留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负载型多级孔分子筛催化热解木质素制取单环芳烃

王绍庆 韩瑜 易维明 李志合 万震 焦妍

王绍庆, 韩瑜, 易维明, 李志合, 万震, 焦妍. 负载型多级孔分子筛催化热解木质素制取单环芳烃[J]. 燃料化学学报(中英文), 2023, 51(8): 1096-1105. doi: 10.19906/j.cnki.JFCT.2023009
引用本文: 王绍庆, 韩瑜, 易维明, 李志合, 万震, 焦妍. 负载型多级孔分子筛催化热解木质素制取单环芳烃[J]. 燃料化学学报(中英文), 2023, 51(8): 1096-1105. doi: 10.19906/j.cnki.JFCT.2023009
WANG Shao-qing, HAN Yu, YI Wei-ming, LI Zhi-he, WAN Zhen, JIAO Yan. Catalytic pyrolysis of lignin for production of mono-aromatic hydrocarbons over supported hierarchical zeolite[J]. Journal of Fuel Chemistry and Technology, 2023, 51(8): 1096-1105. doi: 10.19906/j.cnki.JFCT.2023009
Citation: WANG Shao-qing, HAN Yu, YI Wei-ming, LI Zhi-he, WAN Zhen, JIAO Yan. Catalytic pyrolysis of lignin for production of mono-aromatic hydrocarbons over supported hierarchical zeolite[J]. Journal of Fuel Chemistry and Technology, 2023, 51(8): 1096-1105. doi: 10.19906/j.cnki.JFCT.2023009

负载型多级孔分子筛催化热解木质素制取单环芳烃

doi: 10.19906/j.cnki.JFCT.2023009
基金项目: 山东省自然科学基金(ZR2021QE132),国家自然科学基金(52176192,52130610)和广东省新能源和可再生能源研究开发与应用重点实验室(E239kf0701)资助
详细信息
    通讯作者:

    Tel:18678191880,E-mail:lizhihe@sdut.edu.cn

  • 中图分类号: TK6

Catalytic pyrolysis of lignin for production of mono-aromatic hydrocarbons over supported hierarchical zeolite

Funds: The project was supported by Natural Science Foundation of Shandong Province (ZR2021QE132), National Natural Science Foundation of China (52176192, 52130610) and the Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development (E239kf0701).
  • 摘要: 单环芳烃(Mono-aromatic hydrocarbons, MAHs)是有机化工重要的基础原料,木质素经催化热解可实现绿色MAHs的制取。然而木质素热解气组分复杂,易导致催化剂快速积炭失活,不利于单环芳烃的富集。采用Ni和Ga金属改性的多级孔分子筛(HZSM-5@Al-SBA-15)为催化剂,用于催化提质木质素热解气定向制取MAHs,并在固定床反应器上探究催化热解产物分布规律及催化剂积炭行为。结果表明,多级孔分子筛具有发达的孔道结构,可有效提升木质素热解气催化提质过程中的传质扩散性能,且金属元素和介孔层的引入调变了催化剂酸性分布。相比于HZSM-5催化热解,HS(78.63%)、Ga/HS(77.15%)和Ni-Ga/HS(72.44%)多级孔分子筛均提升了MAHs的相对含量,降低了多环芳烃的生成量,气体产物中CO2的含量增加,表明催化剂促进了脱羧反应的进行。此外,负载型多级孔分子筛催化剂对应的积炭量明显降低,分别为Ni/HS(7.79%)、Ga/HS(6.37%)和Ni-Ga/HS(6.63%),表明金属组分的引入提升了催化剂的抗积炭性能。因此,基于金属修饰/孔道优化的负载型多级孔分子筛可催化提质木质素热解气定向制取高品质芳烃。本研究可为木质素废弃物高值利用提供基础参考。
  • FIG. 2575.  FIG. 2575.

    FIG. 2575.  FIG. 2575.

