留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多相催化CO2参与的炔烃C−H键羧基化反应研究进展

吴洁文 付慧宇 陈霄 梁长海

吴洁文, 付慧宇, 陈霄, 梁长海. 多相催化CO2参与的炔烃C−H键羧基化反应研究进展[J]. 燃料化学学报(中英文), 2023, 51(9): 1321-1337. doi: 10.19906/j.cnki.JFCT.2023002
引用本文: 吴洁文, 付慧宇, 陈霄, 梁长海. 多相催化CO2参与的炔烃C−H键羧基化反应研究进展[J]. 燃料化学学报(中英文), 2023, 51(9): 1321-1337. doi: 10.19906/j.cnki.JFCT.2023002
WU Jie-wen, FU Hui-yu, CHEN Xiao, LIANG Chang-hai. Advances in heterogeneous catalytic C−H bond carbonylation of alkynes with CO2[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1321-1337. doi: 10.19906/j.cnki.JFCT.2023002
Citation: WU Jie-wen, FU Hui-yu, CHEN Xiao, LIANG Chang-hai. Advances in heterogeneous catalytic C−H bond carbonylation of alkynes with CO2[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1321-1337. doi: 10.19906/j.cnki.JFCT.2023002

多相催化CO2参与的炔烃C−H键羧基化反应研究进展

doi: 10.19906/j.cnki.JFCT.2023002
基金项目: 国家自然科学基金(22272014),辽宁省“兴辽英才计划”(XLYC1908033),大连市重点领域创新团队支持计划(2019RT10)和中央高校基本科研业务费(DUT21TD103,DUT21LK02)资助
详细信息
    通讯作者:

    E-mail: xiaochen@dlut.edu.cn

    changhai@dlut.edu.cn

  • 中图分类号: TQ519

Advances in heterogeneous catalytic C−H bond carbonylation of alkynes with CO2

Funds: The project was supported by the National Natural Science Foundation of China (22272014), Liaoning Revitalization Talent Program (XLYC1908033), Dalian Innovation Team Support Plan in Key Areas (2019RT10) and the Fundamental Research Funds for the Central Universities (DUT21TD103, DUT21LK02)
  • 摘要: 炔烃C−H键与CO2羧基化生成丙炔酸类化合物符合原子经济理念,在有机、医药中间体合成领域具有重要研究意义。在“碳达峰、碳中和”的背景下,该反应也是一种实现CO2高值化利用的有效途径。目前,该反应体系主要通过均相催化进行,但由于多相催化体系易于分离、回收等优点,多相催化炔烃C−H键与CO2羧基化也逐步引起了关注。基于C−H键和CO2的活化机制,目前,围绕铸币金属催化剂开展了相关研究,通过铸币金属与载体协同作用,促进C−C键的耦合,实现丙炔酸类化合物的合成。本工作综述了炔烃C−H键与CO2羧基化的多相催化体系,对体系活化、羧基化反应机理、催化剂的结构特性进行了分析和总结,为后期开发高效羧基化多相催化剂及相关工艺提供了研究思路。
  • FIG. 2676.  FIG. 2676.

    FIG. 2676.  FIG. 2676.

    图  1  炔酸(酯)类化合物的应用[15]

    Figure  1  Application of alkynic acid(ester) compounds[15] (with permission from American Chemical Society)

    图  2  xAg@ZIF-8 CTACO2 反应机理[39]

    Figure  2  CTACO2 reaction mechanism on xAg@ZIF-8[39] (with permission from American Chemical Society)

    图  3  (a)Ag/KAPs-P、(b)Ag/KAPs-Py和(c)Ag*/KAPs-Py的合成路径[43]

    Figure  3  Synthetic route of (a) Ag/KAPs-P, (b) Ag/KAPs-Py, and (c) Ag*/KAPs-Py[43] aMagenta balls represent PPh3 functional groups; green balls represent Ag NPs. Solid line represents boundary of material particles. Dashed lines represent inner network of material particles (with permission from American Chemical Society)

    图  4  一锅法合成NOMP的反应途径,并经过简单“浸渍-还原”法制备Ag@NOMP[45]

    Figure  4  Illustration of the one-pot synthesis route of amine-incorporated OMP (NOMP), followed by a simple impregnation-reduction to give Ag@NOMP[45] (with permission from American Chemical Society)

    图  5  (a)不同催化剂下苯乙炔(EB)与CO2羧化反应生成苯丙炔酸(PA)的产率(b)Ag基催化剂中Ag粒子粒径与TON之间关系[45]

