356-019-07048-z
    [30] 姜蔚, 邵子奇, 黄宏海. Mo/γ-Al2O3催化剂制备及催化氧化重质原油脱硫研究[J]. 山西化工,2021,41(6):10−13.

    JIANG Wei, SHAO Zi-qi, HUANG Hong-hai. Catalytic oxidative desulfurization of heavy crude oil by Mo/γ-Al2O3[J]. ShanXi Chem Ind,2021,41(6):10−13.
    [31] ZHU M Y, LIU A, TONG Y B, LI J, KANG L H. Three-dimensional ordered mesoporous Sn-KIT-6 catalyst for oxidative desulfurization[J]. Catal Commun,2022,170:106487−106491. doi: 10.1016/j.catcom.2022.106487
    [32] 李秀萍, 赵荣祥, 宫晓杰, 李萍. C9H10O2-0.5ZnCl2/Al2O3的制备及其氧化脱硫性能[J]. 燃料化学学报,2019,47(10):1187−1194. doi: 10.3969/j.issn.0253-2409.2019.10.005

    LI Xiu-ping, ZHAO Rong-xiang, GONG Xiao-jie, LI Ping. Preparation of C9H10O2-0.5ZnCl2/Al2O3 and its oxidative desulfurization performance[J]. J Fuel Chem Technol,2019,47(10):1187−1194. doi: 10.3969/j.issn.0253-2409.2019.10.005
    [33] LIAO X Y, WANG X Y, WANG F, YAO Y, LU S X. Ligand modified metal organic framework UiO-66: A highly efficient and stable catalyst for oxidative desulfurization[J]. J Inorg Polym Mater,2020,31(2):756−762.
    [34] MIAO Q Y, HUANG X Q, LI J X, DUAN Y S, YAN L J, JIANG Y, LU S X. Hierarchical macro-mesoporous Mo/Al2O3 catalysts prepared by dual-template method for oxidative desulfurization[J]. J Porous Mater,2021,28(6):1895−1906. doi: 10.1007/s10934-021-01127-8
    [35] PIVA D H, PIVA R H, PICININI M, RODRIGUES A D, URQUIETA-GONZáLEZ E A. Correlation between structural evolution and oxidative desulfurization activity for magnetically-recoverable γ-Fe2O3@SiO2 core-shell–Supported WOx nanostructure[J]. Catal Commun,2021,148:106182−106187. doi: 10.1016/j.catcom.2020.106182
    [36] DIOGO A F G, MAURíCIO V B P, KLAUS K, RODRIGO R R, BRENO R L G, EUDES L. Oxidative desulfurization of dibenzothiophene over highly dispersed Mo-doped graphitic carbon nitride[J]. Chem Zvesti,2022,76(6):3401−3412.
    [37] BIBAK F, MORADI G. Oxidative desulfurization of model oil and oil cuts with MoO3/SBA-15: Experimental design and optimization by Box-Behnken method[J]. React Kinet Mech Catal,2020,131(2):935−951. doi: 10.1007/s11144-020-01852-2
    [38] LIU S Z, ZHAO F L, SUN H P, LIU X J, CUI B C. Iron promotion of V-HMS mesoporous catalysts for ultra-deep oxidative desulfurization[J]. Appl Organomet Chem,2017,32(2):1−9.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  237
  • HTML全文浏览量:  89
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-10
  • 修回日期:  2022-11-17
  • 录用日期:  2022-11-18
  • 网络出版日期:  2022-12-13
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回