留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni改性二硫化钼析氢电催化剂的制备及表征

韩嘉琦 吴红军

韩嘉琦, 吴红军. Ni改性二硫化钼析氢电催化剂的制备及表征[J]. 燃料化学学报(中英文), 2023, 51(10): 1462-1469. doi: 10.19906/j.cnki.JFCT.2022092
引用本文: 韩嘉琦, 吴红军. Ni改性二硫化钼析氢电催化剂的制备及表征[J]. 燃料化学学报(中英文), 2023, 51(10): 1462-1469. doi: 10.19906/j.cnki.JFCT.2022092
HAN Jia-qi, WU Hong-jun. Preparation and characterization of Ni modified MoS2 for electrocatalytic hydrogen evolution[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1462-1469. doi: 10.19906/j.cnki.JFCT.2022092
Citation: HAN Jia-qi, WU Hong-jun. Preparation and characterization of Ni modified MoS2 for electrocatalytic hydrogen evolution[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1462-1469. doi: 10.19906/j.cnki.JFCT.2022092

Ni改性二硫化钼析氢电催化剂的制备及表征

doi: 10.19906/j.cnki.JFCT.2022092
详细信息
    作者简介:

    韩嘉琦(1996-),女,硕士,助理工程师,现从事电催化析氢催化剂制备的研究

    通讯作者:

    E-mail: hjq459@petrochina.com.cn

  • 中图分类号: TQ151.1

Preparation and characterization of Ni modified MoS2 for electrocatalytic hydrogen evolution

  • 摘要: 开发高性能低成本的析氢电催化剂有望提升电解水制氢效率,实现大规模产氢,促进氢能的开发及利用迫在眉睫。二硫化钼(MoS2)在析氢催化领域展现出一定潜能,通过对其改性以提高催化活性从而替代铂基催化剂成为近年来的研究热点。本研究采用一步溶剂热法合成Ni原子改性的MoS2电催化析氢(HER)催化剂,该催化剂在酸性条件下具有良好的催化活性及优异的稳定性。当基准电流密度为10 mA/cm2时,240 ℃下制得的20Ni@MoS2过电位仅为190 mV,塔菲尔斜率为162 mV/dec,优于单一的MoS2催化材料。
  • FIG. 2705.  FIG. 2705.

    FIG. 2705.  FIG. 2705.

    图  1  (a)不同Ni掺杂量的MoS2的XRD谱图,(b)40Ni@MoS2的XRD谱图

    Figure  1  (a) XRD images of MoS2 with different Ni doping concentrations; (b) XRD images of 40Ni@MoS2

    图  2  (a) MoS2的TEM、HRTEM和EDS照片, (b) 20Ni@MoS2的TEM、HRTEM和EDS照片

    Figure  2  (a) TEM, HRTEM and EDS images of MoS2, (b) TEM, HRTEM and EDS images of 20Ni@MoS2

    图  3  MoS2和20Ni@MoS2的Raman谱图

    Figure  3  Raman images of MoS2和20Ni@MoS2

    图  4  (a) 20Ni@MoS2的XPS全谱图;(b) 20Ni@MoS2的XPS Mo 3d谱图;(c) 20Ni@MoS2的XPS S 2p谱图;(d) 20Ni@MoS2的XPS Ni 2p谱图

    Figure  4  (a) XPS images of 20Ni@MoS2 ; (b) XPS spectra of Mo 3d for the 20Ni@MoS2 ; (c) XPS spectra of S 2p for the 20Ni@MoS2 ; (d) XPS spectra of Ni 2p for the 20Ni@MoS2

    图  5  (a) 不同Ni掺杂量的MoS2线性扫描伏安曲线,(b) 20% Pt/C、20Ni@MoS2和MoS2的线性扫描伏安曲线

    Figure  5  (a) Polarization curves of MoS2 with different Ni doping concentrations, (b) Polarization curves of 20% Pt/C, 20Ni@MoS2 and MoS2

    图  6  20% Pt/C、20Ni@MoS2和MoS2的塔菲尔斜率

    Figure  6  Tafel plots of 20% Pt/C, 20Ni@MoS2 and MoS2

    图  7  20Ni@MoS2和MoS2的电化学阻抗谱

    Figure  7  EIS of 20Ni@MoS2 and MoS2

    图  8  MoS2和20Ni@MoS2的双电层电容曲线

    Figure  8  Electric double layer capacitance curve of MoS2 and 20Ni@MoS2

    图  9  20Ni@MoS2的稳定性测试

    Figure  9  Stability test of 20Ni@MoS2

    图  10  (a) 稳定性测试后20Ni@MoS2的XPS Mo 3d谱图;(b) 稳定性测试后20Ni@MoS2的XPS Ni 2p谱图

    Figure  10  (a) XPS spectra in the Mo 3d of the 20Ni@MoS2 after the durability test; (b) XPS spectra in the Ni 2p of the 20Ni@MoS2 after the durability test

