留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双金属氮氧化物-Co单原子复合催化剂协同促进宽pH范围电催化氧气还原

赵江红 覃宇鹏 王倩靓 乔泽玉 宣佳琪 周玮

赵江红, 覃宇鹏, 王倩靓, 乔泽玉, 宣佳琪, 周玮. 双金属氮氧化物-Co单原子复合催化剂协同促进宽pH范围电催化氧气还原[J]. 燃料化学学报(中英文), 2023, 51(5): 693-702. doi: 10.19906/j.cnki.JFCT.2022095
引用本文: 赵江红, 覃宇鹏, 王倩靓, 乔泽玉, 宣佳琪, 周玮. 双金属氮氧化物-Co单原子复合催化剂协同促进宽pH范围电催化氧气还原[J]. 燃料化学学报(中英文), 2023, 51(5): 693-702. doi: 10.19906/j.cnki.JFCT.2022095
ZHAO Jiang-hong, QIN Yu-peng, WANG Qian-liang, QIAO Ze-yu, XUAN Jia-qi, ZHOU Wei. Bimetallic oxynitride-Co single atom composite electrocatalyst synergistically improve oxygen reduction reaction in wide pH range[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 693-702. doi: 10.19906/j.cnki.JFCT.2022095
Citation: ZHAO Jiang-hong, QIN Yu-peng, WANG Qian-liang, QIAO Ze-yu, XUAN Jia-qi, ZHOU Wei. Bimetallic oxynitride-Co single atom composite electrocatalyst synergistically improve oxygen reduction reaction in wide pH range[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 693-702. doi: 10.19906/j.cnki.JFCT.2022095

双金属氮氧化物-Co单原子复合催化剂协同促进宽pH范围电催化氧气还原

doi: 10.19906/j.cnki.JFCT.2022095
基金项目: 山西省重点研发计划(201903D121003),中央引导地方科技发展资金(YDZJSX2021A001)和山西省科技重大专项项目(20181102019)资助
详细信息
    通讯作者:

    Tel: 13834136556, E-mail: zhaojianghong@sxu.edu.cn

  • 中图分类号: O646

Bimetallic oxynitride-Co single atom composite electrocatalyst synergistically improve oxygen reduction reaction in wide pH range

Funds: The project was supported by Key Research and Development Program of Shanxi Province (201903D121003), Guidance Foundation from the Central Government for Local Science and Technology Development (YDZJSX2021A001) and Special Program for Major Science and Technology of Shanxi Province (20181102019).
  • 摘要: 本论文基于传统聚合物基炭材料合成原理,通过选择合适结构的前驱体分子,在聚合过程中分子水平锚定Co原子,同时引入TiO2纳米颗粒,再经高温焙烧后制得一种双金属氮氧化物(ComTinOxNy)-Co单原子(Co-NC)复合催化剂。该催化剂在酸性(Eonset = 0.755 V vs. RHE,0.5 mol/L H2SO4; 0.760 V vs. RHE,0.1 mol/L HClO4)、中性(Eonset = 0.787 V vs. RHE,0.1 mol/L PBS)、碱性(Eonset = 0.880 V vs. RHE,0.1 mol/L KOH)电解液中的氧气还原(ORR)性能(pH = 0−13)均优于纯氮杂碳纳米管、氮杂碳纳米管负载的金属氮氧化物和Co单原子催化剂,表明,ComTinOxNy与Co单原子的协同效应使得复合催化剂具有更好的ORR活性,同时复合催化剂的稳定性和选择性显著优于商品Pt/C催化剂。这为开发高性能低成本氧气还原电催化剂提供了新的思路。
  • FIG. 2299.  FIG. 2299.

    FIG. 2299.  FIG. 2299.

