留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

升温速率对纤维素与聚乙烯共热解影响的研究

刘波 郭欣 吴棒 刘子蒙

刘波, 郭欣, 吴棒, 刘子蒙. 升温速率对纤维素与聚乙烯共热解影响的研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2023006
引用本文: 刘波, 郭欣, 吴棒, 刘子蒙. 升温速率对纤维素与聚乙烯共热解影响的研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2023006
LIU Bo, GUO Xin, WU Bang, LIU Zi-meng. A study on the effect of heating rate during cellulose and polyethylene co-pyrolysis[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2023006
Citation: LIU Bo, GUO Xin, WU Bang, LIU Zi-meng. A study on the effect of heating rate during cellulose and polyethylene co-pyrolysis[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2023006

升温速率对纤维素与聚乙烯共热解影响的研究

doi: 10.19906/j.cnki.JFCT.2023006
详细信息
    通讯作者:

    E-mail: 477791868@qq.com

  • 中图分类号: TK6

A study on the effect of heating rate during cellulose and polyethylene co-pyrolysis

  • 摘要: 在管式炉反应器中,对纤维素(CE)与高密度聚乙烯(HDPE)进行了慢速共热解和快速共热解的研究,考察了升温速率和混合比例对CE与HDPE共热解的影响。结果表明,CE与HDPE慢速共热解可以提高液态产率,并降低气态产率和焦炭产率。在CE与HDPE为1∶3时,慢速共热解相互作用最强烈,此时液态产率为95.4%,比计算值相比,增加了9.8%;而快速共热解降低液态产率,同时提高气态产率。在CE与HDPE为3∶1时,快速共热解相互作用最强烈,此时液态产率与气态产率分别为49.3%和42.8%,与计算值相比,液态产率降低了14.5%,而气态产率提高了14.1%。热解油分析结果表明,CE与HDPE共热解存在协同效应,CE与HDPE共热解有利于降低液态产物的含氧量,提高焦油的质量。
  • 图  1  热解试验装置示意图

    Figure  1  Schematic diagram of pyrolysis process 1 Mass flow meter, 2 Rotor flow meter, 3 Holder, 4 Quartz tube, 5 Reactor, 6 Condenser, 7 Ice, 8 Exhaust gas

    图  2  CE/HDPE不同混合比例的TG和DTG曲线

    Figure  2  TG and DTG curves of CE and HDPE with different blending ratios

    图  3  CE/HDPE不同混合比例产物产率分布(a)慢速热解(b)快速热解

    Figure  3  Products yield distribution of CE and HDPE with different blending ratios (a)Slow pyrolysis (b)Fast pyrolysis

    图  4  CE/HDPE不同混合比例气态产物变化趋势(a)慢速热解主要无机气体(b)快速热解主要无机气体(c)慢速热解主要有机气体(d)快速热解主要有机气体

    Figure  4  Changes of gas products of CE and HDPE with different blending ratios (a) Inorganic gases of slow pyrolysis (b) Inorganic gases of fast pyrolysis (c) Organic gases of slow pyrolysis,and(d) Organic gases of fast pyrolysis

    图  5  CE/HDPE不同混合比例的液态产物分布(a)慢速热解(b)快速热解

    Figure  5  Liquid products distribution of CE and HDPE with different blending ratios (a)Slow pyrolysis (b)Fast pyrolysis

    图  6  液态产物随CE/HDPE不同混合比例的变化趋势(a)慢速热解(b)快速热解

    Figure  6  Changes of liquid products for CE and HDPE with different blending ratios (a)Slow pyrolysis (b) Fast pyrolysis

