留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤和生物质共气化过程反应协同行为的研究进展

齐健淄 姚金刚 陈冠益 易维明 颜蓓蓓 程占军 姚燕 刘静 刘孝阳 毕晨杰

齐健淄, 姚金刚, 陈冠益, 易维明, 颜蓓蓓, 程占军, 姚燕, 刘静, 刘孝阳, 毕晨杰. 煤和生物质共气化过程反应协同行为的研究进展[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2023007
引用本文: 齐健淄, 姚金刚, 陈冠益, 易维明, 颜蓓蓓, 程占军, 姚燕, 刘静, 刘孝阳, 毕晨杰. 煤和生物质共气化过程反应协同行为的研究进展[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2023007
QI Jian-zi, YAO Jin-gang, CHEN Guan-yi, YI Wei-ming, YAN Bei-bei, CHENG Zhan-jun, YAO Yan, LIU Jing, LIU Xiao-yang, BI Chen-jie. Investigation progress on the Synergy between coal and biomass during co-gasification[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2023007
Citation: QI Jian-zi, YAO Jin-gang, CHEN Guan-yi, YI Wei-ming, YAN Bei-bei, CHENG Zhan-jun, YAO Yan, LIU Jing, LIU Xiao-yang, BI Chen-jie. Investigation progress on the Synergy between coal and biomass during co-gasification[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2023007

煤和生物质共气化过程反应协同行为的研究进展

doi: 10.19906/j.cnki.JFCT.2023007
基金项目: 国家自然科学基金(52006129,51906129),山东省自然科学基金(ZR2020QE205),广东省新能源和可再生能源研究开发与应用重点实验室(E039kf0701,E239kf0401),潍坊市科技发展计划项目(2020GX107)资助
详细信息
    通讯作者:

    Tel:15695431959,E-mail: yaojingang@sdut.edu.cn

    liujing@sdut.edu.cn

  • 中图分类号: TQ536.9

Investigation progress on the Synergy between coal and biomass during co-gasification

Funds: The project was supported by the National Natural Science Foundation of China (52006129 and 51906129), Shandong Provincial Natural Science Foundation (ZR2020QE205) and Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development (E039kf0701 and E239kf0401), Weifang Science and Technology Development Plan Project (2020GX107)
  • 摘要: 煤与生物质共气化作为实现这两种含碳资源高效清洁利用的重要技术路径,对于实现碳中和、碳达峰有着积极促进的作用。共气化不仅有助于克服煤单独气化衍生的系列问题,减少SOx、NOx等有害物质的排放,提高煤反应活性,也有利于克服生物质单独气化存在的能量密度低、气化效率差、焦油产率高等问题。基于此,文章从共气化过程的影响因素、协同反应机制等方面出发,总结了原料类型及预处理方法、工艺参数和气化炉类型对共气化过程的影响,系统阐述了共气化过程中的催化协同机理,简要概述了共气化过程中非催化因素的协同机理,讨论了研究共气化过程的新方法。最后,文章对煤与生物质共气化研究近年重点关注的方向进行了梳理,对借助现代原位表征技术构建完整协同反应路径、结合密度泛函理论计算及理论建模解析共气化过程多反应耦合作用机制做出了展望。
  • 图  1  煤与生物质的共气化过程

    Figure  1  Co-gasification process of coal and biomass

    图  2  固定床气化炉示意图[29]

    Figure  2  Fixed bed gasifier schematization with permission from Royal Society of Chemistry

    图  3  流化床气化炉示意图[30]

    Figure  3  Fluidized bed gasifier schematization with permission from Elsevier

    图  4  固定床反应器系统示意图,(a)新设计的石英舟(DQB),(b)普通石英舟(NQB),(c)固定床反应器系统[19]

    Figure  4  Schematic diagram of the fixed bed reactor system, (a) Newly designed quartz boat (DQB), (b) Normal quartz boat (NQB), (c) Fixed bed reactor system with permission from Elsevier

    图  5  共气化过程碱金属的析出规律[68]

    Figure  5  Precipitation pattern of alkali metals during co-gasification

    图  6  煤与生物质共气化过程中生物质K元素的迁移[64]

    Figure  6  Material flow of the biomass-K migration during co-gasification of coal and biomass with permission from Elsevier

    图  7  钾离子催化CO2气化机理的方案[75]

    Figure  7  Simplified scheme of the potassium-catalyzed CO2 gasification mechanism with permission from American Chemical Society