    图  1  双金属氮氧化物-钴单原子复合电催化剂的合成过程示意图

    Figure  1  A schematic showing synthesis process of the bimetallic oxynitride-Co single atom composite electrocatalyst

    图  2  (a)Co-NC、Ti-NC和Co/Ti-NC-300的XRD谱图,(b)Ti-NC和Co/Ti-NC-300的拉曼光谱

    Figure  2  (a) XRD patterns of Co-NC, Ti-NC and Co/Ti-NC-300, (b) Raman spectra of Ti-NC and Co/Ti-NC-300

    图  3  Co/Ti-NC-300复合催化剂的(a)SEM照片,(b)TEM照片,(c)HAADF-STEM照片,(d)EDS图,((e)–(g))HRTEM照片

    Figure  3  (a) SEM, (b) TEM, (c) HAADF-STEM, (d) EDS-mapping, ((e)–(g)) HRTEM images of Co/Ti-NC-300 composite catalyst

    图  4  Co/Ti-300的XPS光谱:(a)全谱,(b)Ti 2p,(c)Co 2p和(d)N 1s高分辨率光谱;Ti-NC的XPS光谱:(b)Ti 2p和(d)N 1s的高分辨率光谱

    Figure  4  XPS spectra of Co/Ti-300: (a) a survey spectrum, (b) Ti 2p, (c) Co 2p and (d) N 1s high-resolution spectra; XPS spectra of Ti-NC: (b) Ti 2p and (d) N 1s high-resolution spectra

    图  5  0.1 mol/L KOH中:各种催化剂的(a)CV和(b)LSV曲线,(c)Tafel和(d)奈奎斯特曲线(开路电压)

    Figure  5  In 0.1 mol/L KOH: (a) CV and (b) LSV curves, (c) Tafel and (d) Nyquist plots (at open circuit voltage) of various catalysts

    图  6  (a)LSV曲线,(b)Koutecký-Levich图,((c),(d))Co/Ti-NC-300的旋转环盘电极测试,(e)甲醇交叉效应测试和(f)0.1 mol/L KOH中Co/Ti-NC-300和Pt/c催化剂的稳定性测试

    Figure  6  (a) Linear sweep voltametry (LSV) curves, (b) Koutecký-Levich plots, ((c), (d)) Rotating ring-disk electrode test of Co/Ti-NC-300, (e) methanol crossing effect tests and (f) stability measurements of Co/Ti-NC-300 and Pt/C catalysts measured in 0.1 mol/L KOH

    图  7  Co/Ti-300在0.1 mol/L KOH中测试20 h后的XPS光谱:(a)Ti 2p,(b)N 1s,(c)Co 2p高分辨率光谱;(d)Co/Ti-300分别在0.5 mol/L H2SO4、0.1 mol/L HClO4、0.1 mol/L PBS和0.1 mol/L KOH中测试的LSV曲线

    Figure  7  XPS spectra of Co/Ti-300 after 20 h measurement in 0.1 mol/L KOH: (a) Ti 2p, (b) N 1s, (c) Co 2p high-resolution spectra; (d) LSV curves of Co/Ti-NC-300 measured in 0.5 mol/L H2SO4, 0.1 mol/L HClO4, 0.1 mol/L PBS and 0.1 mol/L KOH, respectively

    表  1  不同催化剂的电化学性能参数

    Table  1  Electrochemical parameters of different catalysts

    SampleE1/2 /(mV vs. RHE)Eonset /(mV vs. RHE)j0 /(mA·cm−2)jk /(mA·cm−2)@0.5 V vs. RHEb /(mV·dec−1)
    Co/Ti-NC-30080088035.2 × 10−915.2054
    Ti-NC707822119 × 10−98.7268
    Co -NC8088856.79 × 10−912.0148
    Pt/C8379582383 × 10−971.6159
    下载: 导出CSV
  • [1] THOMAS C. Fuel cell and battery electric vehicles compared[J]. Int J Hydrogen Energy,2009,34(15):6005−6020. doi: 10.1016/j.ijhydene.2009.06.003
    [2] WANG C. Fundamental models for fuel cell engineering[J]. Chem Rev,2004,104(10):4727−4765. doi: 10.1021/cr020718s
    [3] STEELE B, HEINZEL A. Materials for fuel-cell technologies[J]. Nature,2010,414(15):345−352.
    [4] LEE J, TAI K, CAO R, CHOI N, LIU M, LEE K, CHO J. Metal-air batteries with high energy density: Li-air versus Zn-air[J]. Adv Energy Mater,2011,1:34−50. doi: 10.1002/aenm.201000010
    [5] 麦奕朗, 解相生, 王志达, 闫常峰, 刘光华. 热处理温度对Pt3Co二元金属催化剂氧还原性能影响及泛函密度理论研究[J]. 燃料化学学报,2022,50(1):114−121.

