留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

升温速率对纤维素与聚乙烯共热解影响的研究

刘波 郭欣 吴棒 刘子蒙

刘波, 郭欣, 吴棒, 刘子蒙. 升温速率对纤维素与聚乙烯共热解影响的研究[J]. 燃料化学学报(中英文), 2023, 51(7): 930-938. doi: 10.19906/j.cnki.JFCT.2023006
引用本文: 刘波, 郭欣, 吴棒, 刘子蒙. 升温速率对纤维素与聚乙烯共热解影响的研究[J]. 燃料化学学报(中英文), 2023, 51(7): 930-938. doi: 10.19906/j.cnki.JFCT.2023006
LIU Bo, GUO Xin, WU Bang, LIU Zi-meng. A study on the effect of heating rate during cellulose and polyethylene co-pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 930-938. doi: 10.19906/j.cnki.JFCT.2023006
Citation: LIU Bo, GUO Xin, WU Bang, LIU Zi-meng. A study on the effect of heating rate during cellulose and polyethylene co-pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 930-938. doi: 10.19906/j.cnki.JFCT.2023006

升温速率对纤维素与聚乙烯共热解影响的研究

doi: 10.19906/j.cnki.JFCT.2023006
详细信息
    通讯作者:

    E-mail: guoxin@mail.hust.edu.cn

  • 中图分类号: TK6

A study on the effect of heating rate during cellulose and polyethylene co-pyrolysis

  • 摘要: 在管式炉反应器中,对纤维素(CE)与高密度聚乙烯(HDPE)进行了慢速共热解和快速共热解的研究,考察了升温速率和混合比例对CE与HDPE共热解的影响。结果表明,CE与HDPE慢速共热解可以提高液态产率,并降低气态产率和焦炭产率。在CE与HDPE比为1∶3时,慢速共热解相互作用最强烈,此时液态产率为95.4%,与计算值相比,增加了9.8%;而快速共热解降低液态产率,同时提高气态产率。在CE与HDPE比为3∶1时,快速共热解相互作用最强烈,此时液态产率与气态产率分别为49.3%和42.8%,与计算值相比,液态产率降低了14.5%,而气态产率提高了14.1%。热解油分析结果表明,CE与HDPE共热解存在协同效应,CE与HDPE共热解有利于降低液态产物的含氧量,提高焦油的质量。
  • FIG. 2466.  FIG. 2466.

    FIG. 2466.  FIG. 2466.

    图  1  热解试验装置示意图

    Figure  1  Schematic diagram of pyrolysis process 1: Mass flow meter, 2: Rotor flow meter, 3: Holder, 4: Quartz tube, 5: Reactor, 6: Condenser, 7: Ice, 8: Exhaust gas

    图  2  CE/HDPE不同混合比例的TG和DTG曲线

    Figure  2  TG and DTG curves of CE and HDPE with different blending ratios

    图  3  CE/HDPE不同混合比例条件下产物产率分布

    Figure  3  Products yield distribution of CE and HDPE with different blending ratios (a): slow pyrolysis; (b): fast pyrolysis

    图  4  CE/HDPE不同混合比例条件下气态产物的变化

    Figure  4  Changes of gas products of CE and HDPE with different blending ratios (a): inorganic gases of slow pyrolysis; (b): inorganic gases of fast pyrolysis; (c): organic gases of slow pyrolysis; (d): organic gases of fast pyrolysis

    图  5  CE/HDPE不同混合比例的液态产物分布

    Figure  5  Liquid products distribution of CE and HDPE with different blending ratios (a): slow pyrolysis; (b): fast pyrolysis

    图  6  液态产物随CE/HDPE不同混合比例的变化

    Figure  6  Changes of liquid products for CE and HDPE with different blending ratios (a): slow pyrolysis; (b): fast pyrolysis

