留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子液体在光/电催化还原CO2中的作用

张晓雅 王欢 安伟佳 刘利 崔文权

张晓雅, 王欢, 安伟佳, 刘利, 崔文权. 离子液体在光/电催化还原CO2中的作用[J]. 燃料化学学报(中英文), 2023, 51(7): 896-908. doi: 10.19906/j.cnki.JFCT.2022090
引用本文: 张晓雅, 王欢, 安伟佳, 刘利, 崔文权. 离子液体在光/电催化还原CO2中的作用[J]. 燃料化学学报(中英文), 2023, 51(7): 896-908. doi: 10.19906/j.cnki.JFCT.2022090
ZHANG Xiao-ya, WANG Huan, AN Wei-jia, LIU Li, CUI Wen-quan. Role of ionic liquids in photo/electrocatalytic reduction of CO2[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 896-908. doi: 10.19906/j.cnki.JFCT.2022090
Citation: ZHANG Xiao-ya, WANG Huan, AN Wei-jia, LIU Li, CUI Wen-quan. Role of ionic liquids in photo/electrocatalytic reduction of CO2[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 896-908. doi: 10.19906/j.cnki.JFCT.2022090

离子液体在光/电催化还原CO2中的作用

doi: 10.19906/j.cnki.JFCT.2022090
基金项目: 河北省高等学校科学技术研究项目(BJK2022013),河北省自然科学基金青年基金(B2020209065)和河北省自然科学基金重点项目(B2020209017)资助
详细信息
    通讯作者:

    E-mail: wang_huan_1987@126.com

    wqcui@ncst.edu.cn

  • 中图分类号: O643 O644 O646

Role of ionic liquids in photo/electrocatalytic reduction of CO2

Funds: The project was supported by Science and Technology Project of Hebei Education Department (BJK2022013), Youth Program of Natural Science of Hebei Province (B2020209065), Key Program of Natural Science of Hebei Province (B2020209017)
  • 摘要: 将CO2还原为能源燃料是缓解能源危机和温室效应的一种有效途径。近年来,世界各国学者针对CO2的光/电催化还原技术开展了广泛的研究,但光/电催化还原CO2仍然存在可见光响应能力低、光生电子和空穴的复合率高、CO2的吸附量小、产物的选择性差等问题,制约了该领域的快速发展。离子液体(ILs)作为一种新型绿色溶剂,热稳定性高,对CO2吸附性强,在光/电催化还原CO2反应中既可用作反应介质,又可起到助催化作用,因此,研究广泛。本研究对近年来离子液体(ILs)在光/电催化还原CO2中的研究现状和作用进行分析和综述,并对离子液体(ILs)在该领域的发展前景进行展望。
  • FIG. 2463.  FIG. 2463.

    FIG. 2463.  FIG. 2463.

    图  1  光催化CO2还原生成的主要产品

    Figure  1  Main products of photocatalytic CO2 reduction

    图  2  光催化还原CO2的可能途径及涉及的关键中间体示意图

    Figure  2  Possible pathways and key intermediates involved in the photocatalytic reduction of CO2

    (a): Formaldehyde pathway; (b): Carbene pathway

    图  3  光电催化系统[41]

    Figure  3  Photocatalytic system: (a) photoanode electric anode, (b) photoanode electric cathode, (c) photoanode and cathode[41] (with permission from Wiley)

    图  4  氨基官能团化ILs捕获CO2机理示意图[75]

    Figure  4  Mechanism of capturing CO2 by amino-functionalized ionic liquids [75]]

    表  1  ILs的常用划分规则及示例

    Table  1  Common division rules and examples of ILs

    Common division ruleSample
    Cation
    Anionpoly nuclearmononuclear([AlxCly]、[CuxCly]、Fe2Cl7、Au2Cl7
    mononuclear
    Solubilityhydrophilia
    hydrophobicity
    Acid-base
    property
    acidity
    neutral
    alkaline
    Proton typeprotic
    aprotic
    下载: 导出CSV