    图  8  化学链气化工艺示意图

    Figure  8  Schematic diagram of chemical chain gasification process

    表  1  气化反应器的特性与性能

    Table  1  Characteristics and performance of gasification reactors

    Gasifier typeOperation conditionsMaterial TypeGasification agent typeTemperature(℃)Cold gas efficiency [a]
    (%)
    Carbon conversion rate[b]
    (%)
    Tar content
    (g·Nm−3
    Reference
    Updraft fixed
    bed gasifier
    material mixing ratio 7∶3 palm kernel shell; bituminous coal air 800−900 45 46 [32]
    Downdraft fixed bed gasifier material mixing ratio 85∶15 wood; Indian coal air; steam 1000 65 94 [33]
    fluidized bed gasifier Lignite; wood; plastic air; steam 850 <50 48 (ER= 0.2); 21 (ER = 0.3) [34]
    Dual fluidized bed gasifier material mixing ratio 1∶1 coal; wood steam 900 60 80 2.9 [35]
    [a] Ratio of the chemical energy of gasification to produce gas to the chemical energy of the feedstock used for gasification;[b] Carbon in feedstock generation gas as a percentage of carbon in feedstock
    下载: 导出CSV

    表  2  协同效应的量化指标

    Table  2  Quantitative indicators of synergy effects

    ReferenceExpressionParameter interpretation
    Wei [50]$ \mathrm{D}\left({\mathrm{R}}_{0.5}\right)=\dfrac{{\mathrm{R}}_{0.5,\mathrm{e}\mathrm{x}\mathrm{p}}-{\mathrm{R}}_{0.5,\mathrm{c}\mathrm{a}\mathrm{l}}}{{R}_{0.5,cal}}\times 100\mathrm{\%} $${\mathrm{R} }_{0.5,\mathrm{e}\mathrm{x}\mathrm{p} }$ and $ {\mathrm{R}}_{0.5,\mathrm{c}\mathrm{a}\mathrm{l}} $ are the overall gasification reactivity of the mixture material experimentally and theoretically calculated, and denote the calculated and experimental times required for co-gasification conversion at a gasification conversion rate of X.
    Chen [51]$ {\mathrm{A}}_{\mathrm{X},\mathrm{T}}=\dfrac{{t}_{X,T,cal}}{{t}_{X,T,exp}} $$ {t}_{X,T,cal} $ and $ {t}_{X,T,exp} $ denote the calculated and experimental time required for
    co-gasification conversion at gasification conversion of X.
    Wei [52]$ \mathrm{S}\mathrm{F}=\dfrac{{R}_{0.9,exp}}{{R}_{0.9,cal}} $$ {R}_{0.9,exp} $ and $ {R}_{0.9,cal} $ are the experimental and theoretically calculated overall gasification reactions of pyrolytic mixed coke alone.
    Jeong [53]$ \mathrm{S}\mathrm{F}={\mathrm{k}}_{\mathrm{e}\mathrm{x}\mathrm{p}}-{\mathrm{k}}_{\mathrm{c}\mathrm{a}\mathrm{l}} $$ {\mathrm{k}}_{\mathrm{e}\mathrm{x}\mathrm{p}} $ and $ {\mathrm{k}}_{\mathrm{c}\mathrm{a}\mathrm{l}} $ are the initial gasification reaction rates of co-pyrolysis coke and the theoretically calculated initial gasification reaction rates of individually pyrolyzed mixed coke.
    Wang [54]$ \mathrm{S}\mathrm{F}=\dfrac{{X}_{exp}}{{X}_{cal}} $$ {X}_{exp} $ and $ {X}_{cal} $ are the experimental and theoretical calculated conversions for the same gasification time of pyrolysis mixed coke alone.
    He [55]$ \mathrm{S}\mathrm{F}=\dfrac{{t}_{X,pre}}{{t}_{X,exp}} $$ {t}_{X,pre} $ and $ {t}_{X,exp} $ are the time required for theoretical calculation and co-pyrolysis coke conversion at X for separate pyrolysis mixture conversion and X for co-pyrolysis coke conversion.
    Zhang [56]$ \mathrm{S}\mathrm{F}=\dfrac{{{t}_{se}}^{X=0.95}}{{{t}_{bl}}^{X=0.95}} $$ {{t}_{se}}^{X=0.95} $ and $ {{t}_{bl}}^{X=0.95} $ are the time required when the gasification
    conversion of separated coke and co-pyrolysis coke is 0.95.
    下载: 导出CSV