    Figure  5  (a) Comparisons of carboxylation of EB with CO2 to PA over various Ag-containing catalysts, (b) Plot for the correlation between the TON of PA produced on Ag catalysts and their particle sizes[45] Reaction conditions: EB (2.0 mmol), catalyst 0.1%, Cs2CO3 (3 mmol), CO2 (1.0 atm), 50 ℃, DMSO (15 mL), 12 h (with permission from American Chemical Society)

    图  6  核壳结构的UiO-66@UiO-67-BPY-Ag合成过程[36]

    Figure  6  Synthesis of core-shell UiO-66@UiO-67-BPY-Ag[36] (with permission from American Chemical Society)

    图  7  0.2Ag@SiO2催化炔烃C-H键与CO2羧基化反应的底物拓展[46]

    Figure  7  Substrate scope of 0.2Ag@SiO2 [46] Reaction conditions: terminal alkynes (4.0 mmol), catalyst (100 mg), CO2 (1.0 atm), 70 ℃, 20 h, DMF (5 mL), and Cs2CO3 7.2 mmol (with permission from Elsevier)

    图  8  CO2插入Cu-CN-8.0和CN表面上脱质子化的苯乙炔中间体的反应路径(插图:Cu-CN-8.0的优化结构)[61]

    Figure  8  Reaction profile for CO2 inserting into the deprotonated phenylacetylene intermediate on Cu-CN-8.0 and CN surfaces (inset: the optimized structure of Cu-CN-8.0)[61] (with permission from American Chemical Society)

    图  9  Cu(IN)-MOF催化端炔与CO2羧化反应的机理[65]

    Figure  9  Proposed reaction mechanism based on the Cu(IN)-MOF catalyzed carboxylation of terminal alkynes with CO2[65] (with permission from Elsevier)

    图  10  TpBpy结构示意图[68]

    Figure  10  Schematic representation of TpBpy[68] (with permission from Elsevier)

    图  11  (a) TpBpy-Cu-14催化剂的循环测试性能图;(b) 未使用的、使用过的和再生的催化剂的Cu 2p XPS谱图[68]

    Figure  11  (a) Recycling tests of the TpBpy-Cu-14, reaction condition: CO2(1 atm),1-Ethynylbenzene (1 mmol), catalyst (10 mg), Cs2CO3 (1.5 mmol), 6 h, 60 ℃, (b) Cu 2p XPS spectra of the fresh, used and regenerated catalysts[68] (with permission from Elsevier)

    图  12  ZIF-8@Au25@ZIF-67[tkn] 和 ZIF-8@Au25@ZIF-8[tkn]的合成路径[tkn = 壳层厚度][70]

    Figure  12  Synthetic Route for the Sandwich Structures of ZIF-8@Au25@ZIF-67[tkn] and ZIF-8@Au25@ZIF-8[tkn] [tkn = Thickness of Shell][70] (with permission from American Chemical Society)

    图  13  (a)不同催化剂催化苯乙炔羧化的反应活性 ;(b)三种不同催化剂的柱状图;(c)具有不同壳层厚度的ZIF-8@Au25@ZIF-67催化性能折线图;(d)不同催化剂的TPD-CO2[70]

    Figure  13  (a) Catalytic activity of various catalysts for the carboxylation of phenylacetylene. Reaction conditions: catalyst (1.12 × 10–4 mmol of Au25), alkyne (0.5 mmol), Cs2CO3 (0.24 mmol), CO2 (1.0 bar), 50 ℃, 12 h, (b) Column diagram of three different catalysts, (c) Broken line diagram of catalytic performance of ZIF-8@Au25@ZIF-67 with various shell thicknesses, (d) TPD-CO2 by various catalysts[70] (with permission from American Chemical Society)

    表  1  端炔与CO2直接羧化反应的Ag基催化体系

    Table  1  Heterogeneous catalytic system for direct carboxylation of terminal alkynes with carbon dioxide

