A study on the effect of heating rate during cellulose and polyethylene co-pyrolysis
-
摘要: 在管式炉反应器中,对纤维素(CE)与高密度聚乙烯(HDPE)进行了慢速共热解和快速共热解的研究,考察了升温速率和混合比例对CE与HDPE共热解的影响。结果表明,CE与HDPE慢速共热解可以提高液态产率,并降低气态产率和焦炭产率。在CE与HDPE为1∶3时,慢速共热解相互作用最强烈,此时液态产率为95.4%,比计算值相比,增加了9.8%;而快速共热解降低液态产率,同时提高气态产率。在CE与HDPE为3∶1时,快速共热解相互作用最强烈,此时液态产率与气态产率分别为49.3%和42.8%,与计算值相比,液态产率降低了14.5%,而气态产率提高了14.1%。热解油分析结果表明,CE与HDPE共热解存在协同效应,CE与HDPE共热解有利于降低液态产物的含氧量,提高焦油的质量。Abstract: Slow co-pyrolysis and fast co-pyrolysis of cellulose (CE) with high density polyethylene (HDPE) were investigated in a tube furnace reactor. The effects of heating rate and mixing ratio on the co-pyrolysis of CE and HDPE were investigated. The results show that slow co-pyrolysis of CE and HDPE can boost liquid yields while lowering gas and char yields. When the ratio of CE to HDPE is 1∶3, the slow co-pyrolysis interaction is strongest. At this ratio, the liquid yield was 95.4%. Compared with the calculated yield, the liquid yield is increased by 9.8%. Rapid co-pyrolysis reduce the liquid yield, but increase the gas yield. When the ratio of CE to HDPE is 3∶1, the rapid co-pyrolysis interaction is strongest. The liquid and gas yields were 49.3% and 42.8%, respectively. Compared with the calculated yields, the liquid yield is reduced by 14.5% but the gas yield is increased by 14.1%. These results verified that the Synergistic effect existed during co-pyrolysis of CE and HDPE under the experimental conditions. Co-pyrolysis of CE and HDPE favors reducing the oxygen content of the liquid product and improving the quality of the liquid product.
-
Key words:
- co-pyrolysis /
- cellulose /
- polyethylene /
- interaction
-
图 4 CE/HDPE不同混合比例气态产物变化趋势(a)慢速热解主要无机气体(b)快速热解主要无机气体(c)慢速热解主要有机气体(d)快速热解主要有机气体
Figure 4 Changes of gas products of CE and HDPE with different blending ratios (a) Inorganic gases of slow pyrolysis (b) Inorganic gases of fast pyrolysis (c) Organic gases of slow pyrolysis,and(d) Organic gases of fast pyrolysis
表 1 CE与HDPE样品的工业分析与元素分析
Table 1 Proximate and ultimate analysis of CE and HDPE
Feedstock Proximate analysis (wt%) Ultimate analysis (wt%) V FC C H O CE 90.86% 9.14% 44.44% 6.17% 49.39% HDPE 100% 0 85.71% 14.29% 0% -
[1] YANG J X, RIZKIANA J, WIDAYATNO W B, KARNJANAKOM S, KAEWPANHA M, HAO X G, ABUDULA A, GUAN G Q. Fast co-pyrolysis of low density polyethylene and biomass residue for oil production[J]. Energy Conversion and Management,2016,120:422−429. doi: 10.1016/j.enconman.2016.05.008 [2] HASSAN H, LIM J K, HAMEED B H. Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil[J]. Bioresour Technol,2016,221:645−655. doi: 10.1016/j.biortech.2016.09.026 [3] HOORNWEG D, BHADA-TATA P, KENNEDY C. Waste production must peak this century[J]. Nature,2013,502(7473):615−617. doi: 10.1038/502615a [4] YUAN H R, FAN H G, SHAN R, HE M Y, GU J, CHEN Y. Study of synergistic effects during co-pyrolysis of cellulose and high-density polyethylene at various ratios[J]. Energy Conversion and Management,2018,157:517−526. doi: 10.1016/j.enconman.2017.12.038 [5] ONAL E, UZUN B B, PUTUN A E. An experimental study on bio-oil production from co-pyrolysis with potato skin and high-density