    表  3  不同原料的灰分组成分析

    Table  3  Analysis of ash composition of different raw materials%

    Raw materialK2ONa2OMgOCaOFe2O3TiO2Al2O3SiO2P2O5SO3
    Peanut shell14.801.704.306.803.100.608.6048.605.503.60
    Rice straw17.810.962.337.680.840.040.9151.992.496.50
    Corn straw25.140.683.556.480.590.031.7540.975.813.74
    Wood chip7.7612.845.5624.894.570.586.5016.472.427.64
    Lignite coal1.711.041.444.332.670.5014.7365.790.976.67
    Subbituminous coal0.802.601.305.602.800.5023.6057.600.102.30
    Bituminous coal1.520.740.943.563.661.0128.7257.30.192.32
    Meagre coal1.562.970.884.073.221.8228.4453.990.974.33
    下载: 导出CSV

    表  4  原料中的K含量[64, 65]

    Table  4  K content in raw materials

    Raw materialMass
    fraction of
    K /%
    Mass fraction of K in
    different compounds /%
    H2O solubleNH4Ac solubleAcid solubleInsoluble matter
    Wood0.36994.004.500.401.00
    Straw0.23892.803.202.002.00
    Rice stalk93.702.900.602.80
    Lignite coal0.02846.5012.9012.9027.70
    Anthracite6.726.558.0478.69
    下载: 导出CSV
  • [1] BP. Statistical review of world energy 2021[EB/OL].https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html, 2021-07-31/2022-05-15.
    [2] 张云, 杨倩鹏. 煤气化技术发展现状及趋势[J]. 洁净煤技术,2019,25(S2):7−13. doi: 10.13226/j.issn.1006-6772.19110801

    ZHANG Yun, YANG Qian-peng. Development status and trend of coal gasification technical[J]. Clean Coal Technology,2019,25(S2):7−13. doi: 10.13226/j.issn.1006-6772.19110801
    [3] MISHRA A, GAUTAM S, SHARMA T. Effect of operating parameters on coal gasification[J]. Int J Coal Sci Technol,2018,5:113−125. doi: 10.1007/s40789-018-0196-3
    [4] MIDILLI A, KUCUK H, TOPAL M E, AKBULUT U, DINCER I. A comprehensive review on hydrogen production from coal gasification: challenges and opportunities[J]. Int J Hydrog Energy,2021,46(50):25385−25412. doi: 10.1016/j.ijhydene.2021.05.088
    [5] GOUWS S M, CARRIER M, BUNT J R, NEOMAGUS H W J P. Co-pyrolysis of coal and raw/torrefied biomass: a review on chemistry, kinetics and implementation[J]. Renew Sust Energ Rev,2021,135:110189. doi: 10.1016/j.rser.2020.110189
    [6] QIN Y, ZHAO Z, WILTOWSKI T, ALOQAILI M, LIANG Y. Investigation of co-gasification reactivity of torrefied jatropha seed cake with illinois #6 coal char[J]. Bioresources,2016,11:7624−7636.
    [7] CHE D, SUN Y, LI S. Exergy analysis of co-gasification process of pine sawdust and lignite in fluidized bed[J]. Acta Energi Sin,2016,37:968−973.
    [8] KRERKKAIWAN S, FUSHIMI C, TSUTSUMI A, KUCHONTHARA P. Synergetic effect during co-pyrolysis/gasification of biomass and sub-bituminous coal[J]. Fuel Process Technol,2013,115:11−18. doi: 10.1016/j.fuproc.2013.03.044
    [9] AGBOR E, ZHANG X, KUMAR A. A review of biomass co-firing in North America[J]. Renew Sust Energ Rev,2014,40:930−943. doi: 10.1016/j.rser.2014.07.195
    [10] MOLINO A, CHIANESE S, MUSMARRA D. Biomass gasification technology: the state of the art overview[J]. J Energy Chem,2016,25:10−25. doi: 10.1016/j.jechem.2015.11.005
    [11] 车德勇. 基于物化结构特征的生物质与煤共气化特性研究[D]. 邯郸: 华北电力大学, 2013.

    CHEN De-yong. Research on co-gasification mechanism of biomass and coal based on surface physicochemical structure characteristics[D]. Handan: North China Electric Power University, 2013.
    [12] 李乔同. 煤/生物质共气化过程中物料对合成气组成的调变[D]. 太原: 太原理工大学, 2019.

    LI Qiao-tong. Modulation of composition of syngas by material in biomass/coal co-gasification process[D]. Taiyuan: Taiyuan University of Technology, 2019.
    [13] 李帅. 生物质与煤共气化实验研究[D]. 南京: 南京师范大学, 2015.