    表  2  用于CO2还原的常见的ILs的特性及作用

    Table  2  Characteristics and effects of common ILs for CO2 reduction

    TypeStructural formulaCharacteristics and functions
    Imidazolium cationwide electrochemical potential window, good solubility,
    and catalytic selectivity for CO2 [53]
    Pyridine cationslow cost, low toxicity, high adsorption capacity of CO2 and
    other gases [54]
    Quaternary phosphoniumthe catalytic activity is not high, and the structure
    lacks the necessary active sites[55]
    Quaternary ammoniumit has certain catalytic activity of CO2 reduction and
    can be used as cocatalyst[56]
    Nonhalogenated salt ions(BF$ ^-_{4} $、PF$ ^-_{6} $)excellent thermodynamic and electrochemical stability, commonly
    used as electrolyte, improve electrical conductivity
    Amino functionalized ionscomplex synthesis, very excellent CO2 capture ability[57]
    下载: 导出CSV

    表  3  不同阴阳离子的ILs对CO2的捕获能力

    Table  3  CO2 capture capacity of ionic liquids with different anions and anions

    ILsAdsorbing capacity/molRef.
    [P4444]3[p-2,6-O-4-COO]3.26[77]
    [P4444]3[p-2,6-O-4-COO]3.16[77]
    [P4444]2[p-2-O-4-COO]2.68[77]
    [P4444] [p-2-O]1.46[77]
    [P4444] [p-4-COO]1.25[77]
    [P4444] [p-2,6-O-4-COO]1.96[77]
    [P4444]2[p-2,6-O-4-COO]2.43[77]
    [P66614] [p-2-O]1.58
    [MTBDH]2[HFPD]2.04
    下载: 导出CSV
  • [1] ZHANG J P, LI Z W, ZHANG Z H, FENG K, YAN B H. Can thermocatalytic transformations of captured CO2 reduce CO2 emissions?[J]. Appl Energy,2021,281:116076. doi: 10.1016/j.apenergy.2020.116076
    [2] 周凌云, 樊静, 王键吉. 离子液体捕集CO2[J]. 化学进展,2011,23(11):2269−2275.

    ZHOU Ling-yun, FAN Jing, WANG Jian-ji. CO2 capture by ionic liquids[J]. Prog Chem,2011,23(11):2269−2275.
    [3] YALAVARTHI R, UMESH K, NIKITA S, MEENAL K, MANU J, SUMAN L J, SOMNATH C R. Photocatalytic reduction of carbon dioxide using graphene oxide wrapped TiO2 nanotubes[J]. Appl Surf Sci,2019,485:48−55.
    [4] ZHANG Y J, XU Z F, WANG Q, HAO W C, ZHAI X P, FEI X, HUANG X J, BI Y P. Unveiling the activity origin of ultrathin BiOCl nanosheets for photocatalytic CO2 reduction[J]. Appl Catal B: Environ,2021,299:120679.
    [5] LI F F, FRANCESCA M, ZHANG X P, JI X Y, AATTO L. Ionic liquids for CO2 electrochemical reduction[J]. Chin J Chem Eng,2020,31:75−93.
    [6] 卢秀利, 韩莹莹, 鲁统部. 石墨炔结构表征及在光电催化反应中的应用[J]. 物理化学学报,2020,50(7):743−755.