    MAI Yi-lang, XIE Xiang-sheng, WANG Zhi-da, YAN Chang-feng, LIU Guang-hua. Effect of heat treatment temperature on the Pt3Co binary metal catalysts for oxygen reduced reaction and DFT calculations[J]. J Fuel Chem Technol,2022,50(1):114−121.
    [6] 王思敏, 龚岩, 李恒, 赵丽丽, 郭庆华, 于广锁. 基于煤气化细渣构建碳基氧还原催化剂及其催化性能研究[J]. 燃料化学学报,2022,50(6):714−723.

    WANG Si-min, GONG Yan, LI Heng, ZHAO Li-li, GUO Qing-hua, YU Guang-suo. Preparation and properties of carbon-based electrocatalysts from gasification fine slag for oxygen reduction[J]. J Fuel Chem Technol,2022,50(6):714−723.
    [7] 王可欣, 杨改秀, 孙永明, 李金平, 王春龙. 生物质不同部位制备炭基催化剂及其电催化氧还原性能[J]. 燃料化学学报,2022,49(6):818−826.

    WANG Ke-xin, YANG Gai-xiu, SUN Yong-ming, LI Jin-ping, WANG Chun-long. Preparation and investigation of carbon-based electrocatalysts from different parts of biomass for oxygen reduction reaction[J]. J Fuel Chem Technol,2022,49(6):818−826.
    [8] LIU K, WANG A, ZHANG T. Recent advances in preferential oxidation of CO reaction over platinum group metal catalysts[J]. ACS Catal,2012,2:1165−1178. doi: 10.1021/cs200418w
    [9] GEWIRTH A, VARNELL J, ASCRO A. Nonprecious metal catalysts for oxygen reduction in heterogeneous aqueous systems[J]. Chem Rev,2018,118(5):2313−2339. doi: 10.1021/acs.chemrev.7b00335
    [10] HE Y, LIU S, PRIEST C, SHI Q, WU G. Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: Advances in catalyst design, electrode performance, and durability improvement[J]. Chem Soc Rev,2020,49(11):3484−3524. doi: 10.1039/C9CS00903E
    [11] CHISAKA M, ISHIHARA A, MORIOKA H, NAGAI T, YIN S, OHGI Y, MATSUZAWA K, MITSUSHIMA S, OTA K. Synthesis of nano-TaO(x) oxygen reduction reaction catalysts on multi-walled carbon nanotubes connected via a decomposition of oxy-tantalum phthalocyanine[J]. ACS Omega,2017,2(11):678−684.
    [12] JAOUEN F, HERRANZ J, LEFEVRE M, DODELET J P, KRAMM U I, HERRMANN I, BOGDANOFF P, MARUYAMA J. NAGAOKA T, GARSUCH A, DAHN J R, OLSON T, PYLYPENKO S, ATANASSOV P, USTINOV E A. Cross-laboratory experimental study of non-noble-metal electrocatalysts for the oxygen reduction reaction[J]. ACS Appl Mater Interfaces,2009,1(8):1623−1639. doi: 10.1021/am900219g
    [13] CHISAKA M, IIJIMA T, YAGUCHI T, SAKURAI Y. Carbon-supported hafnium oxynitride as cathode catalyst for polymer electrolyte membrane fuel cells[J]. Electrochim Acta,2011,56(12):4581−4588. doi: 10.1016/j.electacta.2011.02.084
    [14] SHIBATA Y, ISHIHARA A, MITSUSHIMA S, KAMIYA N, OTA K. Performance improvement of oxide catalyst-doped anode-supported SOFCs for methane fuel[J]. Electrochem Solid-State Lett,2007,10:B43−B45. doi: 10.1149/1.2402983
    [15] DOI S, ISHIHARA A, MITSUSHIMA S, KAMOYA N, OTA K. Zirconium-based compounds for cathode of polymer electrolyte fuel cell[J]. J Electrochem Soc,2007,154:B362−B369. doi: 10.1149/1.2432061
    [16] KINUMOTO T, SOU Y, ONO, K, MATSUOKA M, ARAI Y, TSUMURA T, TOYODA M. Preparation of fibrous titania oxynitride-carbon catalyst and oxygen reduction reaction analysis in both acidic and alkaline media[J]. J Power Sources,2015,273:136−141. doi: 10.1016/j.jpowsour.2014.09.069
    [17] CHISAKA M, ISHIHARA A, OTA K, MURAMOTO H. Synthesis of carbon-supported titanium oxynitride nanoparticles as cathode catalyst for polymer electrolyte fuel cells[J]. Electrochim Acta,2013,113(15):735−740.