    EntryCatalystAg loading /%Reaction conditionsYield /%TOF /hRef.
    t /℃p /atmt /hsolventbase
    10.5Ag@ZIF-89.6340120DMFCs2CO397[39]
    2Ag@MIL-1014.1650112DMFCs2CO396.5[40]
    3Ag@MIL-1003.3950115DMFCs2CO394.6[41]
    4Ag@UIO-667.1250115DMFCs2CO397.6[41]
    5AgNPs/Co-MOF4.4080114DMFCs2CO398[28]
    6Ag@FeNT6.960515DMSOCs2CO389[42]
    7Ag/KAPs-P0.16016DMSOCs2CO374[43]
    8AgNPs/melamine-based POPs2.550115DMFCs2CO3922.23[44]
    9Ag@NOMP1.550112DMSOCs2CO396[45]
    10Ag@PHNCT0.7350120DMSOCs2CO3985.48[46]
    11UiO-66@UiO-67-BPY-Ag4.3850124DMFCs2CO396[36]
    120.2Ag@SiO23.3470120DMFCs2CO392.55.94[47]
    13Ag/tert-GO(0.5)11.240124DMFCs2CO384.12.7[48]
    14Ag/graphene18.340124DMFCs2CO354.31.74[48]
    15Ag/graphite oxide16.940124DMFCs2CO331.70.42[48]
    16Ag/tert-GO-L15.440124DMFCs2CO343.30.63[48]
    17NPOP-160112DMSOCs2CO355.4[49]
    18Ag@NPOP-10.9360112DMSOCs2CO394.01125.1[49]
    19CTF-DCE-Ag0.450120DMFCs2CO390.2[50]
    20Ag0CTFN3.6960124DMSOCs2CO397[51]
    21Ag/PCNF-7007.225118DMSOCs2CO398[52]
    22Ag@p-CTF-2502.2670116DMSOCs2CO395[53]
    23Ag@TpBpy1.96016DMSOCs2CO393[35]
    24Ag/Schiff-SiO21.2060124DMSOCs2CO397[54]
    25Ag/Schiff-SiO21.2060124DMFCs2CO350[54]
    下载: 导出CSV

    表  2  端炔与CO2直接羧化反应的Cu基与其他多相催化体系

    Table  2  Heterogeneous catalytic system for direct carboxylation of terminal alkynes with carbon dioxide

    EntryCatalystReaction conditionsYield /%Ref.
    t /℃p /atmt /hsolventbase
    1Cu-CN-880110DMFCs2CO397[61]
    2Cu(IN)-MOFs8014DMFCs2CO380[65]
    3 copper acetate8014DMFCs2CO345[65]
    4isonicotinic acid8014DMFCs2CO30[65]
    5Cu-MOF100316DMFCs2CO388[60]
    6$ {\left[{\rm{Cu}}{\left({{\rm{Fbt}}_x}\right)}_{2}{\left({{\rm{NO}}}_{3}\right)}_{2}\right]}_{n} $100316DMFCs2CO385[66]
    7CZU-7100316DMFCs2CO387[67]
    8TpBpy60124DMSOCs2CO379[68]
    9TpBpy-Cu-1460124DMSOCs2CO395[68]
    10Au@Ag24501012DMFCs2CO392[69]
    11ZIF-8@Au25 @ZIF-67[12]50112DMSOCs2CO399[70]
    下载: 导出CSV

    表  3  端炔与CO2的在卤代烷(RX)作用下的羧化反应

    Table  3  Carboxylation of terminal alkyne with carbon dioxide in the presence of haloalkanes

    EntryCatalystReaction conditionsYield
    /%
    Ref
    t /℃p /atmt /hsolventbaseRX
    1Ag(3.12%)/M-CeO2(120)60524DMFCs2CO3cinnamyl chloride91[27]
    2Ag@16016DMFCs2CO3nBuI91[76]
    3Cu nps/Al2O360216DMFCs2CO3BuBr92[63]
    4CuCl2@Poly-GLY(1-vim)3(OMs)3404012DMacCs2CO3n-BuI96[64]
    5CuBr@C8012ECCs2CO3nBuI78[15]
    下载: 导出CSV

    表  4  水在无金属催化时对于反应的影响

    Table  4  Effect of water on the catalyzed and catalyst-free reaction

    EntryNotest /℃Time /hYield /%
    1anhydrous804>99
    20.1 equiv H2O80480
    30.2 equiv H2O80443
    41 equiv H2O804<1
    Reaction conditions: phenylacetylene (0.28 mmol), CO2(1 atm), DMSO (1 mL), product trapped with butyl iodide (1.1 equiv.), yields determined by GC using n-decane as internal standard
    下载: 导出CSV
  • [1] GU H, CHEN Y. A new damping model to forecasting carbon dioxide emission regional difference[Z]. SSRN. 2022.
    [2] XIN D L, AHMAD M, KHATTAK S I. Impact of innovation in climate change mitigation technologies related to chemical industry on carbon dioxide emissions in the United States[J]. J Clean Prod,2022,379:134746. doi: 10.1016/j.jclepro.2022.134746
    [3] International Energy Agency. Global Energy Review: CO2 Emissions in 2021 Global emissions rebound sharply to highest ever level[R]. IEA, 2021.
    [4] DECONTO R M, POLLARD D. Contribution of Antarctica to past and future sea-level rise[J]. Nature,2016,531(7596):591−597. doi: 10.1038/nature17145
    [5] TAO H, QIAN X, ZHOU Y, CHENG H. Research progress of clay minerals in carbon dioxide capture[J]. Renewable Sustainable Energy Rev,2022,164:112536.
    [6] TRAN N, TA Q T H, NGUYEN P K T. Transformation of carbon dioxide, a greenhouse gas, into useful components and reducing global warming: A comprehensive review[J]. Int J Energy Res,2022,46(13):17926−17951. doi: 10.1002/er.8479
    [7] ZICK M E, PUGH S M, LEE J-H, MILNER P J. Carbon dioxide capture at nucleophilic hydroxide sites in oxidation-resistant cyclodextrin-based metal-organic frameworks[J]. Angew Chem Int Ed,2022,61(30):e202206718.
    [8] KUNDU N, SARKAR S. Porous organic frameworks for carbon dioxide capture and storage[J]. J Environ Chem Eng,2021,9(2):105090. doi: 10.1016/j.jece.2021.105090
    [9] DENG Q, LING X, ZHANG K, TAN L, QI G, ZHANG J. CCS and CCUS technologies: Giving the oil and gas industry a green future[J]. Front Energy Res,2022,10:919330. doi: 10.3389/fenrg.2022.919330
    [10] 何良年等编制. 二氧化碳化学[M]. 北京: 科学出版社, 2013.