    图  1  负载型多级孔分子筛催化剂制备示意图

    Figure  1  Schematic diagram of preparation of supported hierarchical zeolite catalyst

    图  2  立式固定床催化热解反应器示意图

    Figure  2  Schematic diagram of vertical fixed-bed catalytic pyrolysis reactor

    1: Nitrogen cylinder; 2: Gas control regulator; 3: Temperature controller; 4: Wire mesh cup; 5: Catalyst layer; 6: Bio-oil collection unit; 7: Condenser; 8: Gas bag

    图  3  不同催化剂的XRD谱图(a)和NH3-TPD谱图(b)

    Figure  3  XRD diffraction patterns (a) and NH3-TPD spectra (b) of different catalysts

    图  4  不同催化剂的形貌分析(SEM照片)

    Figure  4  Micrographs of the different catalysts (a): HZSM-5,(b): HS,(c): Ni/HS,(d): Ga/HS,(e): Ni-Ga/HS; EDS micrograph, (f): Ni-Ga/HS

    图  5  不同催化剂的N2吸附-脱附等温曲线

    Figure  5  N2 adsorption-desorption isotherms of different catalysts

    图  6  不同催化剂作用下生物油组分分布

    Figure  6  Distribution of bio-oil components with different catalysts

    图  7  不同催化剂作用下芳烃组分分布

    Figure  7  Distribution of aromatic hydrocarbon components with different catalysts

    图  8  不同催化剂作用下气体组分分布

    Figure  8  Distribution of gas component of bio-oil with different catalysts

    图  9  反应后催化剂的TG-DTG曲线

    Figure  9  TG-DTG curves of the used catalysts

    图  10  负载型多级孔分子筛作用下木质素热解气可能反应路径示意图

    Figure  10  Possible reaction pathway of lignin pyrolysis vapours with supported hierarchical zeolite

    表  1  不同催化剂的孔结构参数

    Table  1  Pore structure parameters of different catalysts

    SampleSBET/(m2·g−1)Smicro/(m2·g−1)Sext/(m2·g−1)vtotal/(cm3·g−1)vmeso/(cm3·g−1)vmicro/(cm3·g−1)
    HS509.34242.76266.580.500.100.40
    Ni/HS477.16230.93246.230.410.100.31
    Ga/HS480.44240.93239.510.420.100.32
    Ni-Ga/HS472.34232.82239.520.400.100.30
    下载: 导出CSV

    表  2  不同催化剂作用下热解产物分布

    Table  2  Distribution of the pyrolysis products with different catalysts

    ProductNoneHZSM-5HSNi/HSGa/HSNi-Ga/HS
    Gas36.0638.1337.0536.2636.4036.13
    Bio-oil18.3216.2517.3318.1217.9818.25
    下载: 导出CSV

    表  3  不同催化剂作用下典型芳香族化合物分布

    Table  3  Distribution of the typical aromatic compounds with different catalysts