    图  7  气态产物差异(a)慢速热解(b)快速热解

    Figure  7  The different of gas products (a)Slow pyrolysis (b) Fast pyrolysis

    图  8  液态产物差异(a)慢速热解(b)快速热解

    Figure  8  The different of liquid products (a)Slow pyrolysis (b) Fast pyrolysis

    表  1  CE与HDPE样品的工业分析与元素分析

    Table  1  Proximate and ultimate analysis of CE and HDPE

    FeedstockProximate analysis (wt%)Ultimate analysis (wt%)
    VFCCHO
    CE90.86%9.14% 44.44%6.17%49.39%
    HDPE100%085.71%14.29%0%
    下载: 导出CSV
  • [1] YANG J X, RIZKIANA J, WIDAYATNO W B, KARNJANAKOM S, KAEWPANHA M, HAO X G, ABUDULA A, GUAN G Q. Fast co-pyrolysis of low density polyethylene and biomass residue for oil production[J]. Energy Conversion and Management,2016,120:422−429. doi: 10.1016/j.enconman.2016.05.008
    [2] HASSAN H, LIM J K, HAMEED B H. Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil[J]. Bioresour Technol,2016,221:645−655. doi: 10.1016/j.biortech.2016.09.026
    [3] HOORNWEG D, BHADA-TATA P, KENNEDY C. Waste production must peak this century[J]. Nature,2013,502(7473):615−617. doi: 10.1038/502615a
    [4] YUAN H R, FAN H G, SHAN R, HE M Y, GU J, CHEN Y. Study of synergistic effects during co-pyrolysis of cellulose and high-density polyethylene at various ratios[J]. Energy Conversion and Management,2018,157:517−526. doi: 10.1016/j.enconman.2017.12.038
    [5] ONAL E, UZUN B B, PUTUN A E. An experimental study on bio-oil production from co-pyrolysis with potato skin and high-density polyethylene (HDPE)[J]. Fuel Process Technol,2012,104:365−370. doi: 10.1016/j.fuproc.2012.06.010
    [6] WANG Z W, BURRA K G, LEI T Z, GUPTA A K. Co-pyrolysis of waste plastic and solid biomass for synergistic production of biofuels and chemicals-A review[J]. Prog Energy Combust Sci,2021,84:51.
    [7] XUE Y, ZHOU S, BROWN R C, KELKAR A, BAI X L. Fast pyrolysis of biomass and waste plastic in a fluidized bed reactor[J]. Fuel,2015,156:40−46. doi: 10.1016/j.fuel.2015.04.033
    [8] OZSIN G, PUTUN A E. A comparative study on co-pyrolysis of lignocellulosic biomass with polyethylene terephthalate, polystyrene, and polyvinyl chloride: Synergistic effects and product characteristics[J]. J Clean Prod,2018,205:1127−1138. doi: 10.1016/j.jclepro.2018.09.134
    [9] DHYANI, VAIBHAV, BHASKAR, THALLADA. A comprehensive review on the pyrolysis of lignocellulosic biomass [J]. Renewable Energy, 2018.
    [10] OENAL E, UZUN B B, PUETUEN A E. Bio-oil production via co-pyrolysis of almond shell as biomass and high density polyethylene[J]. Energy Conversion and Management,2014,78(FEB.):704−710.
    [11] FAN L L, CHEN P, ZHANG Y N, LIU S Y, LIU Y H, WANG Y P, DAI L L, RUAN R. Fast microwave-assisted catalytic co-pyrolysis of lignin and low-density polyethylene with HZSM-5 and MgO for improved bio-oil yield and quality[J]. Bioresour Technol,2017,225:199−205. doi: 10.1016/j.biortech.2016.11.072
    [12] UZOEJINWA B B, HE X H, WANG S, ABOMOHRA A, HU Y M, WANG Q. Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: Recent progress and future directions elsewhere worldwide[J]. Energy Conversion and Management,2018,163:468−492. doi: 10.1016/j.enconman.2018.02.004
    [13] KIM S, TSANG Y F, KWON E E, LIN K Y A, LEE J. Recently developed methods to enhance stability of heterogeneous catalysts for conversion of biomass-derived feedstocks[J]. Korean J Chem Eng,2019,36(1):1−11. doi: 10.1007/s11814-018-0174-x
    [14] MISKOLCZI N, BARTHA L, DEAK G, JOVER B. Thermal degradation of municipal plastic waste for production of fuel-like hydrocarbons[J]. Polym Degrad Stabil,2004,86(2):357−366. doi: 10.1016/j.polymdegradstab.2004.04.025
    [15] ZHENG Y W, TAO L, YANG X Q, HUANG Y B, LIU C, ZHENG Z F. Study of the thermal behavior, kinetics, and product characterization of biomass and low-density polyethylene co-pyrolysis by thermogravimetric analysis and pyrolysis-GC/MS[J]. J Anal Appl Pyrolysis,2018,133:185−197. doi: 10.1016/j.jaap.2018.04.001
    [16] TANG F, JIN Y Q, CHI Y, ZHU Z X, CAI J, LI Z R, LI M J. Effect of steam on the homogeneous conversion of tar contained from the co-pyrolysis of biomass and plastics [J]. Environ Sci Pollut Res: 11.