    HE Liang-nian et al. Carbon Dioxide Chemistry[M]. BeiJjing: China Social Sciences Press, 2013.
    [11] 何良年. 面向可持续发展的二氧化碳化学[J]. 科学通报,2020,65(31):3347−3348. doi: 10.1360/TB-2020-1119

    HE Liang-nian. Carbon dioxide chemistry towards sustainable development[J]. Chin Sci Bull,2020,65(31):3347−3348. doi: 10.1360/TB-2020-1119
    [12] SAKAKURA T, CHOI J C, YASUDA H. Transformation of carbon dioxide[J]. Chem Rev,2007,107(6):2365−2387.
    [13] 张志智, 周明东, 孙京, 方向晨. 二氧化碳羧基化利用探讨[J]. 化工进展,2019,38(1):229−243. doi: 10.16085/j.issn.1000-6613.2018-1108

    ZHANG Zhi-zhi, ZHOU Ming-dong, SUN Jing, FANG Xiang-chen. Carboxylative utilization of carbon dioxide[J]. Chem Ind Eng Prog,2019,38(1):229−243. doi: 10.16085/j.issn.1000-6613.2018-1108
    [14] ZHANG W Z. Silver-catalyzed carboxylation reaction using carbon dioxide as carboxylative reagent[C]//LU X B. Carbon Dioxide and Organometallics, 2016: 73-99.
    [15] YU B, XIE J-N, ZHONG C-L, LI W, HE L-N. Copper(I)@carbon-catalyzed carboxylation of terminal alkynes with CO2 at atmospheric pressure[J]. ACS Catal,2015,5(7):3940−3944. doi: 10.1021/acscatal.5b00764
    [16] PARASAR D, PONDURU T T, NOONIKARA-POYIL A, JAYARATNA N B, DIAS H V R. Acetylene and terminal alkyne complexes of copper(I) supported by fluorinated pyrazolates: Syntheses, structures, and transformations[J]. Dalton Trans,2019,48(42):15782−15794. doi: 10.1039/C9DT03350E
    [17] YU D, ZHANG Y. Copper- and copper-N-heterocyclic carbene-catalyzed C-H activating carboxylation of terminal alkynes with CO2 at ambient conditions[J]. PNAS,2010,107(47):20184−20189. doi: 10.1073/pnas.1010962107
    [18] ZHANG W-Z, LI W-J, ZHANG X, ZHOU H, LU X-B. Cu(I)-catalyzed carboxylative coupling of terminal alkynes, allylic chlorides, and CO2[J]. Org Lett,2010,12(21):4748−4751. doi: 10.1021/ol102172v
    [19] INAMOTO K, ASANO N, KOBAYASHI K, YONEMOTO M, KONDO Y. A copper-based catalytic system for carboxylation of terminal alkynes: Synthesis of alkyl 2-alkynoates[J]. Org Biomol Chem,2012,10(8):1514−1516. doi: 10.1039/c2ob06884b
    [20] FUKUE Y, OI S, INOUE Y. Direct synthesis of alkyl 2-alkynoates from alk-1-ynes, CO2, and bromoalkanes catalysed by copper(I) or silver(I) salt[J]. J Chem Soc, Chem Commun,1994,(18):2091−2091. doi: 10.1039/c39940002091
    [21] ZHANG X, ZHANG W-Z, SHI L-L, ZHU C, JIANG J-L, LU X-B. Ligand-free Ag(I)-catalyzed carboxylative coupling of terminal alkynes, chloride compounds, and CO2[J]. Tetrahedron,2012,68(44):9085−9089. doi: 10.1016/j.tet.2012.08.053