polyethylene (HDPE)[J]. Fuel Process Technol,2012,104:365−370. doi: 10.1016/j.fuproc.2012.06.010 [6] WANG Z W, BURRA K G, LEI T Z, GUPTA A K. Co-pyrolysis of waste plastic and solid biomass for synergistic production of biofuels and chemicals-A review[J]. Prog Energy Combust Sci,2021,84:51. [7] XUE Y, ZHOU S, BROWN R C, KELKAR A, BAI X L. Fast pyrolysis of biomass and waste plastic in a fluidized bed reactor[J]. Fuel,2015,156:40−46. doi: 10.1016/j.fuel.2015.04.033 [8] OZSIN G, PUTUN A E. A comparative study on co-pyrolysis of lignocellulosic biomass with polyethylene terephthalate, polystyrene, and polyvinyl chloride: Synergistic effects and product characteristics[J]. J Clean Prod,2018,205:1127−1138. doi: 10.1016/j.jclepro.2018.09.134 [9] DHYANI, VAIBHAV, BHASKAR, THALLADA. A comprehensive review on the pyrolysis of lignocellulosic biomass [J]. Renewable Energy, 2018. [10] OENAL E, UZUN B B, PUETUEN A E. Bio-oil production via co-pyrolysis of almond shell as biomass and high density polyethylene[J]. Energy Conversion and Management,2014,78(FEB.):704−710. [11] FAN L L, CHEN P, ZHANG Y N, LIU S Y, LIU Y H, WANG Y P, DAI L L, RUAN R. Fast microwave-assisted catalytic co-pyrolysis of lignin and low-density polyethylene with HZSM-5 and MgO for improved bio-oil yield and quality[J]. Bioresour Technol,2017,225:199−205. doi: 10.1016/j.biortech.2016.11.072 [12] UZOEJINWA B B, HE X H, WANG S, ABOMOHRA A, HU Y M, WANG Q. Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: Recent progress and future directions elsewhere worldwide[J]. Energy Conversion and Management,2018,163:468−492. doi: 10.1016/j.enconman.2018.02.004 [13] KIM S, TSANG Y F, KWON E E, LIN K Y A, LEE J. Recently developed methods to enhance stability of heterogeneous catalysts for conversion of biomass-derived feedstocks[J]. Korean J Chem Eng,2019,36(1):1−11. doi: 10.1007/s11814-018-0174-x [14] MISKOLCZI N, BARTHA L, DEAK G, JOVER B. Thermal degradation of municipal plastic waste for production of fuel-like hydrocarbons[J]. Polym Degrad Stabil,2004,86(2):357−366. doi: 10.1016/j.polymdegradstab.2004.04.025 [15] ZHENG Y W, TAO L, YANG X Q, HUANG Y B, LIU C, ZHENG Z F. Study of the thermal behavior, kinetics, and product characterization of biomass and low-density polyethylene co-pyrolysis by thermogravimetric analysis and pyrolysis-GC/MS[J]. J Anal Appl Pyrolysis,2018,133:185−197. doi: 10.1016/j.jaap.2018.04.001 [16] TANG F, JIN Y Q, CHI Y, ZHU Z X, CAI J, LI Z R, LI M J. Effect of steam on the homogeneous conversion of tar contained from the co-pyrolysis of biomass and plastics [J]. Environ Sci Pollut Res: 11. [17] XU D J, HUANG G, GUO L, CHEN Y J, DING C, LIU C C. Enhancement of catalytic combustion and thermolysis for treating polyethylene plastic waste[J]. Adv Compos Hybrid Mater,2022,5(1):113−129. doi: 10.1007/s42114-021-00317-x [18] SINGH S, PATIL T, TEKADE S P, GAWANDE M B, SAWARKAR A N. Studies on individual pyrolysis and co-pyrolysis of corn cob and polyethylene: Thermal degradation behavior, possible synergism, kinetics, and thermodynamic analysis[J]. Sci Total Environ,2021,783:14. [19] GUNASEE S D, DANON B, GORGENS J F, MOHEE R. Co-pyrolysis