    图  7  气态产物差异

    Figure  7  Different of gas products (a): slow pyrolysis; (b): fast pyrolysis

    图  8  液态产物差异

    Figure  8  Different of liquid products (a): slow pyrolysis; (b): fast pyrolysis

    表  1  样品的工业分析与元素分析

    Table  1  Proximate and ultimate analyses of CE and HDPE

    SampleProximate analysis w/%Ultimate analysis w/%
    VFCCHO
    CE90.869.14 44.446.1749.39
    HDPE100085.7114.290
    下载: 导出CSV
  • [1] YANG J X, RIZKIANA J, WIDAYATNO W B, KARNJANAKOM S, KAEWPANHA M, HAO X G, ABUDULA A, GUAN G Q. Fast co-pyrolysis of low density polyethylene and biomass residue for oil production[J]. Energy Conv Manag,2016,120:422−429. doi: 10.1016/j.enconman.2016.05.008
    [2] HASSAN H, LIM J K, HAMEED B H. Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil[J]. Bioresour Technol,2016,221:645−655. doi: 10.1016/j.biortech.2016.09.026
    [3] HOORNWEG D, BHADA-TATA P, KENNEDY C. Waste production must peak this century[J]. Nature,2013,502(7473):615−617. doi: 10.1038/502615a
    [4] YUAN H R, FAN H G, SHAN R, HE M Y, GU J, CHEN Y. Study of synergistic effects during co-pyrolysis of cellulose and high-density polyethylene at various ratios[J]. Energy Conv Manag,2018,157:517−526. doi: 10.1016/j.enconman.2017.12.038
    [5] ONAL E, UZUN B B, PUTUN A E. An experimental study on bio-oil production from co-pyrolysis with potato skin and high-density polyethylene (HDPE)[J]. Fuel Process Technol,2012,104:365−370. doi: 10.1016/j.fuproc.2012.06.010
    [6] WANG Z W, BURRA K G, LEI T Z, GUPTA A K. Co-pyrolysis of waste plastic and solid biomass for synergistic production of biofuels and chemicals-A review[J]. Prog Energy Combust Sci,2021,84:51.
    [7] XUE Y, ZHOU S, BROWN R C, KELKAR A, BAI X L. Fast pyrolysis of biomass and waste plastic in a fluidized bed reactor[J]. Fuel,2015,156:40−46. doi: 10.1016/j.fuel.2015.04.033
    [8] OZSIN G, PUTUN A E. A comparative study on co-pyrolysis of lignocellulosic biomass with polyethylene terephthalate, polystyrene, and polyvinyl chloride: Synergistic effects and product characteristics[J]. J Clean Prod,2018,205:1127−1138. doi: 10.1016/j.jclepro.2018.09.134
    [9] DHYANI, VAIBHAV, BHASKAR, THALLADA. A comprehensive review on the pyrolysis of lignocellulosic biomass [J]. Renewable Energy, 2018.
    [10] OENAL E, UZUN B B, PUETUEN A E. Bio-oil production via co-pyrolysis of almond shell as biomass and high density polyethylene[J]. Energy Conv Manag,2014,78:704−710.
    [11] FAN L L, CHEN P, ZHANG Y N, LIU S Y, LIU Y H, WANG Y P, DAI L L, RUAN R. Fast microwave-assisted catalytic co-pyrolysis of lignin and low-density polyethylene with HZSM-5 and MgO for improved bio-oil yield and quality[J]. Bioresour Technol,2017,225:199−205. doi: 10.1016/j.biortech.2016.11.072
    [12] UZOEJINWA B B, HE X H, WANG S, ABOMOHRA A, HU Y M, WANG Q. Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: Recent progress and future directions elsewhere worldwide[J]. Energy Conv Manag,2018,163:468−492. doi: 10.1016/j.enconman.2018.02.004
    [13] KIM S, TSANG Y F, KWON E E, LIN K Y A, LEE J. Recently developed methods to enhance stability of heterogeneous catalysts for conversion of biomass-derived feedstocks[J]. Korean J Chem Eng,2019,36(1):1−11. doi: 10.1007/s11814-018-0174-x
    [14] MISKOLCZI N, BARTHA L, DEAK G, JOVER B. Thermal degradation of municipal plastic waste for production of fuel-like hydrocarbons[J]. Polym Degrad Stabil,2004,86(2):357−366. doi: 10.1016/j.polymdegradstab.2004.04.025
    [15] ZHENG Y W, TAO L, YANG X Q, HUANG Y B, LIU C, ZHENG Z F. Study of the thermal behavior, kinetics, and product characterization of biomass and low-density polyethylene co-pyrolysis by thermogravimetric analysis and pyrolysis-GC/MS[J]. J Anal Appl Pyrolysis,2018,133:185−197. doi: 10.1016/j.jaap.2018.04.001
    [16] TANG F, JIN Y Q, CHI Y, ZHU Z X, CAI J, LI Z R, LI M J. Effect of steam on the homogeneous conversion of tar contained from the co-pyrolysis of biomass and plastics[J]. Environ Sci Pollut Res,2021,11:68909−68919.