    [22] WANG W-H, FENG X, SUI K, FANG D, BAO M. Transition metal-free carboxylation of terminal alkynes with carbon dioxide through dual activation: Synthesis of propiolic acids[J]. J CO2 Util,2019,32:140−145. doi: 10.1016/j.jcou.2019.04.011
    [23] PAPASTAVROU A T, PAUZE M, GÓMEZ-BENGOA E, VOUGIOUKALAKIS G C. Unprecedented multicomponent organocatalytic synthesis of propargylic esters via CO2 activation[J]. ChemCatChem,2019,11(21):5379−5386. doi: 10.1002/cctc.201900207
    [24] PIEBER B, GLASNOV T, KAPPE C O. Flash carboxylation: Fast lithiation-carboxylation sequence at room temperature in continuous flow[J]. RSC Adv,2014,4(26):13430−13433. doi: 10.1039/c4ra01442a
    [25] TATE B K, JORDAN A J, BACSA J, SADIGHI J P. Stable mono- and dinuclear organosilver complexes[J]. Organometallics,2016,36(5):964−974.
    [26] SHI J-B, BU Q, LIU B-Y, DAI B, LIU N. Organocatalytic strategy for the fixation of CO2 via carboxylation of terminal alkynes[J]. J Org Chem,2021,86(2):1850−1860. doi: 10.1021/acs.joc.0c02673
    [27] ZHANG X, WANG D, JING M, LIU J, ZHAO Z, XU G, SONG W, WEI Y, SUN Y. Ordered mesoporous CeO2‐supported Ag as an effective catalyst for carboxylative coupling reaction using CO2[J]. ChemCatChem,2019,11(8):2089−2098. doi: 10.1002/cctc.201900039
    [28] MOLLA R A, GHOSH K, BANERJEE B, LQUBAL M A, KUNDU S K, ISLAM S M, BHAUMIK A. Silver nanoparticles embedded over porous metal organic frameworks for carbon dioxide fixation via carboxylation of terminal alkynes at ambient pressure[J]. J Colloid Interface Sci,2016,477:220−229. doi: 10.1016/j.jcis.2016.05.037
    [29] MANJOLINHO F, ARNDT M, GOOSSEN K, GOOSSEN L J. Catalytic C–H carboxylation of terminal alkynes with carbon dioxide[J]. ACS Catal,2012,2(9):2014−2021. doi: 10.1021/cs300448v
    [30] 陈凯宏, 李红茹, 何良年. CO2活化和转化策略研究进展[J]. 有机化学,2020,40(8):2195−2207. doi: 10.6023/cjoc202004030

    CHEN Kai-hong, LI Hong-ru, HE Liang-nian. Advance and prospective on CO2 activation and transformation strategy[J]. Chin J Inorg Chem,2020,40(8):2195−2207. doi: 10.6023/cjoc202004030
    [31] JI G, ZHAO Y, LIU Z. Design of porous organic polymer catalysts for transformation of carbon dioxide[J]. Green Chem,2022,3(2):96−110.
    [32] YU X, YANG Z, ZHANG F, LIU Z, YANG P, ZHANG H, YU B, ZHAO Y, LIU Z. A rose bengal-functionalized porous organic polymer for carboxylative cyclization of propargyl alcohols with CO2[J]. Chem Commum,2019,55(83):12475−12478.
    [33] YANG Z Z, ZHAO Y, ZHANG H, YU B, MA Z, JI G, LIU Z. Fluorinated microporous organic polymers: design and applications in CO2 adsorption and conversion[J]. Chem Commum,2014,50(90):13910−13913.
    [34] 邢其毅, 裴伟伟, 徐瑞秋, 裴坚. 基础有机化学 上[M]. 4版. 北京: 北京大学出版社, 2016.