    ComponentRelative content /%a
    No catalystHZSM-5HSNi/HSGa/HSNi-Ga/HS
    Phenols
    Phenol3.282.286.521.022.25
    Phenol, 2-methoxy-30.561.88
    Phenol, 2-methyl-2.531.280.66
    Creosol2.29
    2-methoxy-4-vinylphenol1.19
    MAHs
    Benzene3.266.577.7117.8511.1220.30
    Toluene5.6828.0933.3329.0636.8236.92
    p−xylene1.6123.1927.819.2123.1710.82
    o−xylene6.906.892.024.552.75
    Benzene, 1,2,4-trimethyl-1.371.08
    Benzene, 1-ethynyl-4-methyl-2.141.812.140.901.65
    PAHs
    2-methylindene1.78
    Naphthalene11.109.0315.2310.0714.52
    Naphthalene, 2-methyl-8.145.834.874.075.23
    1H-Indene, 1-ethylidene-1.021.03
    Naphthalene, 1,5-dimethyl-1.751.05
    a: relative content of components was greater than 1%
    下载: 导出CSV
  • [1] SETHUPATHY S, MORALES G M, GAO L, WANG H L, YANG B, JIANG J X, SUN J Z, ZHU D C. Lignin valorization: status, challenges and opportunities[J]. Bioresour Technol,2022,347:126696. doi: 10.1016/j.biortech.2022.126696
    [2] BANU J R, PREETHI, KAVITHA S, TYAGI V K, GUNASEKARAN M, KARTHIKEYAN O P, KUNAR G. Lignocellulosic biomass based biorefinery: A successful platform towards circular bioeconomy[J]. Fuel,2021,302:121086. doi: 10.1016/j.fuel.2021.121086
    [3] HU J, ZHANG Q, LEE D J. Kraft lignin biorefinery: A perspective[J]. Bioresour Technol,2018,247:1181−1183. doi: 10.1016/j.biortech.2017.08.169
    [4] DAI G X, WANG S R, HUANG S Q, ZOU Q. Enhancement of aromatics production from catalytic pyrolysis of biomass over HZSM-5 modified by chemical liquid depositio[J]. J Anal Appl Pyrolysis,2018,134:439−445. doi: 10.1016/j.jaap.2018.07.010
    [5] 赵勃, 吴凯, 仲惟鹏, 魏刚, 胡宗华, 郑文广, 阮慧锋, 严新明, 马颖, 王博, 江天霖, 张会岩. 木质素炭与 ZSM-5 联合催化热解木质素制备芳烃实验研究[J]. 燃料化学学报,2021,49(3):303−310.

    ZHAO Bo, WU Kai, ZHONG Li-peng, WEI Gang, HU Zong-hua, ZHENG Wen-guang, RUAN Hui-feng, YAN Xin-ming, MA Yin, WANG Bo, JIANG Tian-lin, ZHANG Hui-yan. Experimental study on catalytic pyrolysis of lignin under char and ZSM-5 for preparation of aromatics[J]. J Fuel Chem Technol,2021,49(3):303−310.
    [6] JIN T, WANG H T, PENG J B, WU Y S, HUANG Z, TIAN X, DING M Y. Catalytic pyrolysis of lignin with metal-modified HZSM-5 as catalysts for monocyclic aromatic hydrocarbons production[J]. Fuel Process Technol,2022,230:107201. doi: 10.1016/j.fuproc.2022.107201
    [7] BHOI P R, OUEDRAOGO A S, SOLOIU V, QUIRIONO R. Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis[J]. Renewable Sustainable Energy Rev,2020,121:109676. doi: 10.1016/j.rser.2019.109676
    [8] ZHANG H Y, LUO B B, WU K, ZHAO B, YU J J, WANG S Y TAO Y J. Ex-situ catalytic pyrolysis of lignin using lignin-carbon catalyst combined with HZSM-5 to improve the yield of high-quality liquid fuels[J]. Fuel,2022,318:123635. doi: 10.1016/j.fuel.2022.123635
    [9] 张雷, 王海英, 韩洪晶, 陈彦广, 王程昊. 木质素催化热解用催化剂的研究进展[J]. 化工进展,2022,41(5):2429−2440.