    LI Shuai. Experimental study of biomass co-gasification with coal[D]. Nanjing: Nanjing Normal University, 2015.
    [14] AJAY K, JONES D, HANNA M. Thermochemical biomass gasification: a review of the current status of the technology[J]. Energies,2009,2(3):556−581. doi: 10.3390/en20300556
    [15] WEI J, WANG M, WANG F, SONG X, YU G, LIU Y, VUTHALURY H, XU J, XU Y, ZHANG H, ZHANG S. A review on reactivity characteristics and synergy behavior of biomass and coal co-gasification[J]. Int J Hydrog Energy,2021,46:17116−17132. doi: 10.1016/j.ijhydene.2021.02.162
    [16] 蒋林宏, 俞海淼. 生物质组分热解气化特性研究现状[J]. 能源研究与信息,2015,31(1):9−13. doi: 10.13259/j.cnki.eri.2015.01.003

    JIANG Lin-hong, YU Hai-miao. Research status on gasification and pyrolysis characteristics of biomass components[J]. Energy Research and Information,2015,31(1):9−13. doi: 10.13259/j.cnki.eri.2015.01.003
    [17] GATES B C, HUBER G W, MARSHALL C L, ROSS P N, SIIROLA J, WANG Y. Catalysts for emerging energy applications[J]. MRS Bull,2008,33(4):429−435. doi: 10.1557/mrs2008.85
    [18] KAMBLE A D, SAXENA V K, CHAVAN P D, MENDHE V A. Co-gasification of coal and biomass an emerging clean energy technology: status and prospects of development in Indian context[J]. Int J Min Sci Technol,2019,29(2):171−186. doi: 10.1016/j.ijmst.2018.03.011
    [19] YANG P, ZHAO S, ZHANG Q, HU J, LIU R, HUANG Z, GAO Y. Synergistic effect of the cotton stalk and high-ash coal on gas production during co-pyrolysis/gasification[J]. Bioresour. Technol,2021,336:125336. doi: 10.1016/j.biortech.2021.125336
    [20] BHARATH M, RAGHAVAN V, PRASAD B V S S, CHAKRAVARTHY S R. Co-gasification of Indian rice husk and Indian coal with high-ash in bubbling fluidized bed gasification reactor[J]. Appl Therm Eng,2018,137:608−615. doi: 10.1016/j.applthermaleng.2018.04.035
    [21] SHAHABUDDIN M, BHATTACHARYA S. Enhancement of performance and emission characteristics by co-gasification of biomass and coal using an entrained flow gasifier[J]. J Energy Inst,2021,95:166−178. doi: 10.1016/j.joei.2021.01.012
    [22] DING L, ZHANG Y, WANG Z, HUANG J, FANG Y. Interaction and its induced inhibiting or synergistic effects during co-gasification of coal char and biomass char[J]. Bioresour Technol,2014,173:11−20. doi: 10.1016/j.biortech.2014.09.007
    [23] RIZKIANA J, GUAN G, WIDAYATNO W B, HAO X, LI X, HUANG W, ABUDULA A. Promoting effect of various biomass ashes on the steam gasification of low-rank coal[J]. Appl Energy,2014,133:282−288. doi: 10.1016/j.apenergy.2014.07.091
    [24] RIZKIANA J, GUAN G, WIDAYATNO W B, HAO X, HUANG W, TSUTSMI A, ABUDULA A. Effect of biomass type on the performance of cogasification of low rank coal with biomass at relatively low temperatures[J]. Fuel,2014,134:414−419. doi: 10.1016/j.fuel.2014.06.008
    [25] AHMAD R, MOHD ISHAK M A, ISMAIL K, KASSIM N N. Influence of microwave pre-treated palm kernel shell and mukah balingian coal on co-gasification[J]. J Mech Eng Sci,2019,13:5791−5803. doi: 10.15282/jmes.13.4.2019.06.0462
    [26] DENG J, WANG G, KUANG J, ZHANG Y, LUO Y. Pretreatment of agricultural residues for co-gasification via torre faction[J]. J Anal Appl Pyrolysis,2009,86(2):331−337. doi: 10.1016/j.jaap.2009.08.006
    [27] 戚远航, 朱光羽, 刘效洲. 上吸式固定床生物质炉的数值模拟与实验研究[J]. 广东化工,2021,48(17):25−27. doi: 10.3969/j.issn.1007-1865.2021.17.011