    XING Qi-yi, PEI Wei-wei, XU Rui-qiu, PEI Jian. Basic Organic Chemisty (I) [M]. 4th ed. Beijing: Peking University Press, 2016.
    [35] ZHANG L, BU R, LIU X-Y, MU P-F, GAO E-N. Schiff-base molecules and COFs as metal-free catalysts or silver supports for carboxylation of alkynes with CO2[J]. Green Chem,2021,23(19):7620−7629. doi: 10.1039/D1GC02118D
    [36] GONG Y, YUAN Y, CHEN C, ZHANG P, WANG J, ZHUIYKOV S, CHAEMCHUEN S, VERPOORT F. Core-shell metal-organic frameworks and metal functionalization to access highest efficiency in catalytic carboxylation[J]. J Catal,2019,371:106−115. doi: 10.1016/j.jcat.2019.01.036
    [37] JOVER J, MASERAS F. Computational characterization of the mechanism for coinage-metal-catalyzed carboxylation of terminal alkynes[J]. J Org Chem,2014,79(24):11981−11987. doi: 10.1021/jo501837p
    [38] YUAN Y, CHEN C, ZENG C, MOUSAVI B, CHAEMCHUEN S, VERPOORT F. Carboxylation of terminal alkynes with carbon dioxide catalyzed by an in situ Ag2O/N-heterocyclic carbene precursor system[J]. ChemCatChem,2017,9(5):882−887. doi: 10.1002/cctc.201601379
    [39] SHI J, ZHANG L, SUN N, HU D, SHEN Q, MAO F, GAO Q, WEI W. Facile and rapid preparation of Ag@ZIF-8 for carboxylation of terminal alkynes with CO2 in mild conditions[J]. ACS Appl Mater Inter,2019,11(32):28858−28867. doi: 10.1021/acsami.9b07991
    [40] LIU X H, MA J G, NIU Z, YANG G-M, CHENG P. An efficient nanoscale heterogeneous catalyst for the capture and conversion of carbon dioxide at ambient pressure[J]. Angew Chem Int Ed,2015,54(3):988−991. doi: 10.1002/anie.201409103
    [41] ZHU N N, LIU X H, LI T, MA J-G, CHENG P, YANG G-M. Composite system of Ag nanoparticles and metal-organic frameworks for the capture and conversion of carbon dioxide under mild conditions[J]. Inorg Chem,2017,56(6):3414−3420. doi: 10.1021/acs.inorgchem.6b02855
    [42] MODAK A, BHANJA P, BHAUMIK A. Microporous nanotubes and nanospheres with iron-catechol sites: Efficient lewis acid catalyst and support for Ag nanoparticles in CO2 fixation reaction[J]. Chem Eur J,2018,24(53):14189−14197. doi: 10.1002/chem.201802319
    [43] WU Z, LIU Q, YANG X, YE X, DUAN H, ZHANG J, ZHAO B, HUANG Y. Knitting aryl network polymers-incorporated Ag nanoparticles: A mild and efficient catalyst for the fixation of CO2 as carboxylic acid[J]. ACS Sustainable Chem Eng,2017,5(11):9634−9639. doi: 10.1021/acssuschemeng.7b02678
    [44] ZHANG X, LI Q, FAN M, XU G, LIU X, GONG H, DENG J, MENG S, WANG C, WANG Z. Green carboxylation of CO2 triggered by well-dispersed silver nanoparticles immobilized by melamine-based porous organic polymers[J]. J CO2 Util,2022,64:102179. doi: 10.1016/j.jcou.2022.102179
    [45] ZHANG W, MEI Y, HUANG X, WU P, WU H, HE M. Size-controlled growth of silver nanoparticles onto functionalized ordered mesoporous polymers for efficient CO2 upgrading[J]. ACS Appl Mater Inter,2019,11(47):44241−44248. doi: 10.1021/acsami.9b14927
    [46] LAN X, LI Q, CAO L, DU C, RICARDEZ-SANDOVAL L, BAI G. Rebuilding supramolecular aggregates to porous hollow N-doped carbon tube inlaid with ultrasmall Ag nanoparticles: A highly efficient catalyst for CO2 conversion[J]. Appl Surf Sci,2020,508:145220.
    [47] LI M, ZHANG L, ZHANG Z, SHI J, LIU Y, CHEN J, SUN N, WEI W. SiO2-Coated Ag nanoparticles for conversion of terminal alkynes to propolic acids via CO2 insertion[J]. ACS Appl Nano Mater,2021,4(7):7107−7115. doi: 10.1021/acsanm.1c01101
    [48] ZHANG X, LIU H, SHI Y, HAN J, YANG Z, ZHANG Y, LONG C, GUO J, ZHU Y, QIU X. Boosting CO2 conversion with terminal alkynes by molecular architecture of graphene oxide-supported Ag nanoparticles[J]. Matter,2020,3(2):558−570. doi: 10.1016/j.matt.2020.07.022