    [18] CHISAKA M, ANDA Y, MURAMOTO H. Facile combustion synthesis of carbon-supported titanium oxynitride to catalyse oxygen reduction reaction in acidic media[J]. Electrochim Acta,2015,183:100−106. doi: 10.1016/j.electacta.2015.03.211
    [19] CHISAKA M, MURAMOTO H. Reduced graphene-oxide-supported titanium oxynitride as oxygen reduction reaction catalyst in acid media[J]. ChemElectroChem,2014,1:544−548. doi: 10.1002/celc.201300058
    [20] LIU R, MALOKI C, ARNOLD L, KOSHINO N, HIGASHIMURA H, BAUMGARTEN M, MULLEN K. Triangular trinuclear metal-N4 complexes with high electrocatalytic activity for oxygen reduction[J]. J Am Chem Soc,2011,133:10372−10375. doi: 10.1021/ja203776f
    [21] LIN L, ZHU Q, XU A W. Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions[J]. J Am Chem Soc,2014,136(31):11027−11033. doi: 10.1021/ja504696r
    [22] ZHAO Y, WATANABE K, HASHIMOTO K. Self-supporting oxygen reduction electrocatalysts made from a nitrogen-rich network polymer[J]. J Am Chem Soc,2012,134(48):19528−19531. doi: 10.1021/ja3085934
    [23] WU Z S, CHEN L, LIU J, PARVEZ K, LIANG H, SHU J, SACHDEV H, GRAF R, FENG X, MULLEN K. High-performance electrocatalysts for oxygen reduction derived from cobalt porphyrin-based conjugated mesoporous polymers[J]. Adv Mater,2014,26(9):1450−1455. doi: 10.1002/adma.201304147
    [24] CHEN Y, GAO R, JI S, LI H, TANG K, JIANG P, HU H, ZHANG Z, HAO H, QU Q, LIANG X, CHEN W, DONG J, WANG D, LI Y. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance[J]. Angew Chem Int Ed,2021,60(6):3212−3221. doi: 10.1002/anie.202012798
    [25] YIN P, YAO T, WU Y, ZHENG L, LIN Y, LIU W, JU H, ZHU J, HONG X, DENG Z, ZHOU G, WEI S, LI Y. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts[J]. Angew Chem Int Ed,2016,55(36):10800−10805. doi: 10.1002/anie.201604802
    [26] REN Y, REN Z, LI J, WANG S, YU J. Solvothermal synthesis of a dendritic TiNxOy nanostructure for oxygen reduction reaction electrocatalysis[J]. RSC Adv,2015,5:106439−106443. doi: 10.1039/C5RA17199G
    [27] CHISAKA M, YAMAMOTO Y, ITAGAKI N, HATTORI Y. Active site formation for oxygen reduction reaction on carbon-support-free titanium oxynitride with boosted activity in acidic media[J]. ACS Appl Energy Mater,2017,1:211−219.
    [28] ISHIHARA A, TAMURA M, OHGI Y, MATSUMOTO M, MATSUZAWA K, MITSUSHIMA S, IMAI H, OTA K. Emergence of oxygen reduction activity in partially oxidized tantalum carbonitrides: Roles of deposited carbon for oxygen-reduction-reaction-site creation and surface electron conduction[J]. J Phys Chem C,2013,117(37):18837−18844. doi: 10.1021/jp405247m
    [29] CHISAKA M, ISHIHARA A, SUITO K, OTA K, MURAMOTO H. Oxygen reduction reaction activity of nitrogen-doped titanium oxide in acid media[J]. Electrochim Acta,2013,88(15):697−707.
    [30] CHISAKA M, SUAUKI Y, IIJIMA T, SAKURAI Y. Effect of synthesis route on oxygen reduction reaction activity of carbon-supported hafnium oxynitride in acid media[J]. J Phys Chem C,2011,115(42):20610−20617. doi: 10.1021/jp2068107
    [31] TAKAGAKI A, TAKAHASHI Y, YIN F, TAKANABE K, KUBOTA J, DOMEN K. Highly dispersed niobium catalyst on carbon black by polymerized complex method as PEFC cathode catalyst[J]. J Electrochem Soc,2009,156:B811−B815. doi: 10.1149/1.3125801