    ZHANG Lei, WANG Hai-ying, HAN Hong-jing, CHEN Yan-guang, WANG Cheng-hao. Development of catalysts for catalytic pyrolysis of lignin[J]. Chem Ind Eng Prog,2022,41(5):2429−2440.
    [10] LIU R, SARKER M, RAHMAN M M, LI C, CHAI M Y, NISHU, COTILLON R, SCOTT N R. Multi-scale complexities of solid acid catalysts in the catalytic fast pyrolysis of biomass for bio-oil production-A review[J]. Prog Energy Combust,2020,80:100852. doi: 10.1016/j.pecs.2020.100852
    [11] YANG H, HAN T, YANG W, SANDSTROM L, JONSSON P G. Influence of the porosity and acidic properties of aluminosilicate catalysts on coke formation during the catalytic pyrolysis of lignin[J]. J Anal Appl Pyrolysis,2022,165:105536. doi: 10.1016/j.jaap.2022.105536
    [12] MARDIANA S, AZHARI N J, ILMI T, KADJA G T M. Hierarchical zeolite for biomass conversion to biofuel: A review[J]. Fuel,2022,309:122119. doi: 10.1016/j.fuel.2021.122119
    [13] SUN H R, LUO Z Y, WANG W B, LI S M, XUE S. Porosity roles of micro-mesostructured ZSM-5 in catalytic fast pyrolysis of cellulolytic enzyme lignin for aromatics[J]. Energy Convers Manage,2021,247:114753. doi: 10.1016/j.enconman.2021.114753
    [14] PALIZDAR A, SADRAMELI S M. Catalytic upgrading of biomass pyrolysis oil over tailored hierarchical MFI zeolite: Effect of porosity enhancement and porosity-acidity interaction on deoxygenation reactions[J]. Renewable Energy,2020,148:674−688. doi: 10.1016/j.renene.2019.10.155
    [15] ESCHENBACHER A, GOODARZI F, SARAEIAN A, KEGNAS S, SHANKS B S, JENSEN A D. Performance of mesoporous HZSM-5 and Silicalite-1 coated mesoporous HZSM-5 catalysts for deoxygenation of straw fast pyrolysis vapors[J]. J Anal Appl Pyrolysis,2020,145:104712. doi: 10.1016/j.jaap.2019.104712
    [16] XUE S, LUO Z, WANG W, LI S M, SUN H R, ZHOU Q G, LIANG X R. Preparation of aromatics from catalytic pyrolysis of enzymatic lignin over double-layer metal supported core-shell catalyst[J]. J Anal Appl Pyrolysis,2020,150:104884. doi: 10.1016/j.jaap.2020.104884
    [17] QIAO K, ZHOU F, HAN Z, FU J, MA H X, WU G. Synthesis and physicochemical characterization of hierarchical ZSM-5: Effect of organosilanes on the catalyst properties and performance in the catalytic fast pyrolysis of biomass[J]. Microporous Mesoporous Mater,2019,274:190−197. doi: 10.1016/j.micromeso.2018.07.028
    [18] YANG G X, YANG J T, HUANG D L, ZHOU W L, YANG L M, LV P M, YI W M, SUN Y M, YAN B B. BTX production from rice husk by fast catalytic pyrolysis over a Ga-modified ZSM-5/SBA-15 catalyst[J]. New J Chem,2021,45(8):3809−3816. doi: 10.1039/D0NJ04961A
    [19] HU C S, ZHANG H Y, XIAO R. Catalytic fast pyrolysis of biomass over core-shell HZSM-5@ silicalite-1 in a bench-scale two-stage fluidized-bed/fixed-bed reactor[J]. J Anal Appl Pyrolysis,2018,136:27−34. doi: 10.1016/j.jaap.2018.11.005
    [20] SU X F, WANG G L, BAI X F, WU W, XIAO L F, FANG Y J, ZHANG J W. Synthesis of nanosized HZSM-5 zeolites isomorphously substituted by gallium and their catalytic performance in the aromatization[J]. Chem Eng J,2016,293:365−375. doi: 10.1016/j.cej.2016.02.088
    [21] 王文博. 复合孔结构分子筛催化热解木质纤维素类生物质及其酚类衍生物的性能研究[D]. 杭州: 浙江大学, 2020.

    WANG Wen-bo. Research on the performance of catalytic fastpyrolysis of lignocellulosic biomass and its phenolicderivatives by composite meso-structured zeolite[D]. Hangzhou: Zhejiang University, 2020.
    [22] 田宝良. 新型核壳结构ZSM-5@MCM-41的合成及其催化性能研究[D]. 重庆: 重庆理工大学, 2017.