    [17] XU D J, HUANG G, GUO L, CHEN Y J, DING C, LIU C C. Enhancement of catalytic combustion and thermolysis for treating polyethylene plastic waste[J]. Adv Compos Hybrid Mater,2022,5(1):113−129. doi: 10.1007/s42114-021-00317-x
    [18] SINGH S, PATIL T, TEKADE S P, GAWANDE M B, SAWARKAR A N. Studies on individual pyrolysis and co-pyrolysis of corn cob and polyethylene: Thermal degradation behavior, possible synergism, kinetics, and thermodynamic analysis[J]. Sci Total Environ,2021,783:14.
    [19] GUNASEE S D, DANON B, GORGENS J F, MOHEE R. Co-pyrolysis of LDPE and cellulose: Synergies during devolatilization and condensation[J]. J Anal Appl Pyrolysis,2017,126:307−314. doi: 10.1016/j.jaap.2017.05.016
    [20] HASSAN H, HAMEED B H, LIM J K. Co-pyrolysis of sugarcane bagasse and waste high-density polyethylene: Synergistic effect and product distributions[J]. Energy,2020,191:11.
    [21] ANSARI K B, HASSAN S Z, BHOI R, AHMAD E. Co-pyrolysis of biomass and plastic wastes: A review on reactants synergy, catalyst impact, process parameter, hydrocarbon fuel potential, COVID-19[J]. J Environ Chem Eng,2021,9(6):14.
    [22] SURIAPPARAO D V, BORUAH B, RAJA D, VINU R. Microwave assisted co-pyrolysis of biomasses with polypropylene and polystyrene for high quality bio-oil production[J]. Fuel Process Technol,2018,175:64−75. doi: 10.1016/j.fuproc.2018.02.019
    [23] LIU C, DUAN X, CHEN Q, CHAO C, MEGHARAJ M. Investigations on pyrolysis of microalgae Diplosphaera sp. MM1 by TG-FTIR and Py-GC/MS: Products and kinetics[J]. Bioresour Technol,2019,294:122126.
    [24] ASMADI M, KAWAMOTO H, SAKA S. Gas- and solid/liquid-phase reactions during pyrolysis of softwood and hardwood lignins[J]. J Anal Appl Pyrolysis,2011,92(2):417−425. doi: 10.1016/j.jaap.2011.08.003
    [25] ZHOU L, WANG Y, HUANG Q, CAI J. Thermogravimetric characteristics and kinetic of plastic and biomass blends co-pyrolysis[J]. Fuel Process Technol,2006,87(11):963−969. doi: 10.1016/j.fuproc.2006.07.002
    [26] LU P, HUANG Q X, BOURTSALAS A C, CHI Y, YAN J H. Synergistic effects on char and oil produced by the co-pyrolysis of pine wood, polyethylene and polyvinyl chloride[J]. Fuel,2018,230:359−367. doi: 10.1016/j.fuel.2018.05.072
    [27] LIANG F, WANG R J, XIANG H Z, YANG X M, ZHANG T, HU W H, MI B B, LIU Z J. Investigating pyrolysis characteristics of moso bamboo through TG-FTIR and Py-GC/MS[J]. Bioresour Technol,2018,256:53−60.
    [28] BURRA K G, GUPTA A K. Synergistic effects in steam gasification of combined biomass and plastic waste mixtures[J]. Appl Energy,2018,211:230−236. doi: 10.1016/j.apenergy.2017.10.130
    [29] WANG Y Z, LI Y J, ZHANG C X, YANG L G, FAN X X, CHU L Z. A study on co-pyrolysis mechanisms of biomass and polyethylene via ReaxFF molecular dynamic simulation and density functional theory[J]. Process Saf Environ Protect,2021,150:22−35. doi: 10.1016/j.psep.2021.04.002
    [30] YUAN, HAORAN, FAN, HONGGANG, SHAN, RUI, HE, MINGYANG, GU, JING. Study of synergistic effects during co-pyrolysis of cellulose and high-density polyethylene at various ratios[J]. Energy Conv Management,2018,157:517−526.
    [31] TANG Z Y, CHEN W, HU J H, LI S Q, CHEN Y Q, YANG H P, CHEN H P. Co-pyrolysis of microalgae with low-density polyethylene (LDPE) for deoxygenation and denitrification[J]. Bioresour Technol,2020,311:123502.
    [32] MILATO J V, FRANCA R J, CALDERARI M. Co-pyrolysis of oil sludge with polyolefins: Evaluation of different Y zeolites to obtain paraffinic products[J]. J Environ Chem Eng,2020,8:103805.
    [33] SALVILLA J, OFRASIO B, ROLLON A P, MANEGDEG F G, LUNA M. Synergistic co-pyrolyss of polyolefin plastics with wood and agricultural wastes for biofuel production[J]. Applied Energy,2020,279:115668. doi: 10.1016/j.apenergy.2020.115668
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  295
  • HTML全文浏览量:  111
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-24
  • 修回日期:  2022-12-14
  • 录用日期:  2022-12-26
  • 网络出版日期:  2023-01-18
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回