    QI Yuan-hang, ZHU Guang-yu, LIU Xiao-zhou. Design and implementation of atmospheric fixed bed biomass gasification unit[J]. Guangdong Chemical Industry,2021,48(17):25−27. doi: 10.3969/j.issn.1007-1865.2021.17.011
    [28] 刘原, 许东来, 王新雷, 安亚群. 1000 m3下吸式固定床气化炉的研制[J]. 安徽农业科学,2015,43(17):285−287. doi: 10.3969/j.issn.0517-6611.2015.17.101

    LIU Yuan, XU Dong-lai, WANG Xin-lei, AN Ya-qun. Development of 1000 m3 downdraft fixed-bed biomass gasifier[J]. Journal of Anhui Agricultural Sciences,2015,43(17):285−287. doi: 10.3969/j.issn.0517-6611.2015.17.101
    [29] SIKARWAR V S, ZHAO M, CLOUGH P, YAO J, ZHONG X, MEMON M Z, SHAH N, ANTHONY E J, FENNELL P S. An overview of advances in biomass gasification[J]. Energ Environ Sci,2016,9(10):2939−2977. doi: 10.1039/C6EE00935B
    [30] LOHA C, GU S, DE WILDE J. Advances in mathematical modeling of fluidized bed gasification[J]. Renew Sust Energ Rev,2014,40:688−715. doi: 10.1016/j.rser.2014.07.199
    [31] MOLINO A, LAROCCA V, CHIANESE S, MUSMARRA D. Biofuels production by biomass gasification: a review[J]. Energies,2018,11:811. doi: 10.3390/en11040811
    [32] QUINTERO-CORONEL D A, LENIS-RODAS Y A, CORREDOR L, PERREAULT P, BULA A, GONZALEZ-QUIROGA A. Co-gasification of biomass and coal in a top-lit updraft fixed bed gasifier: syngas composition and its interchangeability with natural gas for combustion applications[J]. Fuel,2022,316:123394. doi: 10.1016/j.fuel.2022.123394
    [33] SHARMA M, ATTANOOR S, DASAPPA S. Investigation into co-gasifying Indian coal and biomass in a down draft gasifier -experiments and analysis[J]. Fuel Process Technol,2015,138:435−444. doi: 10.1016/j.fuproc.2015.06.015
    [34] MASTELLONE M L, ZACCARIELLO L, ARENA U. Co-gasification of coal, plastic waste and wood in a bubbling fluidized bed reactor[J]. Fuel,2010,89(10):2991−3000. doi: 10.1016/j.fuel.2010.05.019
    [35] AIGNER I, PFEIFER C, HOFBAUER H. Co-gasification of coal and wood in a dual fluidized bed gasifier[J]. Fuel,2011,90(7):2404−2412. doi: 10.1016/j.fuel.2011.03.024
    [36] 肖振华. 生物质的特性对其与煤共气化过程的影响[J]. 山西化工,2017,37(5):97−98. doi: 10.16525/j.cnki.cn14-1109/tq.2017.05.29

    XIAO Zhen-hua. Effect of biomass characteristics on the process of coal gasification[J]. Shanxi Chemical Industry,2017,37(5):97−98. doi: 10.16525/j.cnki.cn14-1109/tq.2017.05.29
    [37] 王立群, 许超杰, 白文斌, 陈冲. 甘蔗渣与煤共气化试验研究[J]. 重庆理工大学学报(自然科学),2016,30(6):70−74.