    TIAN Bao-liang. The Synthesis and CatalyticPerformance of New core-shellstructured ZSM-5@MCM-41[D]. Chongqing: Chongqing University of Technology, 2017.
    [23] LI X, REZAEI F, LUDLOW D K, ROWNAGHI A A. Synthesis of SAPO-34@ZSM-5 and SAPO-34@silicalite-1 core-shell zeolite composites for ethanol dehydration[J]. Ind Eng Chem Res,2018,57(5):1446−1453. doi: 10.1021/acs.iecr.7b05075
    [24] CHEN X, CHEN Y Q, YANG H P, WANG X H, CHE Q F, CHEN W, CEHN H P. Catalytic fast pyrolysis of biomass: Selective deoxygenation to balance the quality and yield of bio-oil[J]. Bioresour Technol,2019,273:153−158. doi: 10.1016/j.biortech.2018.11.008
    [25] KIM Y M, KANG B S, HAN T U, KIM S, JUNG S C, KIM S C, JEON J K, PARK Y W. Catalytic pyrolysis of organosolv and klason lignin over Al-SBA-15[J]. J Nanosci Nanotechnol,2018,18(2):1423−1426. doi: 10.1166/jnn.2018.14906
    [26] XUE X F, ZHANG C S, XIA D, WANG Y G, LIANG J, SUN Y F. Dual-catalyst catalytic pyrolysis of poplar sawdust: A systematic study on first-layered catalysts[J]. Chem Eng J,2022,431:134251. doi: 10.1016/j.cej.2021.134251
    [27] WANG J, ZHONG Z P, DING K, LI M, HAO N J, MENG X Z, RUAN R, RAGAUSKAS A J. Catalytic fast co-pyrolysis of bamboo sawdust and waste tire using a tandem reactor with cascade bubbling fluidized bed and fixed bed system[J]. Energy Convers Manage,2019,180:60−71. doi: 10.1016/j.enconman.2018.10.056
    [28] ZHENG Y W, WANG F, YANG X Q, HUANG Y B, LIU C, ZHENG Z, GU J Y. Study on aromatics production via the catalytic pyrolysis vapor upgrading of biomass using metal-loaded modified H-ZSM-5[J]. J Anal Appl Pyrolysis,2017,126:169−179. doi: 10.1016/j.jaap.2017.06.011
    [29] XUE Y, SHARMA A, HUO J J, QU W D, BAI X L. Low-pressure two-stage catalytic hydropyrolysis of lignin and lignin-derived phenolic monomers using zeolite-based bifunctional catalysts[J]. J Anal Appl Pyrolysis,2020,146:104779. doi: 10.1016/j.jaap.2020.104779
    [30] LIANG J, SHAN G C, SUN Y F. Catalytic fast pyrolysis of lignocellulosic biomass: Critical role of zeolite catalysts[J]. Renewable Sustainable Energy Rev,2021,139:110707. doi: 10.1016/j.rser.2021.110707
    [31] DOUKEH R, BOMBOS M, BOMBOS D, VASILIEVICI G, RADU E, OPRESCU E E. Pyrolysis of digestate from anaerobic digestion on tungsten oxide catalyst[J]. React Kinet Mech Catal,2021,132(2):829−838. doi: 10.1007/s11144-021-01952-7
    [32] ZHENG Y W, TAO L, YANG X Q, HUANG Y B, LIU C, ZHENG Z F. Comparative study on pyrolysis and catalytic pyrolysis upgrading of biomass model compounds: Thermochemical behaviors, kinetics, and aromatic hydrocarbon formation[J]. J Energy Inst,2019,92(5):1348−1363. doi: 10.1016/j.joei.2018.09.006
    [33] SCHULTZ E L, MULLEN C A, BOATENG A A. Aromatic hydrocarbon production from eucalyptus urophylla pyrolysis over several metal-modified ZSM-5 catalysts[J]. Energy Technol,2017,5(1):196−204. doi: 10.1002/ente.201600206