of LDPE and cellulose: Synergies during devolatilization and condensation[J]. J Anal Appl Pyrolysis,2017,126:307−314. doi: 10.1016/j.jaap.2017.05.016 [20] HASSAN H, HAMEED B H, LIM J K. Co-pyrolysis of sugarcane bagasse and waste high-density polyethylene: Synergistic effect and product distributions[J]. Energy,2020,191:11. [21] ANSARI K B, HASSAN S Z, BHOI R, AHMAD E. Co-pyrolysis of biomass and plastic wastes: A review on reactants synergy, catalyst impact, process parameter, hydrocarbon fuel potential, COVID-19[J]. J Environ Chem Eng,2021,9(6):14. [22] SURIAPPARAO D V, BORUAH B, RAJA D, VINU R. Microwave assisted co-pyrolysis of biomasses with polypropylene and polystyrene for high quality bio-oil production[J]. Fuel Process Technol,2018,175:64−75. doi: 10.1016/j.fuproc.2018.02.019 [23] LIANG F, WANG R J, XIANG H Z, YANG X M, ZHANG T, HU W H, MI B B, LIU Z J. Investigating pyrolysis characteristics of moso bamboo through TG-FTIR and Py-GC/MS[J]. Bioresour Technol,2018,256:53−60. doi: 10.1016/j.biortech.2018.01.140 [24] ASMADI M, KAWAMOTO H, SAKA S. Gas- and solid/liquid-phase reactions during pyrolysis of softwood and hardwood lignins[J]. J Anal Appl Pyrolysis,2011,92(2):417−425. doi: 10.1016/j.jaap.2011.08.003 [25] ZHOU L, WANG Y, HUANG Q, CAI J. Thermogravimetric characteristics and kinetic of plastic and biomass blends co-pyrolysis[J]. Fuel Process Technol,2006,87(11):963−969. doi: 10.1016/j.fuproc.2006.07.002 [26] LU P, HUANG Q X, BOURTSALAS A C, CHI Y, YAN J H. Synergistic effects on char and oil produced by the co-pyrolysis of pine wood, polyethylene and polyvinyl chloride[J]. Fuel,2018,230:359−367. doi: 10.1016/j.fuel.2018.05.072 [27] LIANG, WANG, RJ, XIANG, HZ, YANG, XM, ZHANG, WH, BB. Investigating pyrolysis characteristics of moso bamboo through TG-FTIR and Py-GC/MS [J]. BIORESOURCE TECHNOL, 2018. [28] BURRA K G, GUPTA A K. Synergistic effects in steam gasification of combined biomass and plastic waste mixtures[J]. Applied Energy,2018,211:230−236. doi: 10.1016/j.apenergy.2017.10.130 [29] WANG Y Z, LI Y J, ZHANG C X, YANG L G, FAN X X, CHU L Z. A study on co-pyrolysis mechanisms of biomass and polyethylene via ReaxFF molecular dynamic simulation and density functional theory[J]. Process Saf Environ Protect,2021,150:22−35. doi: 10.1016/j.psep.2021.04.002 [30] YUAN, HAORAN, FAN, HONGGANG, SHAN, RUI, HE, MINGYANG, GU, JING. Study of synergistic effects during co-pyrolysis of cellulose and high-density polyethylene at various ratios [J]. Energy Conversion & Management, 2018. [31] TANG Z Y, CHEN W, HU J H, LI S Q, CHEN Y Q, YANG H P, CHEN H P. Co-pyrolysis of microalgae with low-density polyethylene (LDPE) for deoxygenation and denitrification[J]. Bioresour Technol,2020,311:7. [32] MILATO J V, FRANCA R J, CALDERARI M. Co-pyrolysis of oil sludge with polyolefins: Evaluation of different Y zeolites to obtain paraffinic products[J]. J Environ Chem Eng,2020,8(3):8. [33] SALVILLA J, OFRASIO B, ROLLON A P, MANEGDEG F G, LUNA M. Synergistic co-pyrolyss of polyolefin plastics with wood and agricultural wastes for biofuel production[J]. Applied Energy,2020,279:115668. doi: 10.1016/j.apenergy.2020.115668 -