    WANG Li-qun, XU Chao-jie, BAI Wen-bin, CHEN Chong. Experiment of co-gasification of sugarcane bagasse and coal[J]. Journal of Chongqing University of Technology(Natural Science),2016,30(6):70−74.
    [38] MALLICK D, MAHANTA P, MOHOLKAR V S. Co-gasification of coal/biomass blends in 50 kWe circulating fluidized bed gasifier[J]. J Energy Inst,2020,93(1):99−111. doi: 10.1016/j.joei.2019.04.005
    [39] HERNANDEZ J J, ARANDA-ALMANSA G, SERRANO C. Co-gasification of biomass wastes and coal-coke blends in an entrained flow gasifier: an experimental study[J]. Energy Fuels,2010,24(4):2479−2488. doi: 10.1021/ef901585f
    [40] RICKETTS B, HOTCHKISS R, LIVINGSTON B. Technology status review of waste/biomass co-gasification with coal[M]. United Kingdom: N. p. 2002.
    [41] BRAR J S, SINGH K, WANG J, KUMAR S. Co-gasification of coal and biomass: A review[J]. Int J For Res,2012,2012:363058.
    [42] MALLICK D, MAHANTA P, MOHOLKAR V S. Co-gasification of coal and biomass blends: chemistry and engineering[J]. Fuel,2017,204:106−128. doi: 10.1016/j.fuel.2017.05.006
    [43] XIANG X, GONG G, SHI Y, CAI Y, WANG C. Thermodynamic modeling and analysis of a serial composite process for biomass and coal co-gasification[J]. Renew Sust Energ Rev,2018,82:2768−2778. doi: 10.1016/j.rser.2017.10.008
    [44] MASSOUDI FARID M, JEONG H J, HWANG J. Kinetic study on coal-biomass mixed char co-gasification with H2O in the presence of H2[J]. Fuel,2016,181:1066−1073. doi: 10.1016/j.fuel.2016.04.130
    [45] TURSUN Y, XU S, WANG C, WANG G. Steam co-gasification of biomass and coal in decoupled reactors[J]. Fuel Process Technol,2016,141:61−67. doi: 10.1016/j.fuproc.2015.06.046
    [46] BHARATH M, RAGHAVAN V, PRASAD B V S S, CHAKRAVARTHY S R. Co-gasification of Indian rice husk and Indian coal with high-ash in bubbling fluidized bed gasification reactor[J]. Appl Therm Eng,2018,137:608−615. doi: 10.1016/j.applthermaleng.2018.04.035
    [47] ZHANG W, CHEN J, FANG H, ZHANG G, ZHU Z, XU W, LIN M, ZHU Y. Simulation on co-gasification of bituminous coal and industrial sludge in a downdraft fixed bed gasifier coupling with sensible heat recovery, and potential application in sludge-to-energy[J]. Energy,2022,243:123052. doi: 10.1016/j.energy.2021.123052
    [48] LI K, ZHANG R, BI J. Experimental study on syngas production by co-gasification of coal and biomass in a fluidized bed[J]. International Journal of Hydrogen Energy Int J Hydrog Energy,2010,35(7):2722−2726. doi: 10.1016/j.ijhydene.2009.04.046
    [49] 曾曦, 敖先权, 曹阳, 杨爱江. 玉米秸秆与煤流化床的共气化特性[J]. 过程工程学报,2017,17(3):551−557. doi: 10.12034/j.issn.1009-606X.216309

    ZENG Xi, AO Xian-quan, CAO Yang, YANG Ai-jiang. Characteristic of co-gasification of corn stalks and coal in fluidized-bed[J]. Chin J Process Eng,2017,17(3):551−557. doi: 10.12034/j.issn.1009-606X.216309
    [50] WEI J, GONG Y, GUO Q, DING L, WANG F, YU G. Physicochemical evolution during rice straw and coal co-pyrolysis and its effect on co-gasification reactivity[J]. Bioresour Technol,2017,227:345−352. doi: 10.1016/j.biortech.2016.12.068
    [51] CHEN X, LIU L, ZHANG L, ZHAO Y, QIU P. Gasification reactivity of co-pyrolysis char from coal blended with corn stalks[J]. Bioresour Technol,2019,279:243−251. doi: 10.1016/j.biortech.2019.01.108
    [52] WEI J, GUO Q, HE Q, DING L, YOSHIKAWA K, YU G. Co-gasification of bituminous coal and hydrochar derived from municipal solid waste: reactivity and synergy[J]. Bioresource Technology Bioresour Technol,2017,239:482−489. doi: 10.1016/j.biortech.2017.05.014
    [53] JEONG H J, HWANG I S, HWANG J. Co-gasification of bituminous coal-pine sawdust blended char with H2O at temperatures of 750-850℃[J]. Fuel,2015,156:26−29. doi: 10.1016/j.fuel.2015.04.018
    [54] WANG Q, WANG E, LI K, HUSNAIN N, LI D. Synergistic effects and kinetics analysis of biochar with semi-coke during CO2 co-gasification[J]. Energy,2020,191:116528. doi: 10.1016/j.energy.2019.116528
    [55] HE Q, GUO Q, DING L, WEI J, YU G. Rapid co-pyrolysis of lignite and biomass blends: analysis of synergy and gasification reactivity of residue char[J]. J Anal Appl Pyrolysis,2019,143:104688. doi: 10.1016/j.jaap.2019.104688
    [56] ZHANG Y, ZHENG Y, YANG M, SONG Y. Effect of fuel origin on synergy during co-gasification of biomass and coal in CO2[J]. Bioresour Technol,2016,200:789−794. doi: 10.1016/j.biortech.2015.10.076
    [57] VASSILEV S V, BAXTER D J, ANDERSEN L K, VASSILEVA C G. An overview of the composition and application of biomass ash[J]. Fuel,2013,105:19−39. doi: 10.1016/j.fuel.2012.10.001
    [58] YANG T, JIA K, KAI X, SUN Y, LI Y, LI R. A study on the migration behavior of K, Na, and Cl during biomass gasification[J]. Bioresources,2016,11:7133−7144.
    [59] WEI J, SONG X, GUO Q, DING L, YOSHIKAWA K, YU G. Reactivity, synergy, and kinetics analysis of CO2 co-pyrolysis/co-gasification of biomass after hydrothermal treatment and coal blends[J]. Energy Fuels,2019,34:294−303.
    [60] 汪来松, 宋云彩, 冯杰, 李文英. 生物质中碱/碱土金属在共气化过程中的作用机制研究进展[J]. 煤炭学报,2021,46(S1):495−502. doi: 10.13225/j.cnki.jccs.2020.1061