    CHENG Kang, ZHANG Qing-hong, KANG Jin-can, WANG Ye. Relay catalysis method for direct preparation of high-value chemicals by carbon dioxide[J]. J Phys Chem C,2020,50(7):743−755.
    [7] LIU H Y, CHU J, YIN Z L, CAI X, ZHUANG L, DENG H X. Covalent organic frameworks linked by amine bonding for concerted electrochemical reduction of CO2[J]. Chem,2018,4:1696−1709. doi: 10.1016/j.chempr.2018.05.003
    [8] FUJITA N, MATSUURA C. Radiation induced reduction of CO2 in iron containing solution[J]. Radiat Phys Chem,1994,43(3):205−213. doi: 10.1016/0969-806X(94)90180-5
    [9] CHENG L, ZHANG P, WEN Q Y, FAN J J, XIANG Q J. Copper and platinum dual-single-atoms supported on crystalline graphitic carbon nitrite for enhanced photocatalytic CO2 reduction[J]. Chin J Catal,2022,43(2):451−460. doi: 10.1016/S1872-2067(21)63879-2
    [10] JESUS S, FILHO R M. Are ionic liquids eco-friendly?[J]. Renewable Sustainable Energy Rev,2022,157:112039. doi: 10.1016/j.rser.2021.112039
    [11] FERNÁNDEZ I P, PINO V. Green solvents in analytical chemistry[J]. Curr Opin Green Sustainable Chem,2019,18:42−50. doi: 10.1016/j.cogsc.2018.12.010
    [12] KHACHATRYAN K S, SMIRNOVA S V, JULIUSZ P, JOANNA F K. Synthesis and properties of choral ammonium-based ionic liquids[J]. Chem,2005,381(2):464−470.
    [13] PORNRAVEE L, BERNARDO C D, ATSUSHI T, TAKASHI S, RYUJI K, OYAMA S T. Perfluorooctanol-based liquid membranes for H2/O2 separation[J]. Sep Purif Technol,2014,122:431−439. doi: 10.1016/j.seppur.2013.11.019
    [14] WANG X, SALARI M, JIANG D E, VARELA J C, GOGOTSI Y. Electrode material-ionic liquid coupling for electrochemical energy storage[J]. Nat Rev Mater,2020,5(11):787−808. doi: 10.1038/s41578-020-0218-9
    [15] GRAESVIK J, HALLETT J P, TRANG T Q. A quick, simple, robust method to measure the acidity of ionic liquids[J]. ChemComm,2014,50(55):7258−7261.
    [16] ZHANG L F, FU X L, GAO G H. Anion-cation cooperative catalysis by ionic liquids[J]. ChemCatChem,2011,3(8):1359−1364. doi: 10.1002/cctc.201100016
    [17] TAN X, SUN X, HAN B. Ionic liquid-based electrolytes for CO2 electroreduction and CO2 electroorganic transformation[J]. Natl Sci Rev,2021,22:2081−2091.
    [18] ZEESHAN M, YALCIN K, OZTUNA F, UNAL U, KESKIN S, UZUN A. A new class of porous materials for efficient CO2 separation: Ionic liquid/graphene aerogel composites[J]. Carbon,2020,171(80):79−87.
    [19] KARAMIAN E, SHARIFNIA S. On the general mechanism of photocatalytic reduction of CO2[J]. J CO2 Util,2016,16:194−203. doi: 10.1016/j.jcou.2016.07.004
    [20] CHRISTIAN S D, LIU Y Z, CORDOVA K E, YAGHI O M. Publisher correction: The role of reticular chemistry in the design of CO2 reduction catalysts[J]. Nat Mater,2018,17:943.
    [21] ZHU M, GE Q, ZHU X. Catalytic reduction of CO2 to CO via reverse water gas shift recent advances in the design of active and selective supported metal catalysts[J]. J Tianjin Univ,2020,26(3):172−187. doi: 10.1007/s12209-020-00246-8