    [32] CAO B, VEITH G, DIAZ R, LIU J, STACH E, ADZICR, KHALIFAH P. Cobalt molybdenum oxynitrides: Synthesis, structural characterization, and catalytic activity for the oxygen reduction reaction[J]. Angew Chem Int Ed,2013,125:10953−10957. doi: 10.1002/ange.201303197
    [33] YADAV M, SONKAR P, PRAKASH K, GANESAN V, SANKAR M, YADAV D, GUPTA R. Insight into efficient bifunctional catalysis: Oxygen reduction and oxygen evolution reactions using MWCNTs based composites with 5, 10, 15, 20-tetrakis (3’, 5’-dimethoxyphenyl) porphyrinato cobalt (II) and 5, 10, 15, 20-tetrakis (3’, 5’-dihydroxyphenyl) porphyrinato cobalt(II)[J]. Int J Hydrogen Energy,2020,45:9710−9722.
    [34] WANG X, ZHANG Z, GAI H, CHEN Z, SUN Z, HUANG M. An efficient pH-universal electrocatalyst for oxygen reduction: defect-rich graphitized carbon shell wrapped cobalt within hierarchical porous N-doped carbon aerogel[J]. Mater Today Energy,2020,17:100452−100462. doi: 10.1016/j.mtener.2020.100452
    [35] WASSNER M, ECKARDT M, GEBAUER C, HUSING N, BEHM R J. Spherical core-shell titanium (oxy)nitride@nitrided carbon composites as catalysts for the oxygen reduction reaction: Synthesis and electrocatalytic performance[J]. ChemElectroChem,2016,3:1641−1654. doi: 10.1002/celc.201600246
    [36] CHISAKA M, ANDO Y, YAMAMOTO Y, ITAGAKI N. A carbon-support-free titanium oxynitride catalyst for proton exchange membrane fuel cell cathodes[J]. Electrochim Acta,2016,214:165−172. doi: 10.1016/j.electacta.2016.08.032
    [37] SAHA N C, TOMPKINS H G. Titanium nitride oxidation chemistry: An X-ray photoelectron spectroscopy study[J]. J Appl Phys,1992,72(7):3072−3079. doi: 10.1063/1.351465
    [38] CHEN J, WEI X, ZHANG J, LUO Y, CHEN Y, WANG G, WANG R. Titanium nitride hollow spheres consisting of TiN nanosheets and their controllable carbon-nitrogen active sites as efficient electrocatalyst for oxygen reduction reaction[J]. Ind Eng Chem Res,2019,58(8):2741−2748. doi: 10.1021/acs.iecr.8b05719
    [39] TANG H, LUO J, YU J, ZHAO W, SONG H, LIAO S. Nanoconfined nitrogen-doped carbon-coated hierarchical TiCoN composites with enhanced ORR performance[J]. ChemElectroChem,2018,5(5):2041−2049.
    [40] DONG Y, DENG Y, ZENG J, SONG H, LIAO S. A high-performance composite ORR catalyst based on the synergy between binary transition metal nitride and nitrogen-doped reduced graphene oxide[J]. J Mater Chem A,2017,5:5829−5837. doi: 10.1039/C6TA10496G
    [41] TIAN X L, WANG L, CHI B, XU Y, ZAMAN S, QI K, LIU H, LIAO S, XIA B Y. Oxygen reduction electrocatalysts for hydrogen-/metal-air fuel cells[J]. ACS Catal,2018,8(10):8970−8975. doi: 10.1021/acscatal.8b02710
    [42] WANG W, XUE S, LI J, WANG F, KANG Y, LEI Z. Cerium carbide embedded in nitrogen-doped carbon as a highly active electrocatalyst for oxygen reduction reaction[J]. J Power Sources,2017,359:487−493. doi: 10.1016/j.jpowsour.2017.05.033
    [43] JIANG H, LIU Y, HAO J, WANG Y, LI W, LI J. Self-assembly synthesis of cobalt and nitrogen co-embedded trumpet flower-like porous carbons for catalytic oxygen reduction in alkaline and acidic media[J]. ACS Sustainable Chem Eng,2017,5(6):5341−5350.