    [34] WU L, XIN J J, XIA D, SUN J L, LIANG J. Enhanced production of hydrocarbons from the catalytic pyrolysis of maize straw over hierarchical ZSM-11 zeolites[J]. Appl Catal B: Environ,2022,317:121775. doi: 10.1016/j.apcatb.2022.121775
    [35] REN X Y, CAO J P, ZHAO X Y, YANG Z, LIU T L, FAN X, ZHAO Y P, WEI X Y. Catalytic upgrading of pyrolysis vapors from lignite over mono/bimetal-loaded mesoporous HZSM-5[J]. Fuel,2018,218:33−40. doi: 10.1016/j.fuel.2018.01.017
    [36] YANG H P, YAN R, CHEN H P, LEE D H, ZHENG C G. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel,2007,86(12/13):1781−1788. doi: 10.1016/j.fuel.2006.12.013
    [37] SHAFAGHAT H, JAE J, JUNG S C, JEON J K, KO C H, PARK Y K. Effect of methane co-feeding on product selectivity of catalytic pyrolysis of biomass[J]. Catal Today,2018,303:200−206. doi: 10.1016/j.cattod.2017.09.009
    [38] CHEN X, GUAN W X, TSANG C W, HU H Q, LIANG C H. Lignin valorizations with Ni catalysts for renewable chemicals and fuels productions[J]. Catalysts,2019,9(6):488. doi: 10.3390/catal9060488
    [39] LI X H, GE S N, SHAO S S, LV Z C, XIANG X L, CAI Y X. Promoted production of hydrocarbons in the catalytic pyrolysis of rape straw over composite HZSM-5@ MCM-41 catalysts[J]. J Anal Appl Pyrolysis,2021,157:105067. doi: 10.1016/j.jaap.2021.105067
    [40] SANAPUR G, KUMAR A, MONDAL A, SREERAMAGIRI S, DONGARA R, RAMASWAMY G. Thermal desorption and characterization of carbonaceous deposits in Mo/HZSM-5 catalyst[J]. J Anal Appl Pyrolysis,2019,138:22−28. doi: 10.1016/j.jaap.2018.11.031
    [41] ZHANG B, ZHANG J, ZHONG Z P, ZHANG Y C, SONG M, WANG X J, DING K, RUAN R. Conversion of poultry litter into bio-oil by microwave-assisted catalytic fast pyrolysis using microwave absorbent and hierarchical ZSM-5/MCM-41 catalyst[J]. J Anal Appl Pyrolysis,2018,130:233−240. doi: 10.1016/j.jaap.2018.01.002
    [42] CARLSON T R, CHENG Y T, JAE J, HUBER J W. Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust[J]. Energ Environ Sci,2011,4(1):145−161. doi: 10.1039/C0EE00341G
    [43] OUYANG D H, CHEN H M, LIU N, ZHANG J Z, ZHAO X B. Insight into the negative effects of lignin on enzymatic hydrolysis of cellulose for biofuel production via selective oxidative delignification and inhibitive actions of phenolic model compounds[J]. Renewable Energy,2022,185:196−207. doi: 10.1016/j.renene.2021.12.036
    [44] SINGH N, SINGHANIA R R, NIGAM P S, DONG C D, PATEL A K, PURI M. Global status of lignocellulosic biorefinery: Challenges and perspectives[J]. Bioresour Technol,2022,344:126415. doi: 10.1016/j.biortech.2021.126415
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  1338
  • HTML全文浏览量:  146
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-26
  • 修回日期:  2022-12-02
  • 录用日期:  2023-01-11
  • 网络出版日期:  2023-02-10
  • 刊出日期:  2023-08-01

目录

    /

    返回文章
    返回