    [22] INOUE T, FUJISHIMA A, KONISHI S, HONDA K. Photo electrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders[J]. Nature,1979,277:637−638. doi: 10.1038/277637a0
    [23] ANPO M, YAMASHITA H, ICHIHASHI Y, EHARA S. Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts[J]. J Electroanal Chem,1995,396(1/2):21−26. doi: 10.1016/0022-0728(95)04141-A
    [24] SUBRAHMANYAM M, KANECO S, ALONSO V N. A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C1-C3 selectivity[J]. Appl Catal B: Environ,1999,23(2/3):169−174. doi: 10.1016/S0926-3373(99)00079-X
    [25] SEVERIN N H, LUKAS S M, JACEK K S. Photocatalytic reduction of CO2 on TiO2 and other semiconductors[J]. Angew Chem Int Ed,2013,7372−7408.
    [26] FU J, JIANG K, QIU X, YU J G, LIU M. Product selectivity of photocatalytic CO2 reduction reactions[J]. Mater Today,2020,32:222−243. doi: 10.1016/j.mattod.2019.06.009
    [27] JIN S, HAO Z, ZHANG K, YAN Z, CHEN J. Advances and challenges for electrochemical reduction of CO2 to CO: From fundamental to industrialization[J]. Angew Chem Int Ed,2021,60:20627−20648. doi: 10.1002/anie.202101818
    [28] WU S D, YI F, PING D, HUANG S G, ZHANG Y F, HAN L F, WANG S W, WANG H, YANG X Z, GUO D J, LIU G J, FANG S M. Constructing single-atomic nickel sites in carbon nanotubes for efficient CO2 electroreduction[J]. Carbon,2022,196:1−9.
    [29] LIU Y L, DENG P J, WU R Q, ZHANG X L, SUN C H, LI H T. Significantly boosted oxygen electrocatalysis with cooperation between cobalt and iron porphyrins[J]. Mater Chem A,2021,9:6694−6709. doi: 10.1039/D0TA11522C
    [30] YANG H P, YUE Y N, QIN S, WANG H, LU J X. Selective electrochemical reduction of CO2 by a binder-free platinum/nitrogen-doped carbon nanofiber/copper foil catalyst with remarkable efficiency and reusability[J]. Green Chem,2016,18:3216−3220. doi: 10.1039/C6GC00091F
    [31] WENG Z, JIANG J, WU Y, WU Z, GUO X, MATERNA K L, LIU W, BATISTA V S, BRUDVIG G W, WANG H. Electrochemical CO2 reduction to hydrocarbons on a heterogeneous molecular Cu catalyst in aqueous solution[J]. J Am Chem Soc,2016,138(26):8076−8079. doi: 10.1021/jacs.6b04746
    [32] AYYUB M M, RAO C. Designing electrode materials for the electrochemical reduction of carbon dioxide[J]. Mater Horizons,2021,8:2420−2443. doi: 10.1039/D1MH00675D
    [33] GAO D F, ZHOU H, WANG J, MIAO S, YANG F, WANG G X, WANG J G, BAO X H. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles[J]. J Am Chem Soc,2015,137(13):4288−4291. doi: 10.1021/jacs.5b00046
    [34] DENG B W, HUANG M, ZHAO X L, MOU S Y, DONG F. Interfacial electrolyte effects on electrocatalytic CO2 reduction[J]. ACS Catal,2022,12(1):331−362. doi: 10.1021/acscatal.1c03501
    [35] WANG J W, HUANG H H, SUN J K, OUYANG T, ZHONG D C, LU T B. Electrocatalytic and photocatalytic reduction of CO2 to CO by cobalt (II) tripodal complexes: Low over-potentials, high efficiency and selectivity[J]. ChemSusChem,2018,11(6):1025−1031. doi: 10.1002/cssc.201702280
    [36] 周天辰, 何川, 张亚男, 赵国华. CO2的光电催化还原[J]. 化学进展,2012,24(10):1897−1905.