    [49] WU J, MA S, CUI J, YANG Z, ZHANG J. Nitrogen-rich porous organic polymers with supported Ag nanoparticles for efficient CO2 conversion[J]. Nanomaterials,2022,12(18):3088. doi: 10.3390/nano12183088
    [50] DANG Q Q, LIU C Y, WANG X M, ZHANG X-M. Novel covalent triazine framework for high-performance CO2 capture and alkyne carboxylation reaction[J]. ACS Appl Mater Interfaces,2018,10(33):27972−27978. doi: 10.1021/acsami.8b08964
    [51] LAN X, DU C, CAO L, SHE T, LI Y, BAI G. Ultrafine Ag nanoparticles encapsulated by covalent triazine framework nanosheets for CO2 conversion[J]. ACS Appl Mater Interfaces,2018,10(45):38953−38962. doi: 10.1021/acsami.8b14743
    [52] LAN X, LI Y, DU C, CAO L, DU C, SHE T, LI Q, BAI G. Porous carbon nitride frameworks derived from covalent triazine framework anchored Ag nanoparticles for catalytic CO2 conversion[J]. Chem Eur J,2019,25(36):8560−8569. doi: 10.1002/chem.201900563
    [53] LIU J, ZHANG X, WEN B, LI Y, WU J, WANG Z, WU T, ZHAO R, YANG S. Pre-carbonized nitrogen-rich polytriazines for the controlled growth of silver nanoparticles: catalysts for enhanced CO2 chemical conversion at atmospheric pressure[J]. Catal Sci Technol,2021,11(9):3119−3127. doi: 10.1039/D0CY02473B
    [54] WU Z, SUN L, LIU Q, YANG X, YE X, HU Y, HUANG Y. A schiff base-modified silver catalyst for efficient fixation of CO2 as carboxylic acid at ambient pressure[J]. Green Chem,2017,19(9):2080−2085. doi: 10.1039/C7GC00923B
    [55] ZHANG W, WANG Q, WU H, WU P, HE M. A highly ordered mesoporous polymer supported imidazolium-based ionic liquid: An efficient catalyst for cycloaddition of CO2 with epoxides to produce cyclic carbonates[J]. Green Chem,2014,16(11):4767−4774. doi: 10.1039/C4GC01245C
    [56] MENG Y, GU D, ZHANG F, SHI Y, YANG H, LI Z, YU C, TU B, ZHAO, D. Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation[J]. Angew Chem Int Ed,2005,44(43):7053−7059. doi: 10.1002/anie.200501561
    [57] LIU X, JIN R, CHEN D, CHEN L, XING S, XING H, XING Y, SU Z. In situ assembly of monodispersed Ag nanoparticles in the channels of ordered mesopolymers as a highly active and reusable hydrogenation catalyst[J]. J Mater Chem A,2015,3(8):4307−4313. doi: 10.1039/C4TA06049K
    [58] WANG H, GU X-K, ZHENG X, PAN H, ZHU J, CHEN S, CAO L, LI W-X, LU J. Disentangling the size-dependent geometric and electronic effects of palladium nanocatalysts beyond selectivity[J]. Sci Adv,2019,5(1):eaat6413. doi: 10.1126/sciadv.aat6413
    [59] QI S-C, WU J-K, LU J, YU G-X, ZHU R-R, LIU Y, LIU X-Q, SUN L-B. Underlying mechanism of CO2 adsorption onto conjugated azacyclo-copolymers: N-doped adsorbents capture CO2 chiefly through acid-base interaction?[J]. J Mater Chem A,2019,7(30):17842−17853. doi: 10.1039/C9TA04785A
    [60] WANG W-J, SUN Z-H, CHEN S-C, QIAN J-F, HE M-Y, CHEN Q. Microwave-assisted fabrication of a mixed-ligand [Cu4( $ \mathrm{\mu } $3-OH)2]-cluster-based metalorganic framework with coordinatively unsaturated metal sites for carboxylation of terminal alkynes with carbon dioxide[J]. Appl Organomet Chem,2021,35(8):e6288.
    [61] YANG P, ZUO S, ZHANG F, YU B, GUO S, YU X, ZHAO Y, ZHANG J, LIU Z. Carbon nitride-based single-atom Cu catalysts for highly efficient carboxylation of alkynes with atmospheric CO2[J]. Ind Eng Chem Res,2020,59(16):7327−7335. doi: 10.1021/acs.iecr.0c00547
    [62] KESAVAN V, BALARAMAN K. Efficient copper(II) acetate catalyzed homo- and heterocoupling of terminal alkynes at ambient conditions[J]. Synthesis,2010,2010(20):3461−3466. doi: 10.1055/s-0030-1258199
    [63] BONDARENKO G N, DVURECHENSKAYA E G, MAGOMMEDOV E S, BELETSKAYA I P. Copper(0) nanoparticles supported on Al2O3 as catalyst for carboxylation of terminal alkynes[J]. Catal Lett,2017,147(10):2570−2580. doi: 10.1007/s10562-017-2127-0