    [44] PARK J H, LEE C H, JU J M, LEE J H, SEOL J, LEE S U, KIM J H. Bifunctional covalent organic framework-derived electrocatalysts with modulated p-band centers for rechargeable Zn-air batteries[J]. Adv Funct Mater,2021,31:2101727−2101737. doi: 10.1002/adfm.202101727
    [45] MARCO J F, GANCEDO J R, GRACIA M, GAUTIER J L, RIOS E, BERRY F J. Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods: An XRD, XANES, EXAFS, and XPS study[J]. J Solid State Chem,2000,153(1):74−81. doi: 10.1006/jssc.2000.8749
    [46] LIU K, HUANG X, WANG H, LI F, TANG Y, LI J, SHAO M. Co3O4-CeO2/C as a highly active electrocatalyst for oxygen reduction reaction in Al-air batteries[J] ACS Appl Mater Interfaces, 2016, 8(50): 34422-34430.
    [47] DENG W, JIANG H, CHEN C, YANG L, ZHANG Y, PENG S, WANG S, TAN Y, MA M, XIE Q. Co-, N-, and S-tridoped carbon derived from nitrogen- and sulfur-enriched polymer and cobalt salt for hydrogen evolution reaction[J]. ACS Appl Mater Interfaces,2016,8(21):13341−13347. doi: 10.1021/acsami.5b12666
    [48] ZHANG G, WANG B, LI L, YANG S. Phosphorus and yttrium codoped Co(OH)F nanoarray as highly efficient and bifunctional electrocatalysts for overall water splitting[J]. Small,2019,15:1904105−1904114. doi: 10.1002/smll.201904105
    [49] DEMARCONNAY L, COUTANCEAU C, LEGER J M. Electroreduction of dioxygen (ORR) in alkaline medium on Ag/C and Pt/C nanostructured catalysts-effect of the presence of methanol[J]. Electrochim Acta,2004,49(25):4513−4521. doi: 10.1016/j.electacta.2004.05.009
    [50] LARGEOT C, PORTET C, CHMIOLA J, TABERNA P-L, GOGOTSI Y, SIMON P. Relation between the ion size and pore size for an electric double-layer capacitor[J]. J Am Chem Soc,2008,130(9):2730−2731. doi: 10.1021/ja7106178
    [51] BOTELLO L E, FELIU J M, CLIMENT V. Activation energy of hydrogen adsorption on Pt(111) in alkaline media: An impedance spectroscopy study at variable temperatures[J]. ACS Appl Mater Interfaces,2020,12(38):42911−42917. doi: 10.1021/acsami.0c13158
    [52] HUANG J, GAO Y, LUO J, WANG S, LI C, CHEN S, ZHANG J. Editors’ choice-review-impedance response of porous electrodes: Theoretical framework, physical models and applications[J]. J Electrochem Soc,2020,167:166503−166553. doi: 10.1149/1945-7111/abc655
    [53] JI M B, WEI Z D, CHEN S G, XIA M R, ZHANG Q, QI X Q, HU X H, DING W, LI L. Electrochemical impedance spectroscopy evidence of dimethyl-silicon-oil enhancing O2 transport in a porous electrode[J]. Electrochim Acta,2011,56:4797−4802. doi: 10.1016/j.electacta.2011.03.001
    [54] SHINOZAKI K, ZACK J W, PYLYPENKO S, PIVOVAR B S, KOCHA S S. Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique: II. Influence of ink formulation, catalyst layer iniformity and thickness[J]. J Electrochem Soc,2015,162(12):F1384−F1396. doi: 10.1149/2.0551512jes
    [55] XUA S, KIMA Y, HIGGINSB D, YUSUFB M, JARAMILLOB T F, PRINA F B. Building upon the Koutecky-Levich equation for evaluation of next-generation oxygen reduction reaction catalysts[J]. Electrochim Acta,2017,255(20):99−108.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1117
  • HTML全文浏览量:  91
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-08
  • 修回日期:  2022-12-10
  • 录用日期:  2022-12-13
  • 网络出版日期:  2022-12-26
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回