    ZHOU Tian-chen, HE Chuan, ZHANG Ya-nan, ZHAO Guo-hua. Photocatalytic reduction of CO2[J]. Prog Chem,2012,24(10):1897−1905.
    [37] LIU L, ZHANG Y, HUANG H. Junction engineering for photocatalytic and photo electrocatalytic CO2 reduction[J]. Sol RRL,2020,2(5):2000430.
    [38] ZHANG N, LONG R, GAO C, XIONG Y J. Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels[J]. Sci China Mater,2018,61(6):771−805. doi: 10.1007/s40843-017-9151-y
    [39] CUI Y, HE B, LIU X, SUN J. Ionic liquids-promoted electrocatalytic reduction of carbon dioxide[J]. Ind Eng Chem Res,2020,59(46):20235−20252. doi: 10.1021/acs.iecr.0c04037
    [40] OLIVEIRA J A, SILVA R M, SILVA G T, TORRES J A, VALI A, RIBEIRO C, RAJESHWAR K, RUOTOLO L A. Copper vanadate: Targeted synthesis of two pure phases and use in a photoanode/cathode setup for selective photo-electrochemical conversion of carbon dioxide to liquid fuel[J]. Mater Res Bull,2022,149:111716. doi: 10.1016/j.materresbull.2021.111716
    [41] WANG P L, WANG S C, WANG H Q, WU Z B, WANG L Z. Recent progress on photo-electrocatalytic reduction of carbon dioxide[J]. Part Part Syst Charact,2018,35:1700371. doi: 10.1002/ppsc.201700371
    [42] LONGERAS O, GAUTIER A, BALLERAT B K, ANDANSON J M. Tuning critical solution temperature for CO2 capture by aqueous solution of amine[J]. J Mol Liq,2021,343:117628. doi: 10.1016/j.molliq.2021.117628
    [43] OH Y, VRUBEL H, GUIDOUX S, HU X. Electrochemical reduction of CO2 in organic solvents catalyzed by MoO2[J]. ChemComm,2014,50:3878−3881.
    [44] HU Y J, FENG QJ, ZHANG X P, GAO H S, JIN S M, LIU L, SHEN W F. Efficient electrochemical reduction of CO2 to CO in ionic liquids[J]. ChemistrySelect,2021,6(37):9873−9879. doi: 10.1002/slct.202102825
    [45] WENG W, TANG L, XIAO W. Capture and electro-splitting of CO2 in molten salts[J]. J Energy Chem,2019,28(1):16.
    [46] WALDEN P. BULL. Molecular weights and electrical conductivity of several fused salts[J]. Acad Imper Sci,1914,8:405−422.
    [47] HURLEY F H, WIER T P. Electrode position of mental from fuse quaternary ammonium salts[J]. J Electrochem Soc,1951,98:203−206. doi: 10.1149/1.2778132
    [48] PAPASIZZA M, YANG X, CHENG J, CUESTA A. Electrocatalytic reduction of CO2 in neat and water-containing imidazolium-based ionic liquids[J]. Curr Opin Electrochem,2020,23:80−88.
    [49] UMMIREDDI A K, SHARMA S K, PALA R. Ammonium ionic liquid cation promotes electrochemical CO2 reduction to ethylene over formate while inhibiting the hydrogen evolution on a copper electrode[J]. Catal Sci Technol,2022,12:519−529. doi: 10.1039/D1CY01584B
    [50] HU J, CHEN L, SHI M, CHENG Z. A quantum chemistry study for 1-ethyl-3-methylimidazolium ion liquids with aprotic heterocyclic anions applied to carbon dioxide absorption[J]. Fluid Phase Equilibria,2018,459:208−218. doi: 10.1016/j.fluid.2017.12.016
    [51] 侯玉翠, 任树行, 吴卫泽. 离子液体吸收分离SO2[J]. 化学进展,2011,23(10):2031−2037.