  • [1] FU Q, HAN J C, WANG X J, XU P, YAO T, ZHONG J, ZHONG W W, LIU S W, GAO T L, ZHANG Z H, XU L L, SONG B. 2D transition metal dichalcogenides: Design, modulation, and challenges in electrocatalysis[J]. Adv Mater,2020,33(6):1907818.
    [2] 李俊莉, 杨玉琴, 皇甫鑫强, 陈选欣. CoP/RGO复合材料的制备及结构性能研究[J]. 化工新型材料,2019,47(11):141−144.

    LI Jun-li, YANG Yu-qin, HUANGFU Xin-qiang, CHEN Xuan-xin. Study on the preparation and structure property of CoP/RGO[J]. New Chem Mater,2019,47(11):141−144.
    [3] 王培灿, 雷青, 刘帅, 王保国. 电解水制氢MoS2催化剂研究与氢能技术展望[J]. 化工进展,2019,38(1):278−290.

    WANG Pei-can, LEI Qing, LIU Shuai, WANG Bao-guo. MoS2-based electrocatalysts for hydrogen evolution and the prospect of hydrogen energy technology[J]. Chem Eng Prog,2019,38(1):278−290.
    [4] 马海霞, 王太和, 赵玉洁, 王旭, 李嘉辰. MoS2/Ru异质结构的制备及其电催化析氢反应性能[J]. 材料工程,2022,50(4):44−52. doi: 10.11868/j.issn.1001-4381.2020.000991

    MA Hai-xia, WANG Tai-he, ZHAO Yu-jie, WANG Xu, LI Jia-chen. Synthesis and electrochemical hydrogen evolution reaction properties of MoS2/Ru heterostructures[J]. J Mater Eng,2022,50(4):44−52. doi: 10.11868/j.issn.1001-4381.2020.000991
    [5] LIANG J S, MA F, HWANG S, WANG X, SU D. Atomic arrangement engineering of metallic nanocrystals for energy-conversion electrocatalysis[J]. Joule,2019,3(4):956−991. doi: 10.1016/j.joule.2019.03.014
    [6] 米芳芳, 王庆涛. 碳化钼电解水析氢催化剂的性能调控研究进展[J]. 材料科学与工程学报,2022,40(3):520−527.

    MI Fang-fang, WANG Qing-tao. Research progress on performance regulation of molybdenum carbide hydrogen evolution catalyst[J]. J Mater Sci Eng,2022,40(3):520−527.
    [7] LI T F, LI S L, LIU Q Y, YIN J W, SUN D M, ZHANG M Y, XU L, TANG Y W, ZHANG Y W. Immobilization of Ni3Co nanoparticles into N-doped carbon nanotube/nanofiber integrated hierarchically branched architectures toward efficient overall water splitting[J]. Adv Sci,2020,7(1):1902371. doi: 10.1002/advs.201902371
    [8] DU H L, HODGETTS R Y, CHATTI M, NGUYEN C K, SIMONOV A N. Is molybdenum disulfide modified with molybdenum metal catalytically active for the nitrogen reduction reaction?[J]. J Electrochem Soc,2020,167(14):146507. doi: 10.1149/1945-7111/abc1a8
    [9] ZHANG H. Ultrathin two-dimensional nanomaterials. [J] ACS Nano, 2015, 9(10): 9451−9469.
    [10] 乔劲松, 韩苗苗. 多孔二元过渡金属纳米片阵列电极制备及电催化析氢研究[J]. 分子催化,2021,35(5):449−455. doi: 10.16084/j.issn1001-3555.2021.05.006

    QIAO Jin-song, HAN Miao-miao. Preparation of porous binary transition metal nanosheets array electrode and its electrocatalytic hydrogen evolution[J]. J Mol Catal,2021,35(5):449−455. doi: 10.16084/j.issn1001-3555.2021.05.006
    [11] 徐祥福, 陈佳, 赖国霞, 李天乐, 许诗圳, 陈星源, 朱伟玲. 单层MoS2在合金化及应力调控下光催化裂解水产氢的理论研究[J]. 燃料化学学报,2020,48(3):76−82.