    [64] CHAUGULE A A, TAMBOLI A H, KIM H. CuCl2@Poly-IL catalyzed carboxylation of terminal alkynes through CO2 utilization[J]. Chem Eng J,2017,326:1009−1019. doi: 10.1016/j.cej.2017.06.011
    [65] SHI G, XU W, WANG J, YUAN Y, CHAEMCHUEN S, VERPOORT F. A Cu-based MOF for the effective carboxylation of terminal alkynes with CO2 under mild conditions[J]. J CO2 Util,2020,39:101177. doi: 10.1016/j.jcou.2020.101177
    [66] WANG X-Y, LU H, HUANG K-L, ZHANG C-P, TIAN F, HE M-Y, CHEN S-C, CHEN Q. Synthesis, characterization, ion-exchange, and catalytic properties of three isostructural copper(II) coordination polymers with a flexible bis(triazole) ligand[J]. J Solid State Chem,2022,312:123201. doi: 10.1016/j.jssc.2022.123201
    [67] SUN Z-H, WANG X-Y, HUANG K-L, HE M-Y, CHEN S-C. Heterogeneous catalytic carboxylation of terminal alkynes with CO2 over a copper(II)-based metal-organic framework catalyst[J]. Catal Commun,2022,169:106472. doi: 10.1016/j.catcom.2022.106472
    [68] BU R, ZHANG L, GAO L-L, SUN W-J, YANG S-L, GAO E-Q. Copper(I)-modified covalent organic framework for CO2 insertion to terminal alkynes[J]. Mol Catal,2021,499:111319. doi: 10.1016/j.mcat.2020.111319
    [69] LIU Y, CHAI X, CAI X, CHEN M, JIN R, DING W, ZHU Y. Central doping of a foreign atom into the silver cluster for catalytic conversion of CO2 toward C-C bond formation[J]. Angew Chem Int Ed,2018,57(31):9775−9779. doi: 10.1002/anie.201805319
    [70] YUN Y, SHENG H, BAO K, XU L, ZHANG Y, ASTRUC D, ZHU M. Design and remarkable efficiency of the robust sandwich cluster composite nanocatalysts ZIF-8@Au25@ZIF-67[J]. J Am Chem Soc,2020,142(9):4126−4130. doi: 10.1021/jacs.0c00378
    [71] VELAZQUEZ HD, WU Z-X, VANDICHEL M, VERPOORT F. Inserting CO2 into terminal alkynes via Bis-(NHC)-metal complexes[J]. Catal Letters,2016,463−471.
    [72] LI S, SUN J, ZHANG Z, XIE R, FANG X, ZHOU M. Carboxylation of terminal alkynes with CO2 using novel silver N-heterocyclic carbene complexes[J]. Dalton Trans,2016,45(26):10577−10584. doi: 10.1039/C6DT01746K
    [73] YU B, DIAO Z-F, GUO C-X, ZHONG C-L, HE L-N, ZHAO Y-N, SONG Q-W, LIU A-H, WANG J-Q. Carboxylation of terminal alkynes at ambient CO2 pressure in ethylene carbonate[J]. Green Chem,2013,15(9):2401−2407. doi: 10.1039/c3gc40896e
    [74] SHI X-L, SUN B, HU Q, LIU K, LI P, LIU B. A novel fiber-supported cooperative catalyst for the carboxylation of terminal alkynes through CO2 utilization[J]. Chem Eng J,2020,395:125084. doi: 10.1016/j.cej.2020.125084
    [75] 李民康, 张莉娜, 张阿方, 赵永慧, 孙楠楠, 魏伟. CO2插入C—H(sp)键制备丙炔酸衍生物的研究进展[J]. 化工进展,2021,40(6):3421−3433.

    LI Min-kang, ZHANG Li-na, ZHANG A-fang, ZHAO Yong-hui, SUN Nan-nan, WEI Wei. Research advances on the carboxylation of terminal alkynes with CO2[J]. Chem Ind Eng Prog,2021,40(6):3421−3433.
    [76] DUTTA G, JANA A K, SINGH D K, ESWARAMOORTHY M, NATARAJAN S. Encapsulation of silver nanoparticles in an amine-functionalized porphyrin metal-organic framework and its use as a heterogeneous catalyst for CO2 fixation under atmospheric pressure[J]. Chem Asian J,2018,13(18):2677−2684. doi: 10.1002/asia.201800815
    [77] TONIOLO D, BOBBINK F D, DYSON P J, MAZZANTI M. Anhydrous conditions enable the catalyst‐free carboxylation of aromatic alkynes with CO2 under mild conditions[J]. Helv Chim Acta,2020,103(2):1−6.
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  573
  • HTML全文浏览量:  239
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-20
  • 修回日期:  2022-12-24
  • 录用日期:  2022-12-24
  • 网络出版日期:  2023-01-10
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回