    HOU Yu-cui, REN Shu-xing, WU Wei-ze. Ionic liquid absorption and separation of SO2[J]. Prog Chem,2011,23(10):2031−2037.
    [52] JU F, ZHANG J, LU W. Efficient electrochemical reduction of CO2 to CO in ionic liquid/ propylene carbonate electrolyte on Ag electrode[J]. Catalysts,2020,10(10):1102. doi: 10.3390/catal10101102
    [53] 范洪富, 李凤华, 张翼, 刘春蕾. 烷基咪唑类离子液体及其处理油田污水的可行性探讨[J]. 化学与生物工程,2009,26(12):7−11. doi: 10.3969/j.issn.1672-5425.2009.12.002

    FAN Hong-fu, LI Feng-hua, ZHANG Yi, LIU Chun-lei. Feasibility of alkylimidazole ionic liquids and their treatment of oilfield sewage[J]. Chem Bio Eng,2009,26(12):7−11. doi: 10.3969/j.issn.1672-5425.2009.12.002
    [54] ZENG S J, WANG J, BAI L, WANG B Q, GAO S H, SHANG D W, ZHANG X P, ZHANG S J. Highly selective capture of CO by ether-functionalized pyridinium ionic liquids with low viscosity[J]. Energy Fuels,2015,29:6039−6048. doi: 10.1021/acs.energyfuels.5b01274
    [55] 张武英, 罗荣昌, 徐祺航, 陈亚举, 林小微, 周贤太, 纪红兵. 季膦盐型双功能金属Salen配合物催化二氧化碳转化为高附加值化学品[J]. 催化学报,2017,38(4):736−744. doi: 10.1016/S1872-2067(17)62802-X