    XU Xiang-fu, CHEN Jia, LAI Guo-xia, LI Tian-le, XU Shi-zhen, CHEN Xing-yuan, ZHU Wei-ling. Theoretical study on enhancing the monolayer MoS2 photocatalytic water splitting with alloying and stress[J]. J Fuel Chem Technol,2020,48(3):76−82.
    [12] LAURSEN A B, KEGNAES S, DAHL S, CHORKENDORFF I. Molybdenum sulfidesefficient and viable materials for electro and photoelectrocatalytic hydrogen evolution[J]. Energy Environ Sci,2012,5(2):5577−5591.
    [13] DU J F, ZHAO J H, REN J. Interface effect of C3N4-Ti4O7 -MoS2 composite toward enhanced electrocatalytic hydrogen evolution reaction[J]. J Fuel Chem Technol,2021,49(7):986−996. doi: 10.1016/S1872-5813(21)60109-3
    [14] RHEEM Y, PARK S H, YU S, LEE K H, MYUNG N V. Electrospun hybrid MoS2 nanofibers for high-efficiency electrocatalytic hydrogen evolution reaction[J]. J Electrochem Soc,2020,167(6):066522. doi: 10.1149/1945-7111/ab86c2
    [15] VOIRY D A, SALEHI M, SILVA R, FUJITA T, CHHOWALLA M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction[J]. Nano Lett,2013,13(12):6222−6227. doi: 10.1021/nl403661s
    [16] LIU GUO L, ROBERTSON A W, Li M M J, KUO W C H, DARBY M T, MUHIEDDINE M H, LIN Y C, SUENAGA K, STAMATAKIS M, WARNER J H, TSANG S C E. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction[J]. Nat Chem,2017,9:810−816. doi: 10.1038/nchem.2740
    [17] WANG H T, TSAI C, KONG D S, CHAN K, ABILD-PEDERSEN F, NORSKOV J K, CUI Y. Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution[J]. Nano Res,2015,2:566−575.
    [18] YIN Y, HAN J C, ZHANG Y M, ZHANG X H, XU P, YUAN Q, LEITH S, WANG X J, WANG Y, ZHANG Z H, ZHANG P, CAO X Z, SONG B, JIN S. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets[J]. J Am Chem Soc,2016,138(25):7965−7972. doi: 10.1021/jacs.6b03714
    [19] 张爽, 王子鸣, 卢雅宁, 唐梦, 王英财, 柳玉辉. 熔盐电解法制备NbS2@MoS2复合材料及其电催化析氢性能[J]. 复合材料学报,2022,39(8):3882−3890.