    WANG Lai-song, SONG Yun-cai, FENG Jei, LI Wen-ying. Role of alkali and alkaline earth metals in co-gasification of biomass and coal[J]. J China Coal Soc,2021,46(S1):495−502. doi: 10.13225/j.cnki.jccs.2020.1061
    [61] ZHANG Z, PANG S, LEVI T. Influence of AAEM species in coal and biomass on steam co-gasification of chars of blended coal and biomass[J]. Renew Energ,2017,101:356−363. doi: 10.1016/j.renene.2016.08.070
    [62] FERMOSO J, GIL M V, PEVIDA C, RUBIERA F. Kinetic models comparison for non-isothermal steam gasification of coal-biomass blend chars[J]. Chem Eng J,2010,161:276−284. doi: 10.1016/j.cej.2010.04.055
    [63] ELLIS N, MASNADI M S, ROBERTS D G, KOCHANEK M A, ILYUSHECHKIN A Y. Mineral matter interactions during co-pyrolysis of coal and biomass and their impact on intrinsic char co-gasification reactivity[J]. Chemical Engineering Journal Chem Eng J,2015,279:402−408.
    [64] SONG Y, LI Q, LI F, WANG L, HU C, FENG J, LI WEN. Pathway of biomass-potassium migration in co-gasification of coal and biomass[J]. Fuel,2019,239:365−372. doi: 10.1016/j.fuel.2018.11.023
    [65] WENG W, GAO Q, WANG Z, WHIDDON R, LI Z, ALDEN M, CEN K. Quantitative measurement of atomic potassium in plumes over burning solid fuels using infrared-diode laser spectroscopy[J]. Energy Fuels,2017,31:2831−2837. doi: 10.1021/acs.energyfuels.6b02638
    [66] 任海君, 张永奇, 房倚天, 王洋. 煤焦与生物质焦共气化反应特性研究[J]. 燃料化学学报,2012,40(2):143−148. doi: 10.3969/j.issn.0253-2409.2012.02.003

    REN Hai-jun, ZHANG Yong-qi, FANG Yi-tian, WANG Yang. Co-gasification properties of coal char and biomass char[J]. J Fuel Chem Technol,2012,40(2):143−148. doi: 10.3969/j.issn.0253-2409.2012.02.003
    [67] 王艳鹏, 林建清. 碱金属灰分对松木屑与褐煤共气化特性的影响[J]. 当代化工研究,,2017,(8):51−54.

    WANG Yan-peng, LIN Jian-qing. The effect of the ash of alkali metal on pine sawdust and lignite[J]. Modern Chemical Research,,2017,(8):51−54.
    [68] 李少华, 林建清, 车德勇, 蒋文强. 松木屑与褐煤共气化过程中碱金属迁移规律试验研究[J]. 热力发电,2016,45(6):51−56. doi: 10.3969/j.issn.1002-3364.2016.06.051