    ZHANG Wu-ying, LUO Rong-chang, XU Qi-hang, CHEN Ya-ju, LIN Xiao-wei, ZHOU Xian-tai, JI Hong-bing. Quaternary phosphine salt-type bi-functional metal Salen complexes catalyze the conversion of carbon dioxide to high value-added chemicals[J]. Chin J Catal,2017,38(4):736−744. doi: 10.1016/S1872-2067(17)62802-X
    [56] SU T, TANG Z, YIN C, YANG Y, LI J. Insights into quaternary ammonium-based ionic liquids series with tetrafluoroborate anion for CO2 capture[J]. J Mol Liq,2020,327:114857.
    [57] ZHANG Y Q, ZHANG S J, LU X M, ZHOU Q, FAN W, ZHANG X P. Dual amino-functionalized phosphonium ionic liquids for CO2 capture[J]. Chem Eur J,2009,15(12):3003−3011. doi: 10.1002/chem.200801184
    [58] ZHAO Z, GAO J, LUO M, LIU X, ZHAO Y, FEI W. Molecular simulation and experimental study on low-viscosity ionic liquids for high-efficient capturing of CO2[J]. Energy Fuels,2022,36(3):1604−1613. doi: 10.1021/acs.energyfuels.1c02928
    [59] SAUDAGAR D, OGUZ K C, EDA C, KEVIN Y C L, RAO G D, DAVID B, LOUISE A B, BURCU G. A bifunctional ionic liquid for capture and electrochemical conversion of CO2 to CO over silver[J]. ACS Catal,2023,13(12):7812−7821.
    [60] DAWSON G A, HAUSER P C, KILMARTIN P A, WRIGHT G A. CO2 gas sensing at micro-electrodes in nonaqueous solvents[J]. Electroanalysis,2000,12(2):105−110. doi: 10.1002/(SICI)1521-4109(200002)12:2<105::AID-ELAN105>3.0.CO;2-2
    [61] TAN X, SUN X, HAN B. Ionic liquid-based electrolytes for CO2 electroreduction and CO2 electroorganic transformation[J]. Natl Sci Rev, 2021, 4(9).
    [62] NATHAN H S, TAYLOR S R, GALANTE M T, JACQUEMIN J, LONGO C, HOLT K,  LEEUW N H, HARDACRE C. Reduction of carbon dioxide to formate at low overpotential using a superbase ionic liquid[J]. Angew Chem Int Ed,2015,47(54):14164−14168.
    [63] LI P Y, LIU L, AN W J, WANG H, CUI W Q. Efficient photo thermal catalytic CO2 reduction to CH3CH2OH over Cu2O/g-C3N4 assisted by ionic liquids[J]. Appl Surf Sci,2021,565:150448. doi: 10.1016/j.apsusc.2021.150448
    [64] BRIAN A R, AMIN S K, MICHAEL R. T, ZHU W, DEVIN T W, PAUL J A K, RICHARD I M. Ionic liquid-mediated selective conversion of CO2-to-CO atlow over potentials[J]. Science,2011,334(6056):643−644. doi: 10.1126/science.1209786
    [65] DMITRY V, ERFAN S, ALEXANDER R, PETER B, DYSON P J. Pyrazolium ionic liquid Co-catalysts for the electroreduction of CO2[J]. ACS Appl Energy Mater,2018,1(10):5124−5128.
    [66] MEDINA R, DIMEGLIO J L, ROSENTHAL A. Efficient reduction of CO2 to CO with high current density using in situorex situ prepared Bi-based materials[J]. Chem Soc Rev,2014,136(23):8361−8367. doi: 10.1021/ja501923g
    [67] FENG J P, ZHOU K J, LIU C S, HU Q, FANG H, YANG H P. Superbase and hydrophobic ionic liquid confined within Ni foams as a free-standing catalyst for CO2 electroreduction[J]. ACS Appl Mater Interfaces,2022,14(34):38717−38726. doi: 10.1021/acsami.2c08969
    [68] JALPA B, KIA B, LDMTA B, JBDSF A, MVBZA B. Effect of ionic liquid in a pressurized reactor to enhance CO2 photocatalytic reduction at TiO2 modified by gold nanoparticles[J]. J Catal,2022,405:588−600. doi: 10.1016/j.jcat.2021.11.007
    [69] CADENA C, ANTHONY J L, SHAH J K, MORROW T I, BRENNECKE J F, MAGINN E J. Why is CO2 so soluble in imidazolium-based ionic liquids?[J]. J Am Chem Soc,2004,126(16):5300−5308. doi: 10.1021/ja039615x
    [70] MONDAL A, BALASUBRAMANIAN S J. Understanding SO2 capture by ionic liquids[J]. J Phys Chem B,2016,120(19):4457−4466. doi: 10.1021/acs.jpcb.6b02553
    [71] CHIAPPE C, POMELLI C S. Hydrogen sulfide, and ionic liquids: Absorption, separation, and oxidation[J]. Top Curr Chem,2017,375(3):52. doi: 10.1007/s41061-017-0140-9
    [72] CORVO M C, SARDINHA J, MENEZES S C, EINLOFT S, SEFERIN M, DUPONT J, CASIMIRO T, CABRITA E J. Solvation of carbon dioxide in [C4mim][BF4] and [C4mim][PF6] ionic liquids revealed by high-pressure NMR spectroscopy[J]. Angew Chem Int Ed,2013,125(49):13262−13265. doi: 10.1002/ange.201305630
    [73] BATE E D, MAYTON R, NTAI I, DAVIS J H. CO2 capture by a task-specific ionic liquid[J]. J Am Chem Soc,2002,124:926−927. doi: 10.1021/ja017593d
    [74] GURKAN B E, FUENTE D L, JUAN C, MINDRUP E M, FICKE L E, GOODRICH B F, PRICE E A, SCHNEIDER W F, BRENNECKE J F. Equimolar CO2 absorption by anion-functionalized ionic liquids[J]. J Am Chem Soc,2010,132(7):2116−2117. doi: 10.1021/ja909305t
    [75] NATHALIA M S, MARCILEIA Z, FRANCISCO P DOS S, MARTA C C, EURICO J C, JAIRTON D. Carbon dioxide capture by aqueous ionic liquid solutions[J]. ChemSusChem,2017,10:382−385.
    [76] CHEN Y, ZHAO Y, YU B, WU Y, LIU Z. Visible-light-driven photo reduction of CO2 to CH4 over TiO2 using multiple-site ionic liquid as absorbent and photo sensitizer[J]. ACS Sustainable Chem Eng,2020,8(24):9088−9094. doi: 10.1021/acssuschemeng.0c02333
    [77] 成康, 张庆红, 康金灿, 王野. 二氧化碳直接制备高值化学品中的接力催化方法[J]. 中国科学: 化学,2020,50(7):743−755.