    ZHANG Shuang, WANG Zi-ming, LU Ya-ning, TANG Meng, WANG Ying-cai, LIU Yu-hui. Molten salt electrolysis synthesis of NbS2@MoS2 and its performance for water splitting into hydrogen[J]. Acta Mater Composit Sin,2022,39(8):3882−3890.
    [20] JI L, YAN P F, ZHU C H, MA C Y, WU W Z, WEI C, SHEN Y L, CHU S Q, WANG J OU, DU Y, CHEN J, YANG X A, XU Q. One-pot synthesis of porous 1T-phase MoS2 integrated with single-atom Cu doping for enhancing electrocatalytic hydrogen evolution reaction[J]. Appl Catal B: Environ,2019,251:87−93. doi: 10.1016/j.apcatb.2019.03.053
    [21] HU J, ZHANG C X, YANG P, XIAO J Y, DENG T, LIU Z Y, HUANG B L, MICHAEL K H L, YANG S H. Kinetic-oriented construction of MoS2 synergistic interface to boost pH-universal hydrogen evolution[J]. Adv Funct Mater,2020,30(6):1908520.1−1908520.9.
    [22] WANG D Z, ZHOU P, WU Z Z, WANG Z P, LIU Z H. Hydrothermal synthesis of MoS2 nanoflowers as highly efficient hydrogen evolution reaction catalysts[J]. J Power Sources,2014,264:229−234. doi: 10.1016/j.jpowsour.2014.04.066
    [23] LUO Z Y, OUYANG Y X, ZHANG H, XIAO M L, GE J J, JIANG Z, WANG J L, TANG D M, CAO X Z, LIU C P, XING W. Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution[J]. Nat Commun,2018,9:2120. doi: 10.1038/s41467-018-04501-4
    [24] LI R C, YANG L J, XIONG T L, WU Y S, CAO L D, YUAN D S, ZHOU W J. Nitrogen doped MoS2 nanosheets synthesized via a low-temperature process as electrocatalysts with enhanced activity for hydrogen evolution reaction[J]. J Power Sources,2017,356:133−139.
    [25] JIA J, ZHOU W J, LI G X, YANG L J, WEI Z Q, CAO L D, WU Y S, ZHOU K, CHEN S W. Regulated synthesis of Mo sheets and their derivative MoX sheets (X: P, S, C) as efficient electrocatalysts for hydrogen evolution reaction[J]. ACS Appl Mater Interfaces,2017,9(9):8041. doi: 10.1021/acsami.6b12103
    [26] MOLINA S A, WIRTZ L. Phonons in single-Layer and few-Layer MoS2 and WS2[J]. Phys Rev B,2011,84(15):155413. doi: 10.1103/PhysRevB.84.155413
    [27] HUANG Y C, SUN Y H, ZHENG X L, AOKI T, PATTENGALE B, HUANG J E, HE X, BIAN W, YOUNAN S, WILLIAMS N, HU J, GE J X, PU N, YAN X X, PAN X Q, ZHANG L J, WEI Y G, GU J. Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution[J]. Nat Commun,2019,10(1):1−11. doi: 10.1038/s41467-018-07882-8
    [28] LI H, ZHANG Q, YAP C C R, TAY B K, EDWIN T H T, OLIVIER A, BAILLARGEAT D. From bulk to monolayer MoS2: Evolution of Raman Scattering[J]. Adv Funct Mater,2012,22(7):1385−1390. doi: 10.1002/adfm.201102111
    [29] GANTA D, SINHA S, Haasch R T. 2-D material molybdenum disulfide analyzed by XPS[J]. Surf Sci Spectra,2014,21(1):19−27. doi: 10.1116/11.20140401
    [30] XIANG J H, CAO H Q, Wu Q Z, ZHANG S C. L-cysteine-assisted synthesis and optical properties of Ag2S nanospheres[J]. J Phys Chem C,2008,112(10):3580−3584. doi: 10.1021/jp710597j
    [31] MCDONNELL S, ADDOU R, BUIE C, WALLACE R M, HINKLE C L. Defect-dominated doping and contact resistance in MoS2[J]. ACS Nano,2014,8(3):2880−2888. doi: 10.1021/nn500044q
    [32] YANG Y Q, ZHANG K, LIN H L, LI X, CHAN H C, YANG L C, GAO Q S. MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting[J]. ACS Catal,2017,7(4):2357−2366. doi: 10.1021/acscatal.6b03192
    [33] SUN L, WANG T, ZHANG L, SUN Y J, XU K W, DAI Z F, MA F. Mace-like hierarchical MoS2/NiCo2S4 composites supported by carbon fiber paper: An efficient electrocatalyst for the hydrogen evolution reaction[J]. J Power Sources,2018,377(15):142−150.
    [34] YE J B, YU Z T, CHEN W X, CHEN Q N, MA L. Ionic-liquid mediated synthesis of molybdenum disulfide/graphene composites: An enhanced electrochemical hydrogen evolution catalyst[J]. Int J Hydrogen Energy,2016,41(28):12049−12061. doi: 10.1016/j.ijhydene.2016.05.186
    [35] WU L Q, XU X B, ZHAO Y Q, ZHANG K Y, SUN Y, WANG T T, WANG Y Q, ZHONG W, DU Y W. Mn doped MoS2/reduced graphene oxide hybrid for enhanced hydrogen evolution[J]. Appl Surf Sci,2017,425:470−477. doi: 10.1016/j.apsusc.2017.06.223
    [36] YANG L, HONG W W, ZHANG Y, TIAN Y, GAO X, ZHU Y R, ZOU G Q, HOU H S, JI X B. Hierarchical NiS2 Modified with Bifunctional Carbon for Enhanced Potassium‐Ion Storage[J]. Adv Funct Mater,2019,29(50):1903454. doi: 10.1002/adfm.201903454
    [37] ZENG L L, YANG L J, LU J, JIA J, YU J Y, DENG Y Q, SHAO M F, ZHOU W J. One-step synthesis of Fe-Ni hydroxide nanosheets derived from bimetallic foam for efficient electrocatalytic oxygen evolution and overall water splitting[J]. Chin Chem Lett,2018,29(12):1875−1878. doi: 10.1016/j.cclet.2018.10.026
    [38] ZHAO L L, YUAN H F, SUN D H, JIA J, YU J Y, ZHANG X L, LIU X Y, LIU H, ZHOU W J. Active facet regulation of highly aligned molybdenum carbide porous octahedrons via crystal engineering for hydrogen evolution reaction[J]. Nano Energy,2020,77:105056. doi: 10.1016/j.nanoen.2020.105056
  • 加载中
图(11)
计量
  • 文章访问数:  415
  • HTML全文浏览量:  283
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-25
  • 修回日期:  2022-11-22
  • 录用日期:  2022-12-05
  • 网络出版日期:  2022-12-26
  • 刊出日期:  2023-10-10

目录

    /

    返回文章
    返回