    LI Shao-hua, LIN Jian-qing, CHE De-yong, JIANG Wen-qiang. Alkali metal migration law during co-gasification of pine sawdust and lignite[J]. Thermal Power Generation Thermal Power Generation,2016,45(6):51−56. doi: 10.3969/j.issn.1002-3364.2016.06.051
    [69] SATYAM NAIDU V, AGHALAYAM P, JAYANTI S. Synergetic and inhibition effects in carbon dioxide gasification of blends of coals and biomass fuels of Indian origin[J]. Bioresour Technol,2016,209:157−165. doi: 10.1016/j.biortech.2016.02.137
    [70] WEI J, GONG Y, GUO Q, CHEN X, DING L, YU G. A mechanism investigation of synergy behaviour variations during blended char co-gasification of biomass and different rank coals[J]. Renew Energ,2019,131:597−605. doi: 10.1016/j.renene.2018.07.075
    [71] ZOU X, DING L, GONG X. Study on the co-gasification reactivity and interaction mechanism of coal with different components of daily food waste[J]. Energy & Fuels Energy Fuels,2020,34(2):1728−1736.
    [72] WEI X, SCHNELL U, HEIN K R G. Behaviour of gaseous chlorine and alkali metals during biomass thermal utilisation[J]. Fuel,2005,84(7):841−848.
    [73] VAN LITH S C, JENSEN P A, FRANDSEN F J, GLARBORG P, ALONSO-RAMÍREZ V. Release to the gas phase of inorganic elements during wood combustion. Part 2: influence of fuel composition[J]. Energy Fuels,2008,22(3):1598−1609. doi: 10.1021/ef060613i
    [74] MASNADI M S, GRACE J R, BI X T, LIM J, ELLIS N, LI Y, WATKINSON A P. From coal towards renewables: catalytic/synergistic effects during steam co-gasification of switchgrass and coal in a pilot-scale bubbling fluidized bed[J]. Renew Energ,2015,83:918−930. doi: 10.1016/j.renene.2015.05.044
    [75] FERNANDES R, HILL J, KOPYSCINSKI J. Determination of the synergism/antagonism parameters during co-gasification of potassium-rich biomass with non-biomass feedstock[J]. Energy Fuels,2017,31:1842−1849. doi: 10.1021/acs.energyfuels.6b02270
    [76] 许建华, 陈清林, 纪红兵. 原位漫反射红外光谱技术用于气固催化反应机理的研究[J]. 化学进展,,2008,(6):811−820.

    XU Jian-qing, CHEN Qing-lin, JI Hong-bing. Application of in situ DRIFTS in the investigation of reaction mechanisms for gas solid catalytic reactions[J]. Prog Chem,,2008,(6):811−820.
    [77] JACOBS G, CRAWFORD A C, DAVIS B H. Water-gas shift: steady state isotope switching study of the water-gas shift reaction over Pt/ceria using in-situ DRIFTS[J]. Catal Letters,2005,100(3):147−152.
    [78] YU J, XIA W, AREEPRASERT C, DING L, UMEKI K, YU G. Catalytic effects of inherent AAEM on char gasification: a mechanism study using in-situ raman[J]. Energy,2022,238:122074. doi: 10.1016/j.energy.2021.122074
    [79] 周瑜枫, 王学涛, 梁彦正, 罗绍峰. Fe基催化剂在生物质催化气化中制富氢气体的应用[J]. 华电技术,2021,43(10):31−42.

    ZHOU Yi-feng, WANG Xue-tao, LIANG Yan-zheng, LUO Shao-feng. Research progress of Fe based catalysts for hydrogen-rich gas production from biomass catalytic gasification[J]. Integrated Intelligent Energy,2021,43(10):31−42.
    [80] LUO M, ZHANG H, WANG S, CAI J, QIN Y, ZHOU L. Syngas production by chemical looping co-gasification of rice husk and coal using an iron-based oxygen carrier[J]. Fuel,2022,309:122100. doi: 10.1016/j.fuel.2021.122100
    [81] SHEN T, ZHANG J, BAI L, SHEN L, YAN J. Chemical looping co-gasification characteristics of cyanobacterial/coal blends[J]. Energies,2020,13:2352. doi: 10.3390/en13092352
    [82] ADNAN M A, HOSSAIN M M. Co-gasification of indonesian coal and microalgae-a thermodynamic study and performance evaluation[J]. Chem Eng Process,2018,128:1−9. doi: 10.1016/j.cep.2018.04.002
    [83] LI G, LI A, ZHANG H, WANG J, CHEN S, LIANG Y. Theoretical study of the CO formation mechanism in the CO2 gasification of lignite[J]. Fuel,2018,211:353−362. doi: 10.1016/j.fuel.2017.09.030
    [84] MA X, ZHAO X, GU J, SHI J. Co-gasification of coal and biomass blends using dolomite and olivine as catalysts[J]. Renew Energ,2019,132:509−514. doi: 10.1016/j.renene.2018.07.077
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  1
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-03
  • 录用日期:  2022-12-20
  • 修回日期:  2022-12-03
  • 网络出版日期:  2023-01-18

目录

    /

    返回文章
    返回