    CHENG Kang, ZHANG Qing-hong, KANG Jin-can, WANG Ye. Relay catalysis method for direct preparation of high-value chemicals by carbon dioxide[J]. Sci China Chem,2020,50(7):743−755.
    [78] ZHOU Z H, CHEN K H, GAO S, YANG Z W, HE L N. Ionic liquid-modified porous organometallic polymers as efficient and selective photocatalysts for visible-light-driven CO2 reduction[J]. Environ Res,2020,2020:9398285.
    [79] FENG J, ZENG S, LIU H, FENG J, GAO H, BAI L, DONG H, ZHANG S, ZHANG X. Insights into carbon dioxide electror education in ionic liquids: Carbon dioxide activation and selectivity tailored by ionic micro habitat[J]. ChemSusChem,2018,11(18):3191−3197. doi: 10.1002/cssc.201801373
    [80] ZHU Q, MA J, KANG X, SUN X, LIU H, HU J, LIU Z, HAN B. Efficient reduction of CO2 into formic acidona leador in electrode using an ionic liquid catholyte mixture[J]. Angew Chem Int Ed,2016,55(31):9012−9016. doi: 10.1002/anie.201601974
    [81] QADIR M I, WEILHARD A, FERNANDES J A, PEDRO I, VIEIRA B, WAARDENBURG J C, DUPONT J. Selective carbon dioxide hydrogenation driven by ferromagnetic Ru-Fe nanoparticles in ionic liquids[J]. ACS Catal,2018,8(2):1621−1627. doi: 10.1021/acscatal.7b03804
    [82] HUAN T N, SIMON P, ROUSSE G, GENOIS I, ARTERO V, FONTECAVE M. Porous dendritic copper: an electrocatalyst for highly selective CO2 reduction to formate in water/ionic liquid electrolyte[J]. Chem Sci,2017,8:742−747. doi: 10.1039/C6SC03194C
    [83] CHEN L, GUO S X, LI F, BENTLEY C, HORNE M, BOND A M, ZHANG J. Electrochemical reduction of CO2 at metal electrodes in a distillable ionic liquid[J]. ChemSusChem,2016,9:1271−1278. doi: 10.1002/cssc.201600359
    [84] RUDNEV A V, KIRAN K, BROEKMANN P. Specific cation adsorption: Exploring synergistic effects on CO2 electroreduction in ionic liquids[J]. Chemelectrochem,2020,7:1897−903. doi: 10.1002/celc.202000223
    [85] KOH J H, JEON H S, JEE M S, NURSANTO E B, LEE H, HWANG Y J, MIN B K. Oxygen plasma induced hierarchically structured gold electrocatalyst for selective reduction of carbon dioxide to carbon monoxide[J]. Phys Chem Chem Phys,2014,119:883−889.
    [86] ZHANG Z, CHI M, VEITH G M, ZHANG P, LETTERMAN D A, ROSENTHAL J, OVERBURY S H, DAI S, ZHU H. Rational design of Bi nanoparticles for efficient electrochemical CO2 reduction: The elucidation of size and surface condition effects[J]. ACS Catal,2016,6:6255−6264. doi: 10.1021/acscatal.6b01297
    [87] PARDAL T, MESSIAS S, SOUSA M, MACHADO A S, RANGEL C M, NUNES D, PINTO J V, MARTINS R, PONTE M N. Syngas production by electrochemical CO2 reduction in an ionic liquid-based electrolyte[J]. J CO2 Util,2017,18:62−72. doi: 10.1016/j.jcou.2017.01.007
    [88] BRUZON, D A, TIONGSON J A, GIOVANNI T, MARTINEZ I S. Electroreduction and solubility of CO2 in methoxy and nitrile-functionalized imidazolium (FAP) ionic liquids[J]. J Appl Electrochem,2017,47:1251−1260. doi: 10.1007/s10800-017-1117-7
    [89] ZHANG L, WU N, ZHANG JI C, HU Y, WANG Z Y, ZHUANG LIN, JIN X B. Imidazolium ions with an alcohol substituent for enhanced electrocatalytic reduction of CO2[J]. ChemSusChem,2017,22:4824−4828.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  400
  • HTML全文浏览量:  354
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-22
  • 修回日期:  2022-11-02
  • 录用日期:  2022-11-16
  • 网络出版日期:  2022-12-13
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回