    [17] XU D J, HUANG G, GUO L, CHEN Y J, DING C, LIU C C. Enhancement of catalytic combustion and thermolysis for treating polyethylene plastic waste[J]. Adv Compos Hybrid Mater,2022,5(1):113−129. doi: 10.1007/s42114-021-00317-x
    [18] SINGH S, PATIL T, TEKADE S P, GAWANDE M B, SAWARKAR A N. Studies on individual pyrolysis and co-pyrolysis of corn cob and polyethylene: Thermal degradation behavior, possible synergism, kinetics, and thermodynamic analysis[J]. Sci Total Environ,2021,783:14.
    [19] GUNASEE S D, DANON B, GORGENS J F, MOHEE R. Co-pyrolysis of LDPE and cellulose: Synergies during devolatilization and condensation[J]. J Anal Appl Pyrolysis,2017,126:307−314. doi: 10.1016/j.jaap.2017.05.016
    [20] HASSAN H, HAMEED B H, LIM J K. Co-pyrolysis of sugarcane bagasse and waste high-density polyethylene: Synergistic effect and product distributions[J]. Energy,2020,191:11.
    [21] ANSARI K B, HASSAN S Z, BHOI R, AHMAD E. Co-pyrolysis of biomass and plastic wastes: A review on reactants synergy, catalyst impact, process parameter, hydrocarbon fuel potential, COVID-19[J]. J Environ Chem Eng,2021,9(6):14.
    [22] SURIAPPARAO D V, BORUAH B, RAJA D, VINU R. Microwave assisted co-pyrolysis of biomasses with polypropylene and polystyrene for high quality bio-oil production[J]. Fuel Process Technol,2018,175:64−75. doi: 10.1016/j.fuproc.2018.02.019
    [23] LIANG F, WANG R J, XIANG H Z, YANG X M, ZHANG T, HU W H, MI B B, LIU Z J. Investigating pyrolysis characteristics of moso bamboo through TG-FTIR and Py-GC/MS[J]. Bioresour Technol,2018,256:53−60. doi: 10.1016/j.biortech.2018.01.140
    [24] ASMADI M, KAWAMOTO H, SAKA S. Gas- and solid/liquid-phase reactions during pyrolysis of softwood and hardwood lignins[J]. J Anal Appl Pyrolysis,2011,92(2):417−425. doi: 10.1016/j.jaap.2011.08.003
    [25] ZHOU L, WANG Y, HUANG Q, CAI J. Thermogravimetric characteristics and kinetic of plastic and biomass blends co-pyrolysis[J]. Fuel Process Technol,2006,87(11):963−969. doi: 10.1016/j.fuproc.2006.07.002
    [26] LU P, HUANG Q X, BOURTSALAS A C, CHI Y, YAN J H. Synergistic effects on char and oil produced by the co-pyrolysis of pine wood, polyethylene and polyvinyl chloride[J]. Fuel,2018,230:359−367. doi: 10.1016/j.fuel.2018.05.072
    [27] LIANG, WANG, RJ, XIANG, HZ, YANG, XM, ZHANG, WH, BB. Investigating pyrolysis characteristics of moso bamboo through TG-FTIR and Py-GC/MS [J]. BIORESOURCE TECHNOL, 2018.
    [28] BURRA K G, GUPTA A K. Synergistic effects in steam gasification of combined biomass and plastic waste mixtures[J]. Applied Energy,2018,211:230−236. doi: 10.1016/j.apenergy.2017.10.130
    [29] WANG Y Z, LI Y J, ZHANG C X, YANG L G, FAN X X, CHU L Z. A study on co-pyrolysis mechanisms of biomass and polyethylene via ReaxFF molecular dynamic simulation and density functional theory[J]. Process Saf Environ Protect,2021,150:22−35. doi: 10.1016/j.psep.2021.04.002
    [30] YUAN, HAORAN, FAN, HONGGANG, SHAN, RUI, HE, MINGYANG, GU, JING. Study of synergistic effects during co-pyrolysis of cellulose and high-density polyethylene at various ratios [J]. Energy Conversion & Management, 2018.
    [31] TANG Z Y, CHEN W, HU J H, LI S Q, CHEN Y Q, YANG H P, CHEN H P. Co-pyrolysis of microalgae with low-density polyethylene (LDPE) for deoxygenation and denitrification[J]. Bioresour Technol,2020,311:7.
    [32] MILATO J V, FRANCA R J, CALDERARI M. Co-pyrolysis of oil sludge with polyolefins: Evaluation of different Y zeolites to obtain paraffinic products[J]. J Environ Chem Eng,2020,8(3):8.
    [33] SALVILLA J, OFRASIO B, ROLLON A P, MANEGDEG F G, LUNA M. Synergistic co-pyrolyss of polyolefin plastics with wood and agricultural wastes for biofuel production[J]. Applied Energy,2020,279:115668. doi: 10.1016/j.apenergy.2020.115668
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-24
  • 录用日期:  2022-12-26
  • 修回日期:  2022-12-14
  • 网络出版日期:  2023-01-18

目录

    /